

COMPUTING
SCIENCE

Architecting Holistic Fault Tolerance

Rem Gensh, Ashur Rafiev, Alexander Romanovsky
CSR
Newcastle University
Newcastle upon Tyne, UK

Alessandro Garcia
Informatics Department
PUC-Rio
Rio de Janeiro, Brazil

Fei Xia, Alex Yakovlev
School of EEE
Newcastle University
Newcastle upon Tyne, UK

TECHNICAL REPORT SERIES

No. CS-TR-1505 November 2016

TECHNICAL REPORT SERIES

No. CS-TR-1505 November, 2016

Rem Gensh, Ashur Rafiev, Alexander Romanovsky,
Alessandro Garcia, Fei Xia, Alex Yakovlev.

Abstract

The optimality and maintainability of fault tolerance
mechanisms in a computer system has typically not been a
major topic of concern, mostly because fault tolerance is a
non-functional system requirement. This paper proposes a
Holistic Fault Tolerance architecture, based on a
centralised fault tolerance management, with related
functionality distributed across the entire system. The most
suitable error detection and error recovery strategies for a
given application are chosen by a special crosscutting
controller depending on error rates, system performance
and resource utilisation requirements. We discuss the
motivation for introducing this holistic fault tolerance
architecture and reason about its benefits from the point of
view of optimal system operation and improved
maintainability. The advantages and possible
implementation challenges of the proposed approach are
demonstrated by a real-world application.

© 2016 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical Details

Rem Gensh, Ashur Rafiev, Alexander Romanovsky
CSR
Newcastle University
Newcastle upon Tyne, UK

Alessandro Garcia
Informatics Department
PUC-Rio
Rio de Janeiro, Brazil

Fei Xia, Alex Yakovlev
School of EEE
Newcastle University
Newcastle upon Tyne, UK

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1505

Abstract

The optimality and maintainability of fault tolerance
mechanisms in a computer system has typically not been a
major topic of concern, mostly because fault tolerance is a
non-functional system requirement. This paper proposes a
Holistic Fault Tolerance architecture, based on a
centralised fault tolerance management, with related
functionality distributed across the entire system. The
most suitable error detection and error recovery strategies
for a given application are chosen by a special crosscutting
controller depending on error rates, system performance
and resource utilisation requirements. We discuss the
motivation for introducing this holistic fault tolerance
architecture and reason about its benefits from the point
of view of optimal system operation and improved
maintainability. The advantages and possible
implementation challenges of the proposed approach are
demonstrated by a real-world application.

About the authors

Rem Gensh is a PhD student and a Research Technician at
SRS group in the School of Computing Science of
Newcastle University, Newcastle-upon-Tyne, UK. He
graduated Kyrgyz-Russian Slavic University, Kyrgyzstan,
with honors in 2008. After a 6-years extensive industrial
experience as a software developer and a team leader, he
reallocated to research area and started his PhD in 2014.
He is involved in EPSRC/UK PRiME project. His research
interests include fault tolerance, energy-efficient software
design and many-core architectures.

Ashur Rafiev is an RA on the EPSRC PRiME Program
Grant. In this project he leads the development of the
ArchOn modelling environment.

Alexander (Sascha) Romanovsky is a Professor in the
Centre for Software and Reliability, Newcastle University.
His main research interests are system dependability, fault
tolerance, software architectures, exception handling,
error recovery, system structuring and verification of fault
tolerance. He received a PhD degree in Computer Science
from St. Petersburg State Technical University and has
worked as a visiting researcher at ABB Ltd Computer
Architecture Lab Research Center, Switzerland and at
Istituto di Elaborazione della Informazione, CNR, Pisa,
Italy. In 1993 he became a postdoctoral fellow in
Newcastle University, and worked on the ESPRIT projects
on Predictable Dependable Computing Systems (PDCS),
Design for Validation (DeVa) and on UK-funded projects
on the Diversity, both in Safety Critical Software using
Off-the-Shelf components. He was a member of the
executive board of EU Dependable Systems of Systems
(DSoS) Project, and between 2004 and 2012 headed
projects on the development of a Rigorous Open
Development Environment for Complex Systems

(RODIN), and latterly was coordinator of the major FP7
Integrated Project on Industrial Deployment of System
Engineering Methods Providing High Dependability and
Productivity (DEPLOY). He now leads work on fault
tolerance in Systems of Systems within the COMPASS
project and is Principal Investigator of Newcastle’s
Platform Grant on Trustworthy Ambient Systems.

Fei Xia is a Senior RA on the EPSRC PRiME Program
Grant. Fei is with the EE School. His research interests
include Asynchronous Data Communication. Asynchrnous
System Design. Systems and Networks on Chip. Energy
and Power in Computing.

Alex Yakovlev received D.Sc. from Newcastle University in
2006, and M.Sc. and Ph.D. from St. Petersburg Electrical
Engineering Institute in 1979 and 1982. Since 1991 he has
been at the Newcastle University, where he worked as a
lecturer, reader and professor at the Computing Science
department until 2002, and is now heading the
Microelectronic Systems Design research group
(http://async.org.uk) at the School of Electrical,
Electronic and Computer Engineering. His current
interests and publications are in the field of modeling and
design of asynchronous, concurrent, real-time and
dependable systems on a chip. He has published four
monographs and more than 200 papers in academic
journals and conferences, has managed over 25 research
contracts.

