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Abstract. Many IoT systems are data intensive and are for 
the purpose of monitoring for fault detection and diagnosis of 
critical systems. A large volume of data steadily come out of a 
large number of sensors in the monitoring system. Thus, we 
need to consider how to store and manage these data. Existing 
time series databases (TSDBs) can be used for monitoring data 
storage, but they do not have good models for describing the 
data streams stored in the database. In this paper, we develop a 
semantic model for the specification of the monitoring data 
streams (time series data) in terms of which sensor generated 
the data stream, which metric of which entity the sensor is 
monitoring, what is the relation of the entity to other entities in 
the system, which measurement unit is used for the data 
stream, etc. We have also developed a tool suite, SE-TSDB, 
that can run on top of existing TSDBs to help establish 
semantic specifications for data streams and enable semantic-
based data retrievals. 

With our semantic model for monitoring data and our SE-
TSDB tool suite, users can retrieve non-existing data streams 
that can be automatically derived from the semantics. Users 
can also retrieve data streams without knowing where they are. 
Semantic based retrieval is especially important in a large-
scale integrated IoT-Edge-Cloud system, because of its sheer 
quantity of data, its huge number of computing and IoT 
devices that may store the data, and the dynamics in data 
migration and evolution. With better data semantics, data 
streams can be more effectively tracked and flexibly retrieved 
to help with timely data analysis and control decision making 
anywhere and anytime. 
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1 INTRODUCTION  
Due to the rapid advances of IoT technologies in recent 

years, many systems have incorporated IoT to improve their 
system operations. IoT systems, such as smart homes, smart 
buildings, smart cities, smart planet, smart farms, smart 
agriculture, smart factory, smart manufacturing, smart 
industry, smart parking, smart transportation, smart grid, etc., 
have been steadily developed and deployed. 

One major use of IoT systems is for monitoring and fault 
detection and diagnosis (MFDD). Sensors are attached to 

networking capable boards, such as Arduino launchpad, 
Raspberry Pi, etc., and placed in the systems to monitor 
system behaviors and pass out the monitoring data via wireless 
networks. Many industrial companies and government 
organizations are adopting IoT for MFDD of their critical 
systems. For example, manufacturers set up IoT systems to 
monitor the machines and operations in the production lines to 
help with early problem detection and mitigation to ensure 
reliable and safe system operations. IoT based monitoring can 
also help reduce the likelihood of producing defective 
products and potentially improve product quality. Critical 
national infrastructures, such as electricity grids, water and 
waste water systems, etc., also use IoT for system health 
monitoring to achieve the goal of early detection of faults in 
the target system in order to exercise timely mitigation plans.  

The IoT based MFDD systems are generally data intensive. 
A large volume of data are collected from a large number of 
sensors and these data streams flow continuously. Thus, data 
storage and data analysis are major issues to be considered. 
Big data analytics have been widely used in recent years to 
analyze the data collected from IoT systems to achieve better 
fault detection and diagnosis [1] [2] for the target system. Due 
to the computation intensive nature of big data processing, the 
analyses generally need to be performed in the cloud. 
However, channeling the data to the cloud may have 
significant communication latency. Also, a lot of the fault 
detection and diagnosis tasks need to be performed in real 
time. In response to such conflicts between timeliness and 
resource constraints, the new computing infrastructure that 
integrates IoT, Edge, Fog, and the Cloud have been developed. 
Preliminary computations that are required for timely 
decisions can be done in the nearby Edge gateways and Fog 
LANs (local area networks). Integrated analysis can be left to 
the Cloud and the more sophisticated and/or more accurate 
analysis results can then be channeled back to the Edge and 
IoT devices to provide improved decision making or to 
support changing trends. 

As mentioned above, data storage for time series data can 
be a problem due to their continuously cumulating nature. In 
recent years, many time series databases (TSDB) have been 
developed [3] [4] [5] [6] [7] to handle the storage of 
continuous data streams. However, due to the recency of 
TSDB research, there are still rooms for improvement in 
TSDB designs. The first issue is how to effectively down-
sample the older data so that the storage space can be saved 



while the useful information in the historical data can be 
retained. Though all TSDBs provide down-sampling support, 
but getting effective down-sampling functions is still a 
research challenge.  

