
Quantitative Validation of Formal Domain Models
Alexei Iliasov, Alexander Romanovsky

Newcastle University
Newcastle Upon Tyne, UK

{alexei.iliasov, alexander.romanovsky}@ncl.ac.uk

Linas Laibinis
Institute of Computer Science, Vilnius University

Vilnius, Lithuania
linas.laibinis@mif.vu.lt

Abstract—Application of formal methods to verification of
well-formedness and semantic correctness of data sets from a
particular domain becomes increasingly practical with the ad-
vances in automated verification tools. However, it is difficult for
domain experts to understand and formulate formal verification
constraints (VCs), yet much trust is invested in their validity and
completeness. The paper discusses a novel validation approach
based on statistical testing of VCs against pre-validated data
sets. We illustrate the proposed technique using a synthetic
railway example and also relate our experience of integrating
the approach within a large-scale industry-based project.

I. INTRODUCTION

Formal verification offers a reliable and comprehensive way
of checking validity of a program, a system, or a data set.
Quality of such verification is predicated on the quality of
formal statements expressing validation constraints. There are
a number of potential problems to look out for: missing
constraints, over-constrained statements resulting in false pos-
itives, over-relaxed statements yielding false negatives, and
irrelevant statements that never flag any errors.

Data set verification aims to automatically check whether
a given data set possesses required qualities, often linked to
the safety of a system interpreting such data. Once formal
constraints are available, the verification proceeds by testing
whether a given data set instance meets every constraint.
This process is normally automated by employing automatic
theorem provers and constraint solvers.

A typical, if somewhat idealistic, departure point for such
an approach is the construction of a closed, ”whole system”
formal domain model that provides formal semantics of a
system interpreting a given data set. The definitions of ver-
ification constraints (VCs) would then arise naturally from the
assumptions made in the constructed whole system model.

Construction and proof of such a model is challenging if not
impossible in an industrial setting. A complex domain may
require a prohibitively expensive formalisation stage before
any benefits are seen. In addition, industrial practice does
not always reach the level of formality required to build a
comprehensive mathematical model. It might require years of
background work before a complete formal model is realised.

In this paper we offer an alternative solution based on
statistical testing of VCs against mutated data sets. It offers
weaker assurance than a fully verified formal system model,
however requires much less effort on the part of a designer.

The essence of the proposed technique is in exploring how
the existing VCs react to changes in a data set known to be

pre-validated

data set

verification

model

modified

data sets

data changes

data change

model

check

results

domain knowledge

statistical check

review

update

Fig. 1. Statistical testing process.

valid. While a single random data mutation may or may not
result in a detected error (as defined by the VCs), when such
data changes and checks are performed en masse, certain pat-
terns may start to emerge. For instance, we may expect to see,
from a priori knowledge of domain data properties, that some
data changes cause errors and some do not. Therefore, the
statistical characterisation of many data change experiments
coupled with some understanding of the problem domain can
offer insights into the deficiencies of given VCs.

Our approach depends on the existence of data sets known
to be correct. Such data sets may be already available in the
form of historically verified artefacts. For instance, railway
signalling data undergoe months of rigorous review by highly
experienced and qualified engineers.

The approach also presumes that a data set under verifica-
tion is fairly strongly constrained. That is, it is expected, for a
given set of VCs and well-suited data change rules, that a data
change injects an actual error with a however small but lower-
bounded (non-zero) probability. To give a trivial example, a
data set made of one value x ∈ Z is weakly constrained for
constraint x 6= 0 and it is strongly constrained for x = 0.

There are two essential steps to setup our statistical checking
procedure: the definition of data changes to be applied, and
the interpretation of error detection statistics. Both steps rely
on the domain expert knowledge and should be independent
of the formulation of VCs.

The diagram in Fig. 1 shows the proposed validation flow. A
collection of valid data sets is used to collect the statistics on
how a given verification model reacts to the data changes. This
statistics may consequently lead to a review of the verification
model and also fine tuning of the data change model.

The remaining paper is structured as follows. Section II

describes the background of our research: our previous verifi-
cation results in the railway domain, the involved mathematical
basis, and the running example we use later on. In Section III
we present our main contribution: the approach of quantitative
validation focused on the developed domain models, while
Section IV summarises our industrial experience. Finally,
Section V and Section VI conclude the paper with discussion
of related work and future plans.