Suggested keywords

Architecture; Fault tolerance; Crosscutting concerns;
Performance; Operation modes;

Architecting Holistic Fault Tolerance

Rem Gensh, Ashur Rafiev,

Alexander Romanovsky

CSR

Newcastle University

Newcastle upon Tyne, UK

Alessandro Garcia

Informatics Department

PUC-Rio

Rio de Janeiro, Brazil

Fei Xia, Alex Yakovlev

School of EEE

Newcastle University

Newcastle upon Tyne, UK

Abstract—The optimality and maintainability of fault

tolerance mechanisms in a computer system has typically not

been a major topic of concern, mostly because fault tolerance is a

non-functional system requirement. This paper proposes a

Holistic Fault Tolerance architecture, based on a centralised fault

tolerance management, with related functionality distributed

across the entire system. The most suitable error detection and

error recovery strategies for a given application are chosen by a

special crosscutting controller depending on error rates, system

performance and resource utilisation requirements. We discuss

the motivation for introducing this holistic fault tolerance

architecture and reason about its benefits from the point of view

of optimal system operation and improved maintainability. The

advantages and possible implementation challenges of the

proposed approach are demonstrated by a real-world

application.

Keywords—architecture; fault tolerance; croscutting concerns;

performance; operation modes;

I. INTRODUCTION

Faults and failures are unavoidable in computer systems.
To prevent catastrophic consequences of these failures,
computer systems must be both reliable and safe, ensuring
overall system dependability. In addition, they should be
optimal in terms of resource utilisation because performance
and energy efficiency are important factors for the systems
regardless of scale from embedded devices to data centres. It is
also crucial to provide an easy way to maintain and modify the
system components to decrease outage time, improve
developer’s understanding of the system and reduce associated
costs. The same demands are applied to fault tolerance (FT)
mechanisms of the system.

During system design a lot of effort is made to provide high
cohesion and loose coupling of the system components [1].
This approach can be applied very smoothly for functional
properties and for business logic, because the same
functionality may be placed in one unit and intricate
implementation details may be hidden from other units.
However, when FT mechanisms of such a unit are hidden, it
makes system-wide FT less understandable and optimisable.
Pragmatically, such an approach causes components to be
designed maximally safe with the costs not always contributing
to system-wide FT, precluding the possibility of centralised
monitoring and dynamic tuning of the system based on

interplay between required performance, resource utilisation
and reliability.

To deal with these issues we offer to apply the holistic fault
tolerance (HFT) architecture, which allows developers to
control the system FT in a global crosscutting manner. The
vision of “Holistic” Fault Tolerance was proposed in our recent
paper [2] where we presented a novel approach to system FT
taking into consideration non-functional characteristics of the
system, such as reliability, performance and energy efficiency.
This approach assumes that the FT mechanisms across the
entire system are managed by a central component, allowing
the developer to reason about certain error detection and error
recovery strategies at the system scale, and not at the scale of
separate components. The HFT architecture does not imply the
alteration of firmly established FT techniques [3]. In contrast,
the HFT architecture demonstrates how these techniques can be
applied for the design and implementation of more optimal
computer systems by reasoning about the system FT
holistically, rather than concentrating on individual
components only. The reason to introduce the holistic approach
is the facilitation of system modularity by the separation of
crosscutting concerns, such as FT mechanisms of the system.

While the HFT approach is considered as general and not
restricted by certain application domains, our main focus is
given to the component-based software architectures, since
they are more suitable for the scope of this article. Therefore,
generally this type of software architecture will be assumed
further in the paper.

The main contribution of this paper is a specific HFT
architecture, which allows the designer to have centralised
access to the FT functionality of the system and to tune non-
functional properties like reliability, performance and resource
utilisation. In addition, we consider a general method that can
be applied to facilitate the design of the HFT architecture. The
goal of this study is to demonstrate that HFT is able to monitor
system states and dynamically adjust the entire system to
achieve optimal resource utilisation without uncontrolled
reliability deterioration.

In this paper we present further development of the HFT
architecture that has been made since our previous work,
consider all its elements in details and describe the techniques
that could be applied for the implementation of the HFT
architecture. The rest of the paper is organised as follows.
Section 2 provides the motivation and introduces the research

Rem Gensh is supported by the School of Computing Science of

Newcastle University and by PRiME project EP/K034448/1.

question. Background support for the chosen study is discussed
in Section 3. Section 4 describes the HFT architecture and all
of its parts. A practical way to apply the HFT approach and its
benefits are demonstrated by a real-world example in Section
5. Concluding remarks are given in Section 6.

II. MOTIVATION

Our approach is called holistic, because we propose to
consider an entire application during the design of the system’s
FT. We have chosen FT property as main part of the concept,
since it is an important crosscutting concern of the system,
which can affect other non-functional properties of the system.