The second problem with existing TSDBs is the lack of 
semantic support. Most of the existing TSDBs are designed 
with supporting a single application system in mind. They 
focus on data storage performance while lacking data 
semantics support. Thus, the data in the database can only be 
interpreted by those who design the database schema. This 
leads to critical shortcomings in effective data discovery and 
processing. For example, many modern cyber physical 
systems (CPSs) are highly complex. When an IoT based 
monitoring system is used for MFDD for a complex system, 
current TSDBs cannot capture the relations between the sensor 
data streams based on the relations between the entities they 
are monitoring, making it challenging to analyze the potential 
relations between the data streams. Also, there are many 
similar cyber-physical systems deployed in different 
organizations or places for the similar goals. Integrated data 
analysis, i.e., analyzing data streams from similar systems, can 
help improve the accuracy of the analyses. Transfer learning 
[8] can also help bootstrap the fault detection process of a new 
system that is similar to some existing ones. Without proper 
data semantics, it will be very difficult to cross reference 
similar data streams and achieve integrated analysis or transfer 
learning. The data storage problem becomes more severe 
when we consider the IoT-Edge-Cloud infrastructure. A data 
stream may be migrated and processed in the huge 
infrastructure and, hence, it is difficult to know the 
whereabouts of the data, making data retrieval more 
challenging.  

The third problem with existing TSDBs is that they do not 
model the events. All TSDBs provide very good support in 
storing data streams that are collected at a relatively steady 
pace, i.e., data arrive at a certain interval. On the other hand, 
event data, such as system up and downs, etc., come to the 
system sporadically. Storing data streams and supporting 
efficient retrieval for event-based data streams is as critical as 
for data streams with relatively fixed collection intervals. 

In this paper, we focus on enhancing the semantics of time 
series databases (the second problem discussed above) for 
data-intensive IoT systems. In an IoT-based monitoring 
system, we need to label the monitoring data streams in terms 
of several important attributes, including which sensor has 
generated the monitoring data stream, which metric of which 
target system entity is being monitored by the sensor, what is 
the relation of the target entity to the target system, what 
measurement unit is used for the data stream, etc. (Note: target 
system and target entity are the system and the specific entity 
in the system being monitored.) Many of these attributes are 
not modeled by existing TSDBs due to the complexity in 
specifying them. For example, in order to specify which entity 
in a target system is being monitored, we need to be able to 
specify the system architecture and construct the model for the 
specification of system entities. We also need to specify the 
sensors and their relations to the entities in the target system. 

In order to specify the metric being monitored, we need to 
properly define the metric and its relation to other metrics. In 
other words, we need to define a metric ontology so that each 
metric referenced in a monitoring system can be properly 
understood.  

We have developed the techniques to address the semantic 
specification problem discussed above. Specifically, we have 
developed a Measurement Description semantic model which 
defines the System Ontology, the Metric Ontology, the 
Measurement Unit ontology, and the relations between them. 
System Ontology defines the hierarchies of entities in the 
systems of an application domain. The entities in the system 
include the sensors and the entities being monitored. Through 
the System Ontology, we can define the system architecture 
that properly describe the target system and use it to specify 
which sensor is monitoring which entity in the system and the 
correlations between the entities in the target system (which 
infers the relations of the corresponding data streams). The 
Metric Ontology defines various metrics that may be used in 
an application domain and their relations. The Measurement 
Unit Ontology defines the units that can be used for various 
measurement metrics in the application domain and their 
relations. Accordingly, data streams can be specified by 
linking to the specific metrics, the specific entities, and the 
specific measurement units. 

Based on the semantic model, we have also developed a 
tool suite, SE-TSDB, to manage the semantic information and 
to enable semantic based monitoring data retrieval. Via SE-
TSDB, domain experts can specify the System Ontology, the 
measurement metric ontology, and the measurement unit 
ontology. System architects can use the System Ontology to 
further define the specific system architecture for the 
monitoring system and the target system. The Reasoning 
Engine in SE-TSDB can derive new data streams from the 
existing ones based on the associated metric definitions. Thus, 
users can issue a semantic query to retrieve a data stream that 
is not in the TSDB but derived by the Reasoning Engine. 
Analysis programs with mismatching outputs/inputs can 
interoperate by letting the Reasoning Engine derive the 
alignment rules. Users can also retrieve data streams based on 
similarity-based matchmaking. SE-TSDB allows domain 
experts to define similarity rules and matching mechanisms on 
top of the semantic model. Thus, monitoring data streams that 
are collected for similar entities in similar systems can be 
retrieved by a semantic-based query and the Reasoning Engine 
can discover the matching based on the similarity rules. SE-
TSDB can run on top of existing TSDBs to enhance their 
semantic capabilities.  

We use cloud as an example case study to illustrate how the 
semantic model should be constructed and how a semantic-
based query can be processed to obtain the desired data. 