II. BACKGROUND

The presented approach is based on our previous work
on the SafeCap platform – a toolkit for modelling railway
capacity and verifying railway network safety [8], [9]. SafeCap
aims to help signalling engineers to discover better solutions
with the help of state-of-the-art computer science techniques.
SafeCap speciality is automated formal verification using
symbolic theorem provers and SAT/SMT solvers [10], [11].
At the core of SafeCap verification is a formal domain specific
language (DSL) and a generic verification framework (GVF).

The SafeCap DSL represents different aspects of railways
using graph-based structures. From these structures, graph the-
oretical verification statements are automatically generated and
verified, including isomorphism properties between constituent
subgraphs, path validity, graph connectivity, etc.

The SafeCap GVF is a SafeCap extension bringing up a
mathematical notation and tools based on set theory and first
order logic. GVF enables automated reasoning about static and
dynamic systems in a formal manner. The verification back-
end relies on a combination of a built-in symbolic prover and
a SAT solver, a range of external provers provided via the
Why3 framework [6], and model checker ProB [14].

To define data set semantics, we rely on a simple and
versatile mathematical representation based on the Zermelo-
Fraenkel set theory. Every entity of the theory is either an
empty set ∅ or a set of the form {s1, . . . , sn}, where si are
some valid sets. A map is a set of form {a, {b}}, written
as a 7→ b; it defines an ordered pair of two elements. A
binary relation is defined as a set of pairs. An image of
a relation r over set s is written as r[s] and is defined as
r[s] = {b | a 7→ b ∈ r ∧ a ∈ s}. A function is a relation that,
for each included pair, maps a singleton set into a singleton set.
Sparse and dense sequences may be interpreted as functions
from the index type into the associated value type. Trees and
graphs are encoded as connectivity or parent-child relations.

A data set is as a collection of named relations. Each relation
is statically typed: a separate document carries information
about the relation domain and range sets as well as about to-
tality, functionality and injectivity of the contained mappings.

A verification constraint is written as an expression of first
order logic and set theory. It states an expected relationship
between various elements of a data set, for instance,

∀ r ∈ Route ·
route :normalpoints ⊆ ct :route :normal ∧

route :reversepoints ⊆ ct :route :reverse

This condition implements safety property SAF1 of the
running example, as defined in the next subsection.

A. Running Example

Our running example is verification of railway signalling
data on the basis of a synthetic example defined in the
SafeCap platform. Signalling is central to the safe and efficient
operation of a railway. It controls the moveable infrastructure
by setting and protecting a train path during train movement.
At the heart of any signalling system there are one or more
interlockings. These safety-critical devices constrain autho-
risation of train movements as well as movements of the
infrastructure to prevent unsafe situations arising.

The increasing complexity of modern digital interlocking,
both in terms of their geographical coverage and functionality,
poses a major challenge to ensuring railway safety. Even
though formal methods have been successfully used in the rail-
way domain (e.g. [4], [3]), their industry application is scarce.
SafeCap offers an industry-strength verification approach that
does not require engineers to learn mathematical notations
and can be applied to real-life stations providing user-friendly
reports within seconds.

There are two safety principles at the foundation of all
signalling operations. First, protection of movable equipment
(points, diamond crossings) with the aim to avoid derailment
and equipment damage. Second, avoidance of train collision.
In practical applications, one follows the existing standards
prescribing how a certain signalling technology must be
realised in order to uphold these principles. However, it is
common in railways to introduce extra assurances to contain
isolated violations of driving rules or malfunction of signalling
equipment. Examples of that are train flank protection (com-
manding of a point to divert any unauthorised moves away
from a set route) and provision of overlaps (so that a train
can overrun past a stopping point without causing a collision).
The already numerous rules establishing safety principles often
come in a conflict with the rules introduced for achieving
best performance. Hence, under certain circumstances one may
remove flank protection of a route path or reduce the overlap
length in order to free up a busy point. Formalising such rules
is not an easy task. Our experience shows that one needs
hundreds of distinct verification statements in order to achieve
acceptable coverage. A smaller set of rules would be sufficient
to establish the principal safety concerns but would also result
in an unacceptably large number of false positives.

The diagram and table presented in Fig. 2 are the schematic
layout and control table of a junction studied in this example.
The layout shows the topology of a small station with five
platforms. For simplicity, the layout diagram only depicts sig-
nals, track sections and points omitting speed limits, stopping
points, and overlap indicators. We also use very simplified
versions of two (out of 16) control tables - Signal, Route &
Aspect Controls and Point controls, merged into one table.