We offer to use a centralised unit to manage FT across the
system, because it is the most suitable place for the given
functionality. Here we can analyse reliability, performance, and
resource utilisation of the application and make necessary
adjustments of the application based on the trade-off between
these properties.

According to academic [4] and industrial [5] studies, FT is
a crosscutting concern for computer systems. In this way,
during the design and implementation of FT functionality the
main focus should be made system-wide, rather than on
components. It is more convenient to centralise FT-related
code in order to improve the modularity of the system, since
the relevant FT functionality will be coordinated by one
module, unit or component, simplifying the understanding and
access to the FT mechanisms. The main dilemma is how to
create a crosscutting component-controller implementing
system-wide FT scenarios and at the same time to avoid over-
complicating the system architecture by binding this
centralised controller to all crucial components of the system.

In previous work [2] we presented two reasons for
introducing HFT. The first is optimal system-wide operation.
Without a holistic approach a system may consist of a set of
optimal components without global optimality. The other
relates to system maintenance – system-wide FT is not easily
understandable and modifiable without a holistic approach.
These remain the fundamental motivations for this paper.

III. BACKGOUND AND EXISTING WORK

This section provides an analysis of the existing approaches
to system structuring and FT management, and considers the
following issues: a centralised management of FT, system
architectures based on goal-seeking behaviour, modular FT
architectures and operation modes.

A. Centralisation of FT management

The study [6] provides the notion of guardian – a special
global exception handler for a distributed system. In addition,
they consider the implementation of distributed exception
handling and global exception handling and analyse the
provided guardian model. The goal of the guardian is to
enhance existing exception handling models and provide the
basis for them. Authors note that in a distributed systems
exception handling is far different from sequential exception
handling, since distributed systems require communication and
coordination of exception handlers. Moreover, several

exceptions may be raised concurrently. Thus, each
participating process of the application should invoke the
correct handler. In the guardian model, the correct handler for
each process is chosen by the guardian according to the
application defined recovery rules. This allows the guardian to
orchestrate the recovery action of each involved process.
Guardian model distinguishes global exceptions coordinated
through the guardian and local exceptions, which are handled
by those processes where they occurred. Main advantages of
the guardian model are separation of global exception handling
from participant processes and flexible primitive scheme for
distributed exception handling. However, this approach
involves scalability and performance overheads for the
implementation of reliable broadcast with participating
processes. The second limitation is a complexity of definition
of the contexts and corresponding set of exceptions and
handlers according to the guardian rules.

B. Systhems with goal-seeking behaviour

Another interesting approach is to consider the system from
the goal-achieving point of view. One example is described by
Brooks as the architecture of layered control system developed
for mobile robots [7]. A control system is able to execute many
complex processing tasks in real time. Instead of decomposing
the problem into functional units, the author decided to apply
task achieving behaviour decomposition. Several mobile robot
requirements were identified. Firstly, the robot has multiple
goals sorted by priority because the goals could be conflicting.
Secondly, for navigation purposes, the robot uses multiple
sensors, which not always give very precise data. The third
point is robustness. If some parts of the control system fails, the
robot should rely on working components. Brooks defines his
initial motivation stating that it is not necessary to use very
complex control systems in order to achieve complex
behaviour. Levels of competence and layers of control are
applied to solve each small decomposed subproblem. Levels of
competence are defined as a guide for this work. Lower levels
implement simple behaviours like avoiding the objects and
wander aimlessly without hitting the walls, etc. Each next level
offers more complex behaviour and includes each earlier level
of competence as a subset. For each level of competence there
is a corresponding layer of control. Layers of control are added
incrementally without changing the lower layers. A higher
layer augments lower layers of the control system, but the
lower layers still produce the results without knowing about the
higher layers. The author calls this the subsumption
architecture. Such an architecture provides additional
robustness since the lower levels of competence are well
debugged and continue to produce the results. If the higher
level is unable to produce the result during the specified time,
then the lower level will produce the acceptable result. In
addition, new layers can be added later if the control system
requires additional functionality. The given architecture does
not require any central control, because the system is
considered as a system of independent agents. However, the
lower layers produce the results despite the fact that these
results will not be used hereafter. Such a scheme lacks system-
wide coordination. In some cases, this approach leads to
overdesign: redundant operations or waste of the resources.

Another relevant work is the idea of the Teleo-Reactive
programs presented by Nilsson [8]. To apply this approach, the
developer should specify the goal and define the actions to be
performed in case of changes in a constantly monitored
environment. Monitoring is implemented as continuous
computation of the parameters and conditions for the actions.
These conditions are in the regression relationship to ensure
robust goal-seeking behaviour. The restriction of the Teleo-
Reactive programs is that they require a lot of computations to
check the conditions. However, the majority of the conditions
are irrelevant to the current situation or might be predicted very
precisely. This approach is not suitable when the system
resources should be consumed optimally and effectively.

C. Modular FT architectures

Aspect Oriented Programming (AOP) is a promising
paradigm intended to improve the modularity of systems by
separation of crosscutting concerns. It is achieved by extending
the program code behaviour in certain points, without
modifying the code itself. This approach is being considered as
a useful technique that can support the implementation of HFT.
Several examples of applying AOP for supporting modular FT
architectures are discussed below.