The problem of lacking proper specifications for the data 
streams stored in the TSDBs becomes much more severe when 
we consider the IoT-Edge-Cloud infrastructure. A huge 
number of data streams may be generated at the edge and they 
may flow dynamically in the IoT-Edge-Cloud infrastructure to 
support various data processing and control tasks and to 



achieve various performance related objectives. How to label 
these data such that applications can easily discover the 
desired data streams in order to use them to make informed 
control decisions or to conduct integrated analyses. To cope 
with this problem, we discuss how our semantic model for 
data stream specifications can be used and the additional 
mechanisms needed to help achieve effective data discovery in 
the complex IoT-Edge-Cloud infrastructure. 

The layout for the rest of the paper is as follows. In Section 
2, we discuss the semantic model for data stream specification. 
The SE-TSDB tool suite is discussed in Section 3. Section 4 
briefly discusses the issues of data stream retrieval in IoT-
Edge-Cloud Infrastructure and outlines the potential solution. 
In Section 5, we use cloud as an example to illustrate how to 
construct the semantics and how to use the semantics for data 
stream derivation. Brief reviews of the literature in TSDBs and 
in semantic models for IoT and sensors are discussed in 
Section 6. Section 7 concludes the paper. 

2 SEMANTIC MODEL FOR TIME SERIES 

DATA SPECIFICATION 
The lack of semantics in existing TSDBs makes it difficult 

to support advanced matchmaking, data tracking, data-oriented 
reasoning, semantic based data retrieval, etc. We build upper 
ontologies to provide a better semantic model for time series 
data specifications for the entire lifecycle of the data. Our 
model mainly focuses on the specification of MFDD time 
series data. Thus, we first have to consider the basics for 
describing the monitoring data, including (1) which sensor is 
used for monitoring, (2) which entity in which system is being 
monitored and what is the relation of the entity to other 
entities in the system, (3) which metric is being observed for 
the entity, and (4) which measurement unit is used for the 
metric. To avoid having to construct the specifications above 
for each case, which will incur a lot of duplicate efforts, we 
can consider these specifications for an application domain. 
For (1) and (2), we can build a System Ontology to describe 
the potential entities in a system in an application domain and 
the common relations between these entities. A system 
architecture can be instantiated from the System Ontology for 
each specific system. Similarly, for (3) and (4), we can build 
the Metric Ontology and Measurement Unit Ontology for the 
application domain. When specific metrics are monitored and 
specific measurement units are used for a specific system, 
these ontologies can provide the domain-specific vocabularies 
to ease semantic specifications and to provide better 
understandability of the data. Figure 1 shows the upper 
ontology for domain-specific measurement data description. 

In the figure, the black link is the “has” relation. The red 
link has two directions and represents two relations (to 
simplify the drawing), in which the right direction is the “has” 
relation and the left arrow is the “contains” relation. Different 
node colors simply show different categories of the nodes, and 
there is no differentiated ontological meaning. The green and 
the gray-green colored classes are from the specifications of 
the data stream.  

 
Figure 1. Upper ontology for measurement description. 

As discussed earlier, the measurement description can be 
defined for an application domain and it includes the Metric 
Ontology, Measurement Unit Ontology, and System Ontology. 
These ontologies need to be defined by the domain experts. 
The System Ontology has entities in multiple layers. An entity 
may have some sub-entities. Some specifications can be given 
to each entity. A metric category organizes the related metrics 
together. Each metric has a name and a definition. A metric 
definition may contain other metrics (defined by these other 
metrics), which can be specified by the “contains” relation. 
Similar to a metric definition, a measurement unit may be 
defined by other units and the “contains” relation indicates 
that dependency. Note that the metric and unit definitions can 
be very useful in reasoning for matchmaking, data conversion 
between different application programs using different metrics 
and units, data stream derivations, etc. The System Ontology 
can help derive the property of a higher-level entity (category) 
from the properties of the lower-level entities.  

The specifications about an entity include several categories 
of information as shown in Figure 1. The entity identity 
related information could include the entity name (maybe a 
path name in a hierarchical system structure to assure the 
uniqueness in the system), some identification number(s) (e.g., 
for a vehicle, there are vehicle identification number and 
license number), the category or type of the entity, entity 
manufacturer and manufacturing time, owner of the entity, etc. 
The entity relation specifies the connection and interaction 
relations of the entity with other entities in the system. The 
entity context could include location (can be static or dynamic 
over time), status over time, etc. The specifications related to 
the entity function can include the general functionality 
description, the specific functionality of the entity in the 
system, some general descriptions of the entity, etc. For some 
actuator entities, the precondition, effects, and behavioral 
descriptions can be given in its function description. The 
general description about the entity can include any other 
information that are not specifically categorized in the entity 
description ontology. 