The presented control table defines route setting conditions.
A topological route path for a route of form R110A(M) is
uniquely decoded from its name. In this case, it is the first
(clockwise) route originating from signal S110. The suffix (M)
stands for the main route class: a route used by general traffic

and requiring all the standard safety measures. The next three
table columns define the route entry signals, as well as the
sets of points to be commanded normal and reverse in order
to set the route path and, possibly, enable flank protection and
reserve common overlap points.

The column Track sections clear lists the sections that must
be checked clear before a route set. Here we diverge from the
real-life behaviour: subroute availability (paths through a track
section) is checked during route setting, while track section
occupation is checked by displaying the signal proceed aspect.
Finally, the Routes not set column contains a list of conflicting
routes that must be not set when setting a given route.

To demonstrate verification process of the chosen layout
and its control table, we define three safety properties that
permit rather compact formulation and require limited context
in terms of verification. Two of them are related to the route
setting activity and the third one speaks about conditions when
a point may be commanded into a new state:

SAF1 When a route is set, all the route path points are
commanded into a correct position;

SAF2 When a route is set, all trap points adjacent to route
path are set away from the route path;

SAF3 When a point is commanded, all of its track sections
are clear.

Property SAF1 demands that a route must be topologically
correct by the time all points are detected in the required
position. Property SAF2 is an example of a flank protection
rule. A trap point is a derailing (or diverting towards a
buffer stop) device, placed to protect main line traffic from
unauthorised moves. Finally, property SAF3 expresses the
point movement protection.

The railway signalling information, such as control tables,
should be verified against the given layout. The safety or
operational principles establish the maximal set of safe sig-
nalling and verification procedures to ensure that a given
signalling implementation is acceptable for a given layout.
What exactly is acceptable is expressed via the verification
conditions typically written as first order logic statements over
the layout and signalling data. Hence, in order to conduct
verification, we shall consider together the railway schema
layout, control tables, and logical property formalisations.

III. QUANTITATIVE MODEL VALIDATION

Statistical testing operates on the basis of repeated data
changes, similarly as in error injection or genetic algorithms,
followed by testing VCs against the modified data. Cumu-
latively, such testing provides us with a certain statistical
characterisation of VCs. The data sets used for this statistical
checking are presumed to be free of errors (i.e., satisfying the
verification model) so that the pre-existing errors do not mask
the injected ones.

The technique relies on the following hypothesis: a data
set under consideration is well constrained by the verification
statements. That is, we presume that the given VC set would
react to a significant number of data changes by flagging up
the changed data as erroneous.

Central to the proposed technique is the concept of model
slack – the degree of insensitivity of a verification model
to data changes. One way to quantify slack is to calculate
the expected number of data changes before an error is
triggered. The stronger VCs are, the less slack we expect to
see. Since VCs normally formalise the pre-existing knowledge
of informal data semantics, we found that there is a good
understanding of expected relative slack (i.e., the slack in one
part of data compared to another).

Let k be the expected number of data changes between error
detections. Then slack, denoted as C, is C = k − 1.

Slack of VCs has to be interpreted by a domain expert.
It turned out to be the notion that is relatively easy to
communicate about: small slack values indicate ”data set is
well constrained, almost every change is an error”, large slack
values mean ”data set seems unconstrained, there might be
missing constraints”. In our industrial applications we found
that experts have strong intuition on what the slack should be
for a given constraint.

By a data change we regard here a smallest elementary,
semantically consistent data set mutation. Slack measurement
is sensitive to the number of such elementary data changes
done prior to rechecking the VCs. We refer to this as the
“depth” parameter D. Our experience indicates that VCs do
not exhibit slack at all when D is too small and flat-line once
D is sufficiently large.

Next we will overview the steps of statistical validation and
then discuss how to perform automatic data changes in an
attempt to introduce errors. We then proceed with illustration
of our approach using the running example, discuss how the
proposed data changing process can be tailored to a problem
at hand, and finally relate our experience of applying the
technique in an industrial project.

A. General Methodology

The proposed method of statistical checking consists of the
following steps. One starts by assessing the overall model
slack as well as the slacks related to the data set projections
(e.g., columns or filtered data).