In [9] the quantitative assessment of exception handling as
aspects is provided. Author considers the benefits of using
AOP for modularisation of exception detection and exception
handling. AOP allows the developer to lexically separate
exception handling code from normal application code given
that the changes in AOP code will be less intrusive and more
simple. However, the limitation of AOP is that there is no
possibility to represent global properties of exception control
flows. In addition, there are not usable abstractions for
composition and reusing of pluggable exception handlers.

Research [10] provides an analysis of the claim that AOP
facilitates the modularization of exception handling
mechanisms. Authors state that majority of software
development methodologies do not give consideration to the
design of a system’s exceptional behaviour. It is shown that in
some cases AOP could even deteriorate the quality of the
system. The main result of the study is that AOP will not
improve FT in the system with bad architecture. However, it is
able to facilitate the structure of well designed systems by
separating normal and exceptional activities of the system.
Two main contributions of the paper are based on an interplay
between AOP and error handling. The former is classification
of exception handling code in terms of factors that make
influence on aspectisation. The latter is analysis of interactions
amongst these factors.

Feasibility and evaluation of using AOP for software
implemented hardware FT (SIHFT) is presented in [11].
Authors offer to apply AOP in order to avoid tangling of
SIHFT code with code related to the main functionality of the
program. Fault coverage and performance penalty were used to
assess SIHFT based on aspects. According to the experimental
results AOP is convenient for the programs with SIHFT. The
authors focus mainly on hardware FT that is implemented in
software, however they do not consider FT of the entire

system. In addition, this approach does not assume centralised
coordination.

Paper [12] estimates the impacts of using AOP and
compares AOP with other techniques. The authors measure
memory consumption and execution time overhead of the
automotive brake controller application after introducing FT
mechanisms represented by time redundant execution and
control flow checking. These software mechanisms are
intended to deal with hardware faults. The implementation is
done at a source code level by three approaches: AOP, source
code transformation and manual programming in C. Software
implemented FT was preferable since it allows the designers to
minimise the cost of redundancy by using self-checking and
internally fault tolerant electronic control unit (ECU) instead of
replicating several ECUs. Authors analysed the pros and cons
of the AOP for systematic and application specific
implementations. At the function level, FT mechanisms have a
very high degree of tangling. This is the reason why AOP
introduces significant performance overheads for systematic
implementations. However, when knowledge of the application
is leveraged, the overheads of using AOP are similar to those
caused by manual programming in C, but AOP is more
preferable for the developer.

Research experiments evaluating the advantages and
disadvantages of explicit exception flows and implicit
exception flows using three different exception handling
mechanisms based on Java, AspectJ and EJFlow are presented
in [13]. This work focuses on a way to facilitate exception
handling. The authors state that the goal of exception handling
mechanisms is to distinguish normal code and error handling
code. However, when the exception related code is modified,
the control flow of the program could be unexpectedly
affected. Sometimes it is difficult to locate the place where the
exception will be handled or where it was raised. The paper
claims that the main disadvantage of Java-type languages is
that there is no link between the exception rising site and the
exception handling site. However, exception control flow is a
crosscutting concern and AOP techniques could be applied to
facilitate modularity and maintainability in the presence of
exceptions. AspectJ provides a way to distinguish normal and
error handling code but only syntactically (not semantically).
Therefore, the developer does not have any means for
specifying how the exception should flow from the rising site
to the handling site. In turn, the EJFlow exception handling
mechanism introduces two notions: explicit exception channels
and pluggable handlers, which are based on AspectJ
abstractions. An explicit exception channel abstracts the flow
of exception from the rising site to the handling site, whereas a
pluggable handler is a special exception handler that could be
bound to methods, blocks, classes and packages. Pluggable
handlers encapsulate the exception handling code when a
predefined point in an explicit exception channel is reached.
The experiments showed that textual separation between
normal and error handling code does not provide the expected
benefits of modular software. At the same time, it was proved
that exception channels and pluggable handlers provide more
robust and flexible exception handling. Therefore, EJFlow
abstractions reduce error likelihood, facilitate software
maintainability, improve implementation productivity by

providing automated support for developers and make
exception control flow more understandable.

D. Operation Modes

Operation mode (OM) is a special state of the system. OM
defines which system functionality will be available at the
given instant of time. Or in other words, OM determines the
link between the system state and available system
functionality, since the capabilities that are available in one
mode may not be available in another mode. For example,
different set of operations is available for an aircraft during the
taxiing, take-off or flight.

In [14] authors promote the notion of mode as partition of
the system state space. In addition, they consider the modes as
convenient method for modular specification of large state
machines. Transition is used to change the mode for the
system. Authors provide two possible relationships between
modes: serial and parallel. Serial mode means that the system
could be only in one mode in one instant of time, whereas
parallel relationship assumes that the system is in all of the
available parallel modes simultaneously. Serial and parallel
modes provide the way to organise assertions about system
behaviour in a hierarchical and compartmental organisation.
Modes represent control information about behaviour of a
system.