The Sensor Description (the gray-green node) is from the 
Provenance class of the data stream specification, specifying 
which sensor is used for monitoring. The Measurement Data 
Description (the green node) is from the data stream 
specification. It needs to specify a specific metric in the Metric 
Ontology and a specific target entity in the System Ontology 
that the sensor is monitoring and the specific measurement 
unit in the Measurement Unit Ontology the measurement uses.  

Next we introduce the upper ontology for data streams (as 
shown in Figure 2), which defines the important elements for 
the specification of the time series (data stream).  

 
Figure 2. Ontology for data stream semantics. 

A data stream includes a sequence of data points, each has 
the measurement data and a timestamp indicating when the 
data was collected. Other descriptions about the data can be 
defined at the data stream level to reduce the overhead. These 
descriptions can include the timing information such as data 
collection frequency and period, description about the 
collection procedure (such as the collection method, etc.), how 
to handle the missing data (such as using interpolation or just 
ignore it). The Measurement Data Description is an important 
class for data stream specifications, and its relation to the 
entities in the Measurement Data Description ontology have 
been given in Figure 1.  

Another important descriptor in a data stream is the 
provenance information for the data stream, i.e., how is the 
data stream collected or derived [9]? The upper ontology 
defining Provenance is given in Figure 3. 

 
Figure 3. Ontology for data source provenance. 

A data stream may be collected from a monitoring sensor or 
derived from other data streams. If a data stream is the raw 
sensor readings, then we associate the data stream to the 
sensor. Note that a sensor is an entity in the monitoring system. 
Thus, we use entity ontology to specify the sensor and its role 
in the system. If a data stream 𝑠 is derived, then we specify the 
input data sources, which are other data streams, and the 

operation performed to derive 𝑠 from the other data streams. 
The operation may be a migrate, down-sample, or compute 
operation. A compute operation can be specified in general by 
the computing function name and features and specifically by 
the url. Generally, provenance can be represented by a DAG 
(directed acyclic graph) in which the leaf nodes are the raw 
data streams and the internal nodes are the operations. With 
the recursive relation between provenance and the data stream, 
we can see how the DAG can be specified. 

Finally, we define the upper ontology for TSDBs (Figure 4).  

 
Figure 4. The upper ontology for TSDB semantics. 

A TSDB basically includes a collection of correlated data 
streams. These data streams are generally from all the sensors 
for a target system or a subsystem. In addition to the data 
streams, the storage architecture (e.g., integrated IoT-Cloud-
Edge), the specific retention and sharding policies, and the 
storage scheme can be specified. The storage scheme can 
include specific management mechanisms for performance, 
fault tolerance, and security.  

3 SE-TSDB 

 
Figure 5. SE-TSDB architecture. 

Existing TSDBs do not offer sufficient semantic description 
support for the time series data they store. We have defined a 
semantic model and corresponding ontologies to help build the 
enhanced semantics for time series data specifications. We 
have also developed a suite of tools to realize our semantic 
model for TSDBs, namely, the SE-TSDB (the semantically 



enhanced TSDB) tool suite. SE-TSDB is implemented as a 
thin layer on top of existing TSDBs. The architecture for the 
tool suite is shown in Figure 5. 

The detailed descriptions for some components in SE-
TSDB tool suite are discussed in the following subsections. 

3.1 Semantic Information Creation 

To enhance the semantics of the Base TSDB, the SE-TSDB 
tool suite needs to support the specification of different levels 
of semantics. The Semantic Input Interface (SII) is responsible 
for interacting with the users to obtain various semantic 
specifications: 

(1) When a new application domain is created, the domain 
experts can specify the Measurement Description Ontologies 
for the domain, which can be the basis for specifying the 
semantics of the monitoring data streams. The Similarity 
Matching Rules define the similarity metrics for various 
components in the system. Some basic rules can be offered by 
SE-TSDB. Domain experts should define domain specific 
matchmaking rules for various similarity attributes and SII 
will store them in the Similarity Matching rule base. 

(2) A TSDB can be created for a specific monitoring system 
for a certain target system (or subsystem). During database 
creation, the system architecture for the target system and the 
monitoring system can be specified, which instantiates the 
System Ontology and includes the entities of the target system 
and the monitoring system, their relations, and their 
descriptions. Some other properties of the TSDB, such as the 
storage and processing architecture for the data and the 
specific scheme regarding how to distribute the data over the 
storage architecture (the storage scheme) should be specified 
in the TSDB semantics. 