Should VCs exhibit unexplained slack, one attempts to nar-
row down possible causes with additional testing. To achieve
this, the testing is redone with the restricted (e.g., remove
elements only) or fine tuned (mutate in a certain way) data
change rules to determine likely causes of such slack value.
The obtained results should be validated across multiple data
sets to rule out data set bias.

The findings are passed on to a domain expert who gives a
verdict whether there is likely a deficiency in VCs and whether
some VCs are missing or wrong. If any changes in VCs are
deemed necessary than the statistical check is redone.

It might be the case that naive, random data changes are
not enough to provide a meaningful report within reasonable
time due to a large number of potential changes. Then one can
fine tune the way changes are performed by defining custom
data change rules and probability mass functions responsible
for determining data change rule parameters.

Route Entry signal Points normal Points reverse Track sections clear Routes not set
R110A(M) S110 P110 AB, AC R110B(M), R110C(M)
R110B(M) S110 P120 P100 AB, BM, BL, BK, BJ R110A(M), R110C(M)
R110C(M) S110 P110, P120, AB, BM, BL, BK, QJ, QI, R110A(M), R110B(M)

P130, P140 QH, QG, QF, BE, BD, BC,
AM, AN

Point Track sections clear
P110 AB, BM
P120 BK
P130 BE
P140 BC, AM
TP TPA

Fig. 2. Example railway schema and a excerpt of its control table.

B. Computing Data Changes

A data change (or a transformer) can be defined as a non-
idempotent (i.e., producing a result distinct from a given input)
function of the form

g ∈ D→D, id(D) 6⊆ g ,

where D is a generic data type. Since a data set is a typed
set theoretical model, such transformers must preserve typing
constraints. Ignoring typing would result in data changes
producing trivially incorrect and thus rejected data sets.

Consistent with the set-theoretic viewpoint, by a data set we
understand a collection of named relations, each relation being
a named set of mappings. Relation names are syntactically
referenced in the VCs and hence should not be changed. The
typing constraints also cover checking that a relation belongs
to a particular relation class (e.g., a partial function or a
surjection). A transformer must be change mappings in a data
set without affecting its relation types and classes.

If we denote by Q the information about relation types and
classes, we have that Q is an invariant property with respect
to a transformer g :

∀d · d ∈ D ∧Q(d)⇒Q(g(d)) (1)
Without loss of generality, one can perform data changes

independently for each relation. Consider some relation r ∈
Q ↔ R. Then transformer t is a relation over relations:
t ∈ (Q ↔ R) ↔ (Q ↔ R). Such t must satisfy the above
Condition (1), although it applies only to the part related to
r. In our modelling language, there are just four potential
constraints in Q pertaining to some r: domain totality, range
totality, functionality and injectivity.

To perform a data change, we seek some relation t such
that it preserves Q. In general, this is a difficult constraint
solving problem. It is, however, much easier to find a single
data change t1 and then approximate t through iteration tD1 ,
where D is the “depth” parameter defined above.

To find an instance of t1, we use a combination of two
techniques: a naive Monte-Carlo (MC) based algorithm that
explores a small (typically between 100 to 1000) number of
potential data change candidates. If this fails, the problem is
delegated to a capable SMT solver such as Z3.

One way to define all possible t1 is to consider some t+1

and t−1 that add and remove a mapping from a relation:
• addition transformer t+1 adds a new mapping to some

relation r: t+1 = {r 7→ r′ | ∃a, b · a 7→ b /∈ r ∧ r′ =
r ∪ {a 7→ b} ∧Q(r′)}.

• removal transformer t−1 removes an existing mapping
from some relation r: t−1 = {r 7→ r′ | ∃a, b · a 7→ b ∈
r ∧ r′ = r \ {a 7→ b} ∧Q(r′)}.

A combination of these two may be used to incrementally
build an arbitrary transformer.