Modal systems are presented in [15]. In this study a modal
system is defined as an abstract specification of the modes and
mode transition. Authors propose formal definitions of the
abstractions for specifying modal systems. It is claimed that
operation modes are very common in real-time systems, for
example a deadline could be dependable on operation mode.
Using of modes and modal system refinement facilitates the
definition of system properties, transformation of system
requirements into model definition and control structure in the
system. Event-B was applied to prove mode switching for the
state based model.

In this section we considered various approaches to the
system structuring and possible ways of the implementation of
FT for the systems. Our vision of the HFT architecture is
presented in the next section.

IV. HOLISTIC FAULT TOLERANCE ARCHITECTURE

In previous sections we considered the issues relating to
optimal system operations and the convenience of FT
maintainability. To address these problems, we propose the
HFT architecture blueprint. This architecture assumes that the
application is build out of components whose responsibility is
to deliver the main system functionality. The core of this
architecture is a special component called the HFT controller,
which is supported by several HFT agents. These elements of
the architecture ensure dependable and optimal system
operation. In addition, they provide a clear view of the system
FT mechanisms. The HFT controller coordinates system-wide
FT with the assistance of the HFT agents that simplify the
implementation and improve the scalability of the HFT
controller. Each HFT agent acts as an intermediary between the
HFT controller and one or several system components. It is
possible to go without the HFT agents for small applications,

given that the corresponding functionality will be implemented
by the HFT controller.

Fig. 1. The HFT architecture

Details of the HFT architecture are provided below.

A. HFT controller

The HFT controller is a crosscutting unit, which
coordinates FT strategies and analyses the performance of the
entire system. These tasks are mainly performed with the
assistance of the HFT agents, which obtain all required
information from the monitored system components and pass it
to the HFT controller. Moreover, the HFT controller initiates
fault handling and reconfiguration of the entire system after
detecting certain erroneous conditions and checking error rates.
In this case, apart from the HFT agents’ help, the HFT
controller utilises public interfaces of crucial system
components in order to adjust the reliability, quality of service,
performance and energy consumption of the system. However,
it should not be aware of the inner structure or encapsulated
information of the monitored components because in this case
it will be very complex for maintenance and understanding.
This is the reason why the knowledge of the HFT controller
about the system should be restricted by the general structure
of the system and the performance characteristics and average
resource utilisation requirements of the system components.
The HFT controller should know about the ties between the
HFT agents and system components. In all cases when the
implementation details of the monitored system components
are required to perform some action, the HFT controller should
use the HFT agents, which are responsible for their areas of the
system and able to provide all required information. Depending
on this data, the HFT controller will make system adjustments
and reconfigurations.

B. HFT agent

The HFT agent is a special object monitoring only one or in
some cases several system components that are responsible for

similar system functionality. It supplies the HFT controller
with up-to-date information about the state of the observed
components. The HFT agent is not aware of the whole system
structure, because its goal is to monitor only parts of the system
and pass the obtained information to the HFT controller. The
agents have the possibility and right of intervention to the
control flow inside the functions of monitored components in
order to evaluate the results and handle the errors, since agents
are aware of the implementation details of these components.

C. Interaction between the HFT controller and the HFT

agents

The HFT controller works with all available HFT agents. In
case of error in an observed component, the HFT agent could
request the HFT controller for a suitable error recovery or fault
handling action. In addition, the HFT agent should detect the
erroneous states in the monitored component and propagate
this information to the HFT controller. To reduce HFT
controller complication, we propose to use discrete
enumerations by the HFT controller whenever it is possible.
For instance, quality of the operation or result of the function
could be presented by the following enumeration: Error, Low
Quality, Medium Quality and Good Quality. The additional
task of the HFT agent is to perform mapping between real data
types and simplified data types suitable for the HFT controller.

D. Interaction between the HFT agent and monitored system

components

The HFT agent monitors one or more system components.
That includes checking of the results provided by principal
functions, performing error detection and error recovery and
suppressing exception raising in the monitored components. If
the HFT agent monitors more than one component, errors
could be detected based on concurrent analysis of two
components. In this case, error recovery could affect both
components as well. In addition, the HFT agent evaluates
current performance and current error rates in its area of
responsibility composed of the observed components.

E. Interaction between the HFT controller and monitored

system component

The HFT controller has an access to special public
interfaces of the system components. These interfaces are used
to adjust the component settings after changing of the operation
mode or/and to perform fault handling by the reconfiguration
of the component. These interfaces give the possibility for the
HFT controller to tune reliability and performance of the entire
system. We propose to use only public interfaces of the system
components for the interaction between the HFT controller and
observed system components. All other activities, requiring the
amendment of the component behaviour should be done via the
HFT agents.

F. Fault tolerance functionality

FT mechanisms in the given architecture are distributed
across the entire system, but coordinated centrally by the HFT
controller. In some cases, it is worth to introduce some
redundancy in FT mechanisms in such a way that the same
error could be handled by the component itself and by the HFT

agent. The decision on suitable error handling scenarios will be
made by the HFT controller depending on the current system
state. Such an approach provides the flexibility in the choice of
the optimal error recovery scenario. Some errors will be
handled by both the component itself and the HFT agent. Only
part of the system components needs to be involved in the HFT
mechanisms. It makes sense to use only crucial components
that globally affect the system operation or could be
reconfigured in terms of performance or resource usage. It is
definitely more convenient to implement these system
components to be “HFT-ready” providing all necessary
interfaces and preparing them to work with the HFT controller
and HFT agent. However, when the components do not provide
such interfaces, for example legacy components, the
developers can implement special wrappers or adapters for
these components.