Besides creating the TSDB semantics, the database should 
actually be created in the Base TSDB system. SII simply uses 
the database creation APIs offered by the Base TSDB to 
perform this action.  At the same time, the TSDB semantics 
defined for the database will be associated to the base database 
by its name. After database creation, we specify the retention 
and sharding policies and down-sampling schemes offered in 
the Base TSDB. 

(3) Each monitoring sensor will generate a continuous data 
stream (DS), which will be written to the data stream (DS) of 
the corresponding database. The semantics for each data 
stream should be specified before writing the data points. In 
some Base TSDBs, each write operation for a data chunk 
specifies the database and the data streams [5] (since there is 
no semantics, the overhead is negligible). In some other Base 
TSDBs, the database and the data streams have to be created 
in advance [7]. But in either case, the user can use SII APIs to 
create the database and the DS semantics. The association of 
the DS semantic data with the DS data points stored in the 
Base TSDB can be done by the database name and some DS 
attributes (depending on the data model of the Base TSDB). 
For most of the Base TSDBs, the database name, the specific 
metric name, and the specific tags are used to uniquely 
identify a data stream. Thus, we store these attributes in the 
DS semantics repository to achieve the proper association.  

For RRD [3], an early TSDB that is used by several cloud 
monitoring systems as the monitoring data storage solution, 
the association method discussed above will not work. Thus, 
we have modified the read/write operations in RRDTool to 
incorporate the semantic enhancement capabilities [10].  

3.2 Query Processing 

The basic queries (BQ) are those without going through the 
SE-TSDB tool suite and are routed directly to the Base TSDB. 

Sometimes, semantic based data retrieval is desired. 
Consider a few cases: (1) An application requires a specific 
input data stream which is not directly available in the TSDB. 
But there are some data streams in the TSDB that can be used 
to derive the desired data stream. For example, if the server 
status data (up/down status) is available in the TSDB but the 
user wants the availability data, then availability of the server 
can be derived from the up/down events and their timestamps 
using the Metric Ontology definitions. If a data processing 
program takes an input data stream in one measurement unit 
while the data streams in the TSDB are in another, then the 
conversion could be reasoned based on the Measurement Unit 
Ontology. (2) A user may not know the specific DS names and, 
hence, will use a semantic query to get the desired data. (3) 
When a new MFDD is deployed for a target system, it will 
have a cold start period. A data analyst may want to retrieve 
MFDD data of other similar target systems to get a quick start 
using transfer learning techniques [8]. In a more general case, 
the data analysts may retrieve MFDD data from multiple 
similar target systems and integrate them in fault analysis to 
improve the MFDD capability and accuracy. 

In case (1), logical reasoning can be performed on formally 
defined semantics to infer the needed data retrievals and 
potential data aggregations. We call this type of queries the 
semantic-based exact queries (SEQ) and route them to SEQI 
(Semantic-based Exact Query Interface). Here “exact” is 
relative to “similarity based” and the query is processed by 
logical reasoning without fuzzy similarity matching. For case 
(2), we need to perform similarity-based reasoning to match 
the semantics specified in the query with the semantics of 
existing data streams based on some fuzzy similarity rules. 
Case (3) also requires similarity-based reasoning to retrieve 
data streams from target systems that are similar. We call this 
type of queries the semantic-similarity based queries (SSQ) 
and route it to SSQI (Semantic-Similarity based Query 
Interface) for further processing. 

SEQI extracts the semantics defined in the query and 
forwards them to the Reasoning Engine, which in turn, takes 
the DS&DB Semantics and the Measurement Descriptions to 
perform logic-based reasoning and convert the input query and 
derive the new query, i.e., the Mapped Query. The Mapped 
Query is then sent to the Base TSDB to obtain the query 
results.  

SSQI extracts the semantics and matching criteria defined 
in the query and forwards them to the Reasoning Engine. The 
Engine takes the DS&DB semantics and matches them with 
the semantics of the input query based on the rules in the 
Semantic Matching rule base to determine the databases and 



data streams that are relevant to the query. These “similar” 
items are further processed by the Reasoning Engine for logic-
based reasoning. Finally, the Reasoning Engine produces the 
Mapped Query for TSDB data retrieval. 