Data change is realised by first picking an available trans-
former and then computing a changed data set by applying
the transformer. The computation of a transformer instance,
for instance t+1, entails finding some a and b such that
Q(r ∪ {a 7→ b}) is satisfied. As mentioned above, this is

Algorithm 1: Statistical checking algorithm
i, e← 0, 0
card(cbuf)←WS
while i < PMAX and (i < card(cbuf) or |x̄w − x̄| > ε) do
z ← d . make a copy of data set d
j ← 0
while j < D do . iterated transformer

g ← TSFR(T,w) . pick transformer
z ← g(z) . do data change on z
j ← j + 1

c← VERIFY(z) . run verification on z
if c = FALSE then e← e + 1; . count errors injected
cbuf .add(e/i) . add mean to circular buffer
x̄, x̄w ← e/i,

∑
cbuf

card(cbuf)
. update current and window mean

i← i + 1

return x̄−1 − 1

accomplished via a combination of MC and a SMT solver.
The generality of the described technique makes it possible to
use the SafeCap mathematical notation to define any number
of custom transformers. Specifically, one may define a trans-
former set as a list of polymorphic relations:

T = [{r -> r \/ {a -> b} | a -> b /: r},
{r -> r \ {a -> b} | a -> b : r}]

The condition Q(q) is generated and verified automatically
when a transformer is applied to some relation q.

C. Algorithm of Statistical Checking

We now formulate the overall statistical checking algorithm.
The algorithm is a form of the Monte-Carlo procedure and
is parameterised by the overall number of potential error
injections, the maximum number of points PMAX (i.e., a point
is when D value changes), the stabilisation threshold ε, the
depth parameter D, and the weights vector w determining the
relative rate of transformer selection from the transformer list
T . Note that the dimensions of T and w must be same.

The pseudo-code in Algorithm 1 illustrates the logic of
the statistical checking procedure. The function TSFR uses
weight vector w to pick a transformer from the set T . The
function VERIFY runs VCs against the transformed data set z
and returns TRUE if all VCs hold and FALSE otherwise. The
generators tm1, ta1, . . . pick values using discrete uniform
distributions over the corresponding enumerated types. For
integer types, their uniform distribution is defined over a
predefined finite interval. The procedure stops either when the
maximum number of points PMAX is explored or the mean
value x̄ has stabilised, i.e., the ”window” mean x̄w computed
over the past few values is close to the current mean x̄. The
algorithm outputs slack value x̄−1 − 1.

D. Example

In order to apply Algorithm 1 to our example, we must
determine several parameter values. We define the transformer
list to be T = [t+1, t−1], and the convergence window pa-
rameters to be WS = 4, PMAX = 3000, and w = (0.5, 0.5)
(t+1 and t−1 are to be used at the same rate).

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Transformers {t+1, t−1}
1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Transformers Tc

Fig. 3. x̄ values computed for two transformer sets by Algorithm 1; x-axis
gives depth values D, y-axis gives slack.

An optimal value of D can be determined by iteratively
running the algorithm until there is no further change in
x̄. Such D can then used for all experiments with a given
verification model.

Two plots in Fig. 3 shows the overall value of x̄ plotted
against D values for two different transformer sets. The
custom set Tc, defined below, shows better results. Since, with
Tc, there is little improvement beyond D = 3, this is the slack
value of x̄ we are going to use.

To demonstrate definition of custom transformers, we define
a specific transformer set that targets the data changes that
we hypothesised are more likely to reveal verification model
coverage issues in our example:
• mutation transformer tm1, which picks one mapping in

a relation and then changes its right-hand side value. As
an example, changing the first mapping in relation er =
{2 7→ 3, 3 7→ 4} to 2 7→ 2 creates a new relation er =
{2 7→ 2, 3 7→ 4}. The formal definition of tm1: tm1 =
{r 7→ r′ | ∃a, b·a ∈ dom(r)∧r′ = rC−{a 7→ b}∧Q(r′)}.

• addition transformer ta1, which adds an extra mapping
such that the first element is already in the domain of
the transformed relation. To continue with the example
above, ta1(er) becomes {2 7→ 3, 3 7→ 4, 2 7→ 4}. ta1 is
formally defined as ta1 = {r 7→ r′ | ∃a, b · b /∈ ran(r) ∧
r′ = r ∪ {a 7→ b} ∧Q(r′)}.

• removal transformer tr1, which removes a mapping from
a relation, e.g., tr1(er) = {3 7→ 4}: tr1 = {r 7→ r′ |
∃a, b · a 7→ b ∈ r ∧ r′ = r \ {a 7→ b} ∧Q(r′)}.

• swapping transformer ts1, which picks some two map-
pings and swaps their right-hand values: ts1 = {r 7→ r′ |
∃a, b, c, d · a 6= c ∧ b 6= d ∧ {a 7→ b, c 7→ d} ⊆ r ∧ r′ =
r \ {a 7→ b, c 7→ d} ∪ {a 7→ d, c 7→ b} ∧Q(r′)}.