G. Operation Modes

Operation mode could be defined as a functional state of
the system. Another usage of OM is to provide a non-
functional distinction when one mode describes full
functionality of the system, whereas another mode is used for
exceptional conditions.

With respect to the HFT architecture we offer to apply
modes, considering an interplay between reliability,
performance and energy consumption. OMs could be applied
for the entire system and for separate components in some
cases. It is evident that the HFT controller is the most suitable
place to control and choose the optimal OM for the system
components. Let us consider the following example. Two
components are performing some operation. To finish one
cycle, the chunk of data should be processed by one component
and put in the queue. The second component checks the queue.
When there is a chunk of data, it takes this chunk for
processing. To provide real-time behaviour, it is necessary to
balance the loading of the components. We can specify how to
distribute computer resources between these two components
and how to balance the data chunk queue. It can be noticed that
the HFT controller is a very suitable place to make a decision
about resource distribution and OM assignation. HFT agents
could monitor the calculation results of these components and
supply the HFT controller with this information, so that the
HFT controller is able to increase or decrease the quality of
service for each component on-the-fly. OM can also be
considered as a graceful degradation for the system when some
component fails or requires restart. This idea provides the
possibility of fault handling with the assistance of the HFT
controller, which performs system reconfiguration by choosing
suitable modes for the system components.

A system designer should choose which components of the
system will participate or will be included in the HFT
behaviour and which components will just provide their
functionality without being affected by the HFT controller and
agents. The system components are classified into four groups.

 Components that are monitored by one or more HFT
agent and provide the interface for the HFT controller.
Components C1, C2 and C3 in Fig. 1.

 Components that are monitored by the HFT agent/s
only and do not provide interfaces for the HFT
controller. Component C4 in Fig. 1.

 Components that only provide the interface for the HFT
controller. This means that for the given components it
does not make sense to observe their inner operation,
but they provide good flexibility in tuning performance
and resource utilisation. Component C5 in Fig. 1.

 Components that just provide their functionality and are
not included in the HFT scheme. Components C6 and
C7 in Fig. 1.

In this section we provided the description of the HFT
architecture, which includes a special HFT controller and a
number of HFT agents. In short, the HFT controller is aware of
the general structure of the system and it works with general
entities such as quality of the result, error rates and
performance, whereas the HFT agent is aware of the
implementation details of some part of the application. In
addition, we proposed that FT of the system components
should be considered in the context of the entire application,
but not as a property of these components. The next section
provides description of the case study demonstrating practical
usage of the HFT architecture for real applications.

V. CASE STUDY

The case study is centred on the application for the
recognition of UK car number plates. The main goal of the
application is to demonstrate practical usage of the HFT
approach and provide evaluation of the HFT architecture. Thus,
it helps to explain the stages of design and implementation of
the HFT architecture for the system. The application is not
intended to compete with industrial solutions, but it shows how
the HFT architecture can be employed during real-world
software development processes.

Since our previous work [2], the case study has undergone
several changes to assess the benefits of the HFT architecture
and to evaluate its scalability and maintainability. Firstly, the
previous approach of image processing when the images were
uploaded one-by-one was replaced with the queue processing
approach. Secondly, we applied AOP to support the
modularisation of crosscutting behaviour. Thirdly, the tasks
that were performed by the HFT component alone in the first
version of the application are now distributed among the HFT
controller and HFT agents according to the HFT architecture.
This was done to simplify the HFT controller and make it as
clear as possible. In the old version the HFT component was
presented as a separate class with global knowledge about the
system. Sensor and monitoring actions were performed by the
HFT component as well. This architecture was suitable for a
small application. However, for a bigger application, such an
architecture would face scalability issues, since the HFT
component should have an access to all important components
of the system. The first version of the application was
implemented in C# language. The new version is implemented
in Java with AspectJ [16] AOP extension.

Five components are responsible for the functional
capabilities of the system: Car Number Plate Recognition

(CNPR) component, Initial Image Processing (IIP) component,
Optical Character Recognition (OCR) component, Number
Plates Queue (NPQ) component and Result Checker (RC)
component. Simplified structure of the application is depicted
in Fig. 2. The CNPR provides the system functionality to the
user. This component allows the user to choose a set of images
for recognition and monitor the state of the system. In addition,
the CNPR shows recognition results for each image, such as
time and quality of the operations and the recognised car
number plate string. When the user has chosen the images, they
are passed to the IIP where the images are processed
concurrently.

Fig. 2. Architecture of the application

IIP has a choice of two algorithms. The first is light and
fast, whereas the second is complex, but more reliable.
Depending on the system state, image size and image quality
the most suitable algorithm will be chosen for the current
image. This component adjusts resolution and contrast of the
image, localises the number plate quadrilateral on the image
and eliminates the rotation and perspective skew of the number
plate cutout. After that the given cutout will be placed onto the
NPQ, which stores the cutouts until OCR is ready to process
them.