3.3 Similarity Rules 

Similarity Matching rules need to be defined to enable the 
processing of the SSQ queries. Among the semantic attributes 
for a data stream (discussed in Section 2), the one that is likely 
to be used for semantic-similarity based retrieval are the 
Sensor Description and Measurement Data Description. The 
latter specifies which metric of which target entity is being 
monitored (measurement unit is not very useful in similarity 
based retrieval). The semantics of an entity does not 
standalone and can be augmented by the semantics of the 
target system (or subsystem) and the relations of the entity to 
the system. Similarly, the sensor semantics can also be 
augmented by the semantics of the target system and the role 
of the sensor entity in the target system. Thus, a semantic-
similarity based query (SSQ) can consider specifying the 
above semantic attributes to discover the desired data streams. 
Let 𝑆௤ denote the semantic information specified in an SSQ 𝑞, 
which can be characterized by the vector of relevant semantic 
attributes for matchmaking as follows: 
𝑆௤ ൌ ሺ𝑆௤

ௌ௬௦, 𝑆௤
ா௡௧௜௧௬, 𝑆௤ெ௘௧௥௜௖, 𝑆௤ௌ௘௡௦௢௥ሻ. 

Here, 𝑆௤
ௌ௬௦ and 𝑆௤

ா௡௧௜௧௬ are the semantics for the target entity 
and the semantics of the corresponding system, respectively, 
specified in the SSQ. 𝑆௤ெ௘௧௥௜௖ and 𝑆௤ௌ௘௡௦௢௥ are the semantics of 
the metric and the semantics of the corresponding sensor 
specified in the SSQ. 

A data stream 𝑑𝑠  in the TSDB also has these semantic 
attributes and can be represented as  
𝑆ௗ௦ ൌ ሺ𝑆ௗ௕

ௌ௬௦, 𝑆ௗ௦
ா௡௧௜௧௬, 𝑆ௗ௦

ெ௘௧௥௜௖, 𝑆ௗ௦
ௌ௘௡௦௢௥ሻ, 

where 𝑆ௗ௦ is the semantics for data stream 𝑑𝑠. Note that the 
system definition is given for each DB, not each DS. Thus we 
have 𝑆ௗ௕

ௌ௬௦ instead of 𝑆ௗ௦
ௌ௬௦ in the vector, and 𝑑𝑏 is the database 

that contains data stream 𝑑𝑠. 
When assessing similarity between 𝑆௤  and 𝑆ௗ௦ , the 

similarity for each individual semantic attribute should be 
assessed separately. Then they can be aggregated.  

Domain experts need to specify the similarity metrics for 
the four similarity attributes, i.e., define similarity(𝑆௤௑, 𝑆ௗ௦

௑ ), 
where 𝑋 can be 𝑀𝑒𝑡𝑟𝑖𝑐, 𝐸𝑛𝑡𝑖𝑡𝑦, 𝑆𝑒𝑛𝑠𝑜𝑟, 𝑆𝑦𝑠𝑡𝑒𝑚. 

For similarity(𝑆௤ெ௘௧௥௜௖, 𝑆ௗ௦
ெ௘௧௥௜௖ ), we can use the keyword-

based similarity assessment methods with WordNet and other 
ontologies. Keywords can be extracted from metric name and 
metric descriptions. Formal verification methods should be 
used to match the metric definitions. Note that a metric 𝑚 may 
be derived from other metrics and, hence, during similarity 
matching for 𝑚 , the metrics used in 𝑚 ’s definition in the 
Metric Ontology, say 𝑚ଵ, 𝑚ଶ, …, should also be considered, 
i.e., if 𝑆௤ெ௘௧௥௜௖ includes 𝑚, then it has to be expanded to 𝑚 ∨
𝑚ଵ ∨ 𝑚ଶ ∨ … to facilitate additional reasoning. 

For similarity( 𝑆௤
ா௡௧௜௧௬, 𝑆ௗ௦

ா௡௧௜௧௬ ), entity attributes such as 

entity function, entity description, etc. need to be considered. 
Keywords can be extracted from these descriptions and 
similarity metrics can be defined using keyword based 
methods.  

For similarity(𝑆௤ௌ௘௡௦௢௥, 𝑆ௗ௦
ௌ௘௡௦௢௥), since sensor is an entity in 

the system, the same approach as similarity(𝑆௤
ா௡௧௜௧௬, 𝑆ௗ௦

ா௡௧௜௧௬) 
can be used. 

Assessing similarity(𝑆௤
ௌ௬௦, 𝑆ௗ௕

ௌ௬௦) may be more complex than 
assessing similarity of other semantic attributes. The system 
specification in query 𝑞  can be the system architecture or 
simply the keywords. In the latter case, keywords can be 
extracted from the system descriptions in 𝑆ௗ௦

ௌ௬௦ to match with 

those given in 𝑆௤
ௌ௬௦ . For some retrievals that require more 

precision, such as for integrated MFDD, the complete system 
architecture can be given in 𝑆௤

ௌ௬௦. In this case, 𝑆௤
ௌ௬௦ and 𝑆ௗ௦

ௌ௬௦ 
can be viewed as graphs with entities as the vertices and 
relations between entities as the edges. We need to align the 
two graphs and identify matching vertices and edges. Graph 
edit distance can be used to evaluate the graph structural 
similarity [11] [12]. Similarity for the entity pairs and the edge 
pairs in two systems can be computed and integrated with the 
structural similarity of the system graphs. Domain experts can 
specify the graph based similarity metrics. Keyword based 
similarity metrics can be used for entity pairs and edge pairs. 