• exclusion transformer tx 1, which removes one element
from the domain of a relation: tx 1 = {r 7→ {a} C− r |
∃a · a ∈ dom(r) ∧Q(r′)}.

The transformer set Tc = [tm1, ta1, tr1, ts1, tx 1] is neither
complete nor minimal. However, using Tc in place of T leads
to quicker convergence of Algorithm 1.

The plot in Fig. 4 shows x̄ plotted with D = 3. This
suggests there is plenty of slack in the example VCs. To better
understand the sources of the model slack, we look at the per-
concept slack values for control table columns.

The chart in Fig. 5 gives error rates (x̄ or slack + 1) for
four selected columns. The overall error rate is depicted in dark
grey, while the yellow and blue colours show the error rates

1128
0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

Fig. 4. Value of current x̄ plotted against simulation step. The value converges
to 0.75 giving the slack value of 0.33.

clear normal reverse point clear
0.4

0.5

0.6

0.7

0.8

0.9

1

overall mutate remove

Fig. 5. Per-column and per-transformer analysis of the slack.

for transformer sets made of a single transformer – mutation
and removal, correspondingly. We have omitted other trans-
formers as they have same values for all the properties. The
addition transformer never triggers errors, while the exclusion
transformer always triggers errors. The chart makes clear that
the route point normal and point track clear columns exhibit
large amounts of the slack.

We proceed with a review of the VCs in order to improve
their performance. From informal understanding of the design
principles behind control tables, we conclude that the current
VCs lack statements to cover the route point normal and point
track clear columns. A missing statement is formulated by a
domain expert who defined four additional properties focusing
on the safety issues related to the identified columns:

SAF4 When a route is set, all route common overlap points
are commanded in a correct position;

SAF5 When a route is set, all route flank points are
commanded in a position away from the route path;

SAF6 When a point is commanded, all of its track sections
are clear;

SAF7 When a route is set, all swinging overlap points
conflicting with the points set by an opposing route
are commanded in a correct position.

These properties are translated into a formal notation and
incorporated into overal VCs. The model is rechecked using
D = 3 and transformer set Tc. The results are shown in the
charts in Fig. 6. Given the much smaller observed slack, we

clear normal reverse point clear
0.4

0.5

0.6

0.7

0.8

0.9

1

overall mutate remove

Fig. 6. Revised verification model analysis.

can now declare that the verification model demonstrates better
coverage with respect to the columns we have considered.

In practice, it is more expedient to add one verification
property at a time and see how statistical checking reacts to
it. Adding a property that has no influence whatsoever should
raise questions whether it is necessary and correct, although it
might be explained by incorrect setup of statistical checking.

IV. INDUSTRIAL EXPERIENCE

We have applied the proposed approach in an industrial
project concerned with the verification of control tables pre-
pared according to the national UK standard. The standard
mandates 16 different table types (with some degree of cus-
tomisation permissible) and also includes natural language
formulation of principal safety properties and control design
rules. In a typical example there would be about 400 separate
tables concerning interlocking – an area of signalling covering
a station or a junction. To conduct their verification, it is
necessary to combine the control table and railway schema
information. Due to the way control tables are produced and
retained, there are almost no natural examples of incorrect data
sets. This made it difficult to assess how good the constructed
VCs are, as we could only rely on a small number of artificially
produced error data sets.

The original motivation for developing the proposed tech-
nique was merely to confirm the coverage of the existing VCs
and then track the coverage progress while extending VCs.
When the technique was first tried out, the corresponding VCs
consisted of 87 formal statements. The model was created in
a close cooperation with the domain experts. Its results were
reviewed and confirmed by the domain experts as well.

During the first trial of statistical checking it became clear
that the model coverage was far from expected. Moreover,
VCs counter-intuitively did not react at all to any changes to
certain columns (despite the fact they were directly referenced
by VCs). They also did not react to adding new values to
some tables and columns, while at the same time showed a
surprisingly high slack for others. Some of these observations
have led to almost immediate discovery of vacuously true
statements of the form ∀P⇒Q, where P was over-constrained
to the extent of being a contradiction, or the statements that
effectively (when considered in the context of any reasonable
data set) represented a contradiction.