OCR includes three recognition algorithms, which differ in
quality and performance. It is chosen dynamically which
algorithm to use for the current number plate cutout. In some
cases, two or three algorithms may be launched concurrently to
provide reliable character recognition. Apart from these three
algorithms, the OCR component includes a Character
Segmentation (CS) subcomponent, because only one algorithm
is able to search the string on the image, whereas the two other
algorithms accept only separate symbols. After the recognition
process the found string is sent to the RC component, which
checks whether the result corresponds to the national format.
After this step all information related to the image recognition
will be available to the user. The abovementioned sequence of
actions describes an ideal case. However, errors could happen
at every stage of this sequence. In addition, third-party image
processing algorithms were applied and we cannot be sure that
they will work without errors or timeouts. This was the reason
to introduce redundancy and use several algorithms instead of
only one algorithm for each operation. The structure of IIP and
OCR components is flexible and algorithms could be added or
replaced without significant overheads. To satisfy non-
functional requirements for the case study application we
implemented the system in accordance with the HFT
architecture.

The FT and performance of the system are managed by the
HFT controller with the assistance of three HFT agents. The
first agent measures the performance of IIP and OCR. In
addition, the state of NPQ is monitored. The second agent is
responsible for error handling and the third agent supports the
operation modes. We applied AOP for the implementation of
the HFT agents. Around advice [17] is applied to implement
custom behaviour before and after invocation of the target
method. If necessary, the method result can be substituted. We
use around advices for the implementation of performance
monitoring and exception/error handling. It should be noted
that the erroneous state could be defined not only by catching
the exception, but by checking special conditions or values of
certain variables as well. For example, low quality in IIP could
lead to errors in OCR. If a number of such errors happened,
then low quality of initial processing will be considered an
erroneous state. However, if character recognition is not
affected, then low quality initial processing is considered
normal operation.

The HFT controller works only with public interfaces of
monitored components, whereas the HFT agents have access to
encapsulated information of the system components. HFT
agents receive the information from IIP and OCR and
transform it to the suitable form for the HFT controller, which
works with general entities like quality of the result, type of the
error, error rates and execution time of the operations

Several scenarios are possible when an error is detected.
The agent that is responsible for error handling will inform the
HFT controller about the error in IIP or OCR. Depending on
operation mode controller will choose one of the following
actions. If the error is not frequent and can be recovered locally
then the HFT agent does not intervene in component operation.
If the error occurred in OCR when several recognition
algorithms were launched and only one algorithm failed then
the HFT controller specifies the HFT agent to skip the error,
since other functions would return the result. If all recognition
algorithms failed then the recognition operation would be
stopped and IIP would be started again with complex, but
reliable algorithm.

If the HFT controller notices that the error rate of some
function is higher that acceptable error rate, it could
reconfigure the system component in order to avoid the calls of
erroneous function. However, this is possible only in case
when the component provides several alternates of the same
operation.

The application works with a set of images continuously
arriving to IIP and getting processed concurrently. As number
plate cutouts are found they are added to the number plate
queue, which is monitored by the HFT agent. When the queue
is not empty, OCR takes items (number plate cutouts) from the
queue for recognition as it performs the recognition of the
number plates. The task of the HFT controller is to support the
balance of the queue that should not be empty when OCR tries
to peek a prepared image. At the same time, the queue should
not grow uncontrollably. To implement this task, the HFT
controller distributes available computer resources (mainly
CPU threads) between IIP and OCR to provide smooth and
concurrent execution. When the queue starts to grow, the HFT

controller reduces the number of threads for IIP and gives more
threads for OCR. However, if the queue becomes empty, the
HFT controller implements the reverse action. Moreover, apart
from resource allocation, the HFT controller uses the HFT
agents to monitor the quality of operation of this components.
It could reduce or increase the quality by changing the
operation mode for the component.

At the moment two operation modes are available for IIP
and OCR, namely reliability and performance. The HFT
controller receives monitoring information from the HFT
agents and sets the most suitable operation mode through a
special public interface of these two components. The mode is
chosen depending on current performance and reliability
requirements. In some cases, the HFT controller could assign
performance mode for IIP and reliability mode for OCR or vice
versa if this action will make the system operation closer to the
optimal in terms of performance and resource utilisation. The
application component (IIP or OCR) should not know about
the operation modes and reconfiguration policies, since both
could change. Instead, the application component provides the
interface for the HFT controller for adjusting its performance,
reliability and resource utilisation. This interface does not
reveal the inner structure of the component. For example, the
following functions are general and do not reveal inner
structure: SetInitialImageProcessingActions (list of actions),
SetRecognitionAlgorithms (list of algorithms as parameters),
SetConcurrencyType (applying algorithms concurrently or
consequently), ChangeErrorRecoveryType (local, holistic or
combined).

AOP can significantly simplify the developing of the HFT
agents. In this way, the developer does not need to change the
observed components, which almost eliminates the possibility
of introducing bugs in existing code. Secondly, we can get
access to the private fields and encapsulated information of
observed components. These operations should be done with
precaution in order to avoid significant alteration of component
behaviour.