Some attributes of the semantic data for 𝑞 or for 𝑑𝑠 could 
be missing. When there are missing semantics, the matching 
may be less precise. For example, if 𝑆௤

ா௡௧௜௧௬ is specified but 

𝑆௤
ௌ௬௦ is missing, then all the measurement data streams for the 

specific entity (and similar entities) will be selected even if 
they may be from very different systems. 

3.4 The Reasoning Engine  

The Reasoning Engine is responsible for semantic-based 
matchmaking. It includes four major reasoning components, 
namely, entity-based reasoning, metric-based reasoning, 
measurement-unit based reasoning, and similarity-based 
reasoning. 

Measurement-unit based reasoning focuses on data 
conversion due to inconsistency in measurement units. The 
Reasoning Engine first checks the consistency between the 
required measurement units in the retrieving query and the 
actual units in the to be retrieved data streams. If conversion is 
needed, it retrieves the measurement unit definitions in the 
Measurement Unit ontology and derives the rule to convert the 
data to match with the unit given in the query. A Mapped 
Query will then be generated, which retrieves the designated 
data stream and performs data conversion on it. 

Metric-based reasoning derives matchmakings based on 
the definitions of the metrics. In case a desired data stream 
does not exist in the Base TSDB, the Reasoning Engine 
retrieves the metric definitions in the Metric Ontology and 
determines whether the desired data stream can be derived 
from other data streams in the Base TSDBs. If so, the 
Reasoning Engine reasons the mapping rules and convert them 
into the Mapped Query which will retrieve the corresponding 



data streams in the Base TSDB and derive the desired output 
data stream. For example, the data for the availability metric 
of a device may not be directly available in the monitoring 
database. Based on the availability metric definition in the 
Metric Ontology, the Reasoning Engine generates the Mapped 
Query to retrieve the relevant device status (up/down times) 
data stream to derive the availability data stream.  

Composition reasoning is used for the case when multiple 
data streams for different entities need to be aggregated to 
obtain the desired data stream. For example, consider a cloud 
system. When the requester wants to query the “load” of a 
cluster entity, the Reasoning Engine will first, based on the 
System Ontology, determine that a cluster includes a set of 
hosts and then, based on the system architecture, determine the 
specific hosts in the specific cluster. Next, it retrieves the 
specific cluster load metric definition from the Metric 
Ontology to generate the derivation rule and convert it into the 
Mapped Query. The query includes which host load data 
streams to be retrieved and how to aggregate them into the 
load of the cluster.  

Similarity-based reasoning is only used for SSQs. If the 
Reasoning Engine receives the query from SSQI, then it will 
start with similarity-based reasoning using the similarity 
metrics defined in Similarity Matching rule base. The 
Reasoning Engine go through each database 𝑑𝑏  to compute 
the similarity of 𝑆ௗ௕

ௌ௬௦ and 𝑆௤
ௌ௬௦. If there is a good match, then 

the Engine proceeds to each DS in 𝑑𝑏  and evaluate the 
similarity of the other semantic attributes. 

Since there may be a large number of DBs and DSs, it is not 
feasible to explore all the DBs and their DSs during reasoning. 
Thus, a preliminary filtering will be performed to eliminate 
some candidates. DSs in the TSDB are clustered into a tree 
based on the keywords from the DSs and their container DBs. 
The filtering process starts from the root to eliminate the 
unlikely branches. The criteria for pruning a branch at a higher 
level of the tree will be stricter, i.e., requiring a higher degree 
of mismatches. After pruning, the remaining set of DSs will be 
used for similarity reasoning. After similarity-based reasoning, 
the DSs passed the similarity evaluation will go through the 
other three reasoning processes. 

We have developed the Reasoning Engine [10] [13] based 
on Jess [14], a backward chaining reasoner in Java. The 
definitions in the Measurement Description ontologies, the 
semantic information for the databases and data streams, and 
the similarity matching metric definitions are converted 
automatically into rules and facts in Jess rule language. Jess 
engine then performs reasoning accordingly to derive the 
matchings. Our engine then translates them into Mapping 
Query for the Base TSDB. 