To some extent, the errors were due to mistakes in natural
language formulations. Others were incorrect translations into
a formal notation. Moreover, a whole class of missing VCs
were identified for various tables. Out of 87 such conditions,
21 were modified as the result of attempted statistical checks.
The need for further 70 to 90 missing conditions was mapped
out and the work of updating VCs is still in progress.

To apply the proposed technique effectively, one requires
close assistance from an industrial partner. At the same time,
it gives formal method practitioners a systematic and a well-
argued way to question and discover potential gaps in VCs
under consideration.

V. RELATED WORK

In our work on verification model for railway signalling we
take much inspiration from D. Bjørner’s ”Domain Engineer-
ing” [5]. Much of the SafeCap internal DSL is built in this
style, although we clearly could not apply all the suggested
validation steps: it would quite literally take many years for
a formal method practitioner to learn and properly represent
this domain.

Railway data verification is quite common given the safety
critical nature of the domain. One of the most notable exam-
ples is the use of the Ovado tool that uses a B-like notation
and ProB as the verification back end [1]. The work [13]
illustrates applications to the validation of data sets of railway
assets. In contrast, our work emphasises automated verification
of the safety critical part of signalling with an aim to offer
certification without manual review. Simulation is a popular
way to validate formal models and also widely used in the
railway domain to validate control tables. We see our technique
as complementary to possible simulation solutions.

Hardware and software fault injection has been successfully
used to evaluate the dependability of computer systems [7].
Faults representing typical abnormal situations that a system
could face in runtime are injected either at the hardware
or software level to check the behaviour of the evaluated
target system. A number of fault injection tools have been
developed and successfully applied in industry to evaluate
dependability of systems. The main difference between the
developed techniques and our approach is that we mostly rely
on formal verification, using statistical validation via error
injection as additional assurance that our formal basis (domain
model) is sound and complete.

The way we mutate data sets to statistically validate our
domain models is very similar to the techniques employed
by genetic algorithms, see, e.g., [2], [15], [17]. In the work
[15], authors also use evolving genetic algorithms to simulate
fault injection attacks. However, genetic algorithms often rely
on the pre-defined and fixed verdict functions to estimate the
algorithm progress, while in our approach the domain model
itself serves both as a formal basis used as a verdict verifier
and a model to be checked and possibly changed.

Mutation testing of software has a similar goal [12] of
identifying the program parts not adequately covered by tests.
A software mutation introduces a small random change in a

program text often designed to mimic a programming blunder.
The decisive difference is that a data set carries a few of a
priori defined semantic constraints and hence, rather than to
use heuristics for targeted error injection, we have to rely on
the accumulated statistics over a large number of mutations.

Our developed framework relies on a combination of formal
verification by theorem proving and less formal quantitative
validation by statistical checking. Such a combination is
also quite closely connected to recent numerous attempts to
combine theorem proving and model checking, see, e.g., [16].
Most of general purpose theorem provers are nowadays using
model checking techniques to test potential goals (theorem
candidates) before attempting costly theorem proving. Such
theorem “testing” is based on trying different concrete variable
values attempting to falsify a theorem in question. In our case,
we rely on a kind of statistical model checking, focusing on
validation of the underlying formal model basis itself.

VI. CONCLUSIONS

The essence of the proposed idea is quite simple – to
mutate a given data set to see how the considered verification
constraints react. Bringing the idea to its realisation required
extensive research and tooling work. In our view, the results
are very encouraging: the technique is cheap to set up and
produce initial results and can configured in different ways to
adapt to a particular domain. The deployment experience is
positive, although unfortunately we are unable to share many
interesting technical details.

Statistical checking does not need to be exacting to offer
useful insights. The underlying (data transformer driven) data
changes can be quite coarse grained and still able to address
the coverage and adequacy of VCs. In principle, a thorough
specification of transformer set could completely validate
the defined verification properties if one would demonstrate
that such transformers generate all important data points. In
practice, statistical checking would however always remain a
fairly coarse check of VCs.

The proposal has its limitations. It depends on the avail-
ability of pre-validated data sets. To be successful, a practical
application of the technique also requires involvement of
a domain expert to interpret statistical results. On average,
Algorithm 1 converges rather slowly (O(

√
PMAX)) and there

is a possibility for improvements. Finally, development and
validation of the technique is based on a single domain –
railway signalling – and this possibly has introduced some
bias. In our future work we are going to apply our technique
to validate verification of medical device configuration data.