At the moment we are applying Order Graphs [18] to
support modelling and to make the HFT approach suitable for
the general case. As part of our future work and further
development of the HFT architecture we are planning to
undertake the evaluation of the HFT architecture. It will consist
of two phases. The first is the definition of quantitative
benefits. An application with same functionality will be
developed without the HFT approach. After that we will
compare performance and resource utilisation requirements on
the same input data sets. The second phase is the qualitative
evaluation of the HFT architecture from maintainability point
of view. We will apply the same two applications (with and
without HFT approach) and undertake some changes of FT-
related functionality. After that we will compare how many
changes are required in both version of the application. For
example, how many lines of code changed, how many
functions or classes are affected.

The architecture of the case study has been altered since the
previous version and now it works with a set of images to
clearly demonstrate performance benefits. In addition, we

applied AOP to analyse how this methodology can be
employed for the implementation of the HFT agents.

VI. CONSCLUSION

In this paper we presented a Holistic Fault Tolerance
architecture, which implies that system-wide FT strategies and
resource distribution in the system are coordinated by the HFT
controller with the assistance of a number of HFT agents. This
architecture and its associated design methods have been
applied to a case study application which has passed initial
operational experimental validation and analyses. Comparative
studies with other approaches will follow in the immediate
future.

REFERENCES

[1] W. P. Stevens, G. J. Myers and L. L. Constantine, "Structured design,"

in IBM Systems Journal, vol. 13, no. 2, pp. 115-139, 1974.

[2] R. Gensh, A. Romanovsky, A. Yakovlev. 2016. “On structuring holistic
fault tolerance,” in Proceedings of the 15th International Conference on
Modularity (MODULARITY 2016). ACM, New York, NY, USA, 130-
133.

[3] T. Anderson, P. A. Lee, Fault tolerance, principles and practice,
Prentice/Hall International. 1981.

[4] R. Alexandersson, P. Öhman and M. Ivarson, “Aspect Oriented
Software Implemented Node Level Fault Tolerance,” in Proceedings of
the 9th IASTED International Conference on Software Engineering and
Applications, Phoenix, Arizona, USA, 2005.

[5] Microsoft Patterns & Practices Team. (2009). NET Application
Architecture Guide, 2nd Edition. Microsoft Press.

[6] R. Miller, A. Tripathi. 2004. “The Guardian Model and Primitives for
Exception Handling in Distributed Systems”. IEEE Trans. Softw. Eng.
30, 12 (December 2004), 1008-1022.

[7] R. Brooks, “A robust layered control system for a mobile robot,” in
IEEE Journal on Robotics and Automation, vol. 2, no. 1, pp. 14-23,
1986.

[8] N. J. Nilsson, “Teleo-reactive programs for agent control,” Journal of
Artificial Intelligence Research, vol. 1, no. 1, pp. 139-158, 1993.

[9] N. Cacho, "Supporting Maintainable Exception Handling with Explicit
Exception Channels," PhD thesis, Lancaster University, 2009.

[10] F. C. Filho, A. Garcia and C. M. F. Rubira, "Extracting Error Handling
to Aspects: A Cookbook," 2007 IEEE International Conference on
Software Maintenance, Paris, 2007, pp. 134-143.

[11] S. Karol, N. A. Rink, B. Gyapjas, J. Castrillon. 2016. “Fault tolerance
with aspects: a feasibility study,” in Proceedings of the 15th
International Conference on Modularity (MODULARITY 2016). ACM,
New York, NY, USA, 66-69.

[12] R. Alexandersson, P. Öhman, J. Karlsson, “Aspect-Oriented
Implementation of Fault Tolerance: An Assessment of Overhead,” in
Computer Safety, Reliability, and Security, Springer Berlin Heidelberg,
2010, pp. 466-479.

[13] N. Cacho, F. Dantas, A. Garcia, F. Castor, “Exception Flows Made
Explicit: An Exploratory Study,” in Software Engineering, 2009. SBES
'09. XXIII Brazilian Symposium on, Fortaleza, Ceara, 2009.

[14] F. Jahanian and A. K. Mok. 1994. Modechart: A Specification Language
for Real-Time Systems. IEEE Trans. Softw. Eng. 20, 12 (December
1994), 933-947.

[15] F. L. Dotti, A. Iliasov, L. Ribeiro, A. Romanovsky. 2009. “Modal
systems: Specification, refinement and realisation,” in Proceedings of
the 11th International Conference on Formal Engineering Methods.
Lecture Notes in Computer Science, vol. 5885, Springer, 601–619.

[16] R. Laddad. AspectJ in Action. Manning, 2003.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, J. Irwin, "Aspect-oriented programming," In Proceedings of
the 11th ECOOP, LNCS 1271, pages 220–242, 1997.

[18] A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A. Aalsaud, A. Romanovsky, A.
Yakovlev. (2015). Order Graphs and Cross-layer Parametric
Significance-driven Modelling. 15th International Conference on
Application of Concurrency to System Design (ACSD'15). Brussels.

	Cover - 1505
	Abstract - 1505
	Bibliography - 1505
	Email - 1505