One potential obstacle to statistical checking is the difficulty
in finding a sufficient number of data changes that lead to the
data satisfying a VCs. This happens when VCs are already
nearly complete and thus the chances of random non-error data
change are small. It may also happen if the data model is quite
complex and random exploration cannot yield satisfactory
coverage. As we have shown, one may construct a function
to define arbitrary suitable transformer t. In practice, this is a
tedious task as precise error injection amounts to creating a

negated version of a complete verification model. In our view
the balance lies in maintaining the probabilistic nature of t,
yet providing ways to constrain its behaviour by characterising
the random variables driving data changes. In future work we
are going to explore how to fine tune our data transformers
with custom probability mass functions driving selection of
replacement/removal candidates.

Acknowledgment. This work is supported by the EPSRC
STARTA project.

REFERENCES

[1] Robert Abo and Laurent Voisin. Formal Implementation of Data Valida-
tion for Railway Safety-Related Systems with OVADO. In SEFM 2013
Collocated Workshops on Software Engineering and Formal Methods,
LNCS 8368, pages 221–236. Springer-Verlag, 2014.

[2] M. Affenzeller, S. Winkler, and A. Beham. Genetic algorithms and
genetic programming: modern concepts and practical applications. New
York: CRC Press, 2009.

[3] Frédéric Badeau and Arnaud Amelot. Using B as a High Level
Programming Language in an Industrial Project: Roissy VAL. In
H.Treharne, S. King, M. C. Henson, and S. A. Schneider, editors,
Proceedings of ZB 2005: Formal Specification and Development in Z
and B, volume 3455 of LNCS, pages 334–354. Springer, 2005.

[4] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier.
Météor: A Successful Application of B in a Large Project. In J. M.
Wing, J. Woodcock, and J. Davies, editors, Proc. of FM’99 – World
Congress on Formal Methods in the Development of Computing Systems,
volume 1708 of LNCS, pages 369–387. Springer, 1999.

[5] Dines Bjørner. Domain Engineering: Technology Management, Research
and Engineering. JAIST, Japan, 2009.

[6] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011: First
International Workshop on Intermediate Verification Languages, pages
53–64, August 2011.

[7] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault
injection techniques and tools. IEEE Computer, 30(4):75–82, 1997.

[8] Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. The SafeCap
Platform for Modelling Railway Safety and Capacity. In Proceedings of
the 32nd International Conference on Computer Safety, Reliability and
Security. LNCS 8135, Springer, 2013.

[9] Alexei Iliasov, Ilya Lopatkin, and Alexander B. Romanovsky. Practical
Formal Methods in Railways – The SafeCap Approach. In Proceedings
of Ada-Europe 2014, 19th Ada-Europe International Conference on
Reliable Software Technologies, pages 177–192, 2014.

[10] Alexei Iliasov and Alexander B. Romanovsky. Formal analysis of
railway signalling data. In 17th IEEE International Symposium on
High Assurance Systems Engineering, HASE 2016, Orlando, FL, USA,
January 7-9, 2016, pages 70–77, 2016.

[11] Alexei Iliasov, Paulius Stankaitis, and David Adjepon-Yamoah. Static
Verification of Railway Schema and Interlocking Design Data. In Pro-
ceedings of RSSRail 2016: Reliability, Safety, and Security of Railway
Systems, pages 123–133, 2016.

[12] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering, pages
649–678, 2011.

[13] Thierry Lecomte and Erwan Mottin Clearsy. Formal Data Validation
in the Railways. In Safety-critical Systems Symposium 2016, February
2016.

[14] M. Leuschel and M. Butler. ProB: A Model Checker for B. In Araki
Keijiro, Stefania Gnesi, and Mandrio Dino, editors, Formal Methods
Europe 2003, LNCS 2805, pages 855–874. Springer-Verlag, 2003.

[15] Stjepan Picek, Lejla Batina, Domagoj Jakobovic, and Rafael Boix Carpi.
Evolving genetic algorithms for fault injection attacks. In Proc. of
37th Int. Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 1106–1111, 2014.

[16] S. Ray and R. Sumners. Combining Theorem Proving with Model
Checking Through Predicate Abstraction. IEEE Design & Test of
Computers, 24(2):132–139, 2007.

[17] Praveen Srivastava and Tai-Hoon Kim. Application of genetic algorithm
in software testing. In International Journal of Software Engineering
and Its Applications, volume 3, 11 2009.