4 TSDB IN THE IOT-EDGE-CLOUD 

INFRASTRUCTURE 
IoT devices are being deployed at an increasing rate and it 

is estimated that there are tens of billions of physical things 
that are connected to the Internet, and the number is still 

growing rapidly. Many of these IoT devices are sensors, which 
generate large volumes of data. Generally, IoT devices have 
limited computing power and storage space and, thus, they are 
not suitable to store and process the data continuously 
generated by themselves. Cloud provides enormous computing 
and storage capacities which can be used for IoT data 
processing and storage. However, many IoT systems collect 
data for real-time decision making, and the communication 
latency for transferring data to the centralized cloud data 
centers can be prohibitive. To resolve these tradeoffs, edge 
and fog computing solutions have been proposed. Edge nodes 
generally serve as the gateway for the IoT devices and can 
perform some preliminary computations. Fog is a mini-scale 
cloud that sits between the Cloud and the IoT edge and offers 
computing resources, data storage, and networking in a local 
area network (LAN). An IoT-Edge-Fog-Cloud infrastructure is 
illustrated in Figure 6. In subsequent discussions, we merge 
Edge-Fog to one Edge entity for simplicity. 

 
Figure 6. IoT, edge, fog, and cloud computing infrastructure. 

The IoT-Edge-Cloud infrastructure constitutes a huge-scale 
distributed platform for IoT data processing and storage. To 
balance the tradeoff between timeliness and storage capacities, 
we can let IoT devices host transient data that are needed for 
quick decision making and let edge and cloud host persistent 
data. Data streams from IoT devices can flow to edge for 
preliminary processing. The original data or processed data 
can further flow to the cloud for integrated processing and 
potential storage. TSDBs can be used for data storage in the 
infrastructure. Each edge node can run the single node TSDB 
instance and manage the data as a peer. The cloud can run a 
distributed TSDB instance as a super peer.  

A major problem with the huge distributed storage in the 
infrastructure is how to manage the data. For example, an 
application may wish to retrieve the current traffic volume of 
some streets to make a driving plan. A user may find some 
analysis results of faulty behaviors of various computing 
systems and wish to find the original data sources for the 
analysis to gain further insights. A system designer may wish 
to obtain the failure information of a similar system to help 
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evaluate the fault tolerance features in her system design. How 
should these retrievals be processed in the IoT-Edge-Cloud 
infrastructure. As can be seen, maintaining the semantic 
information about each data stream can greatly help correlate, 
locate, and retrieve the data streams in the infrastructure.  

We consider data stream retrieval in three modes:  
(1) Localized retrieval. If we know where the desired DSs 

are hosted or we only plan to retrieve DSs from a specific 
TSDB, then the three types of retrieval queries, BQ, SEQ, and 
SSQ, discussed in Section 3.2 can be used on a specific TSDB 
system to obtain the desired data streams. 

(2) Infrastructure-wide semantic-based discovery. If we do 
not know where the desired DSs are hosted or we would like 
to perform a general search to discover all matching DSs in 
the whole or a part of the infrastructure, then we can issue an 
infrastructure-wide query. The query could be an SEQ or an 
SSQ and the desired semantics should be specified in the 
query for matchmaking. A region parameter can also be 
included in the query specification to confine the discovery in 
a specific region or in the entire infrastructure. 

(3) Provenance based data discovery. Sometimes, users may 
want to track down the source of data for a derived DS or vice 
versa. Or, a time period of a data stream may be migrated from 
its source to other locations for processing. The provenance 
information maintained for a data stream can help identify the 
desired data streams in the infrastructure. Provenance data are 
stored in decentralized Provenance Data Repositories (PDRs). 
To allow a relatively stable provisioning of the provenance 
data, we assume that the PDRs are relatively stable, i.e., the 
provenance data are unlikely to be migrated from one PDR to 
another. Thus, we can store the repository reference address in 
the provenance data to link to the corresponding repository. 

Infrastructure-wide discovery may include two types of 
searches, the discovery of a specific data stream (find out 
where it is hosted) with some uniquely identifiable semantic 
information and the general semantic based discovery to 
identify data streams satisfying the provided constraints.  

Our DS semantic model has been designed to include 
information that can uniquely identify a data stream. 
Generally, a DS is far more dynamic than the sensor the DS is 
generated from and the target entity the sensor is monitoring. 
Thus, our semantic model incorporates information that can be 
used to uniquely identify entities (the entity semantics 
discussed in Section 2, include the location of the entity). 
Accordingly, a raw data stream can be uniquely identified by 
its sensor and target entity. If all the raw data streams can be 
uniquely identified, then all the data streams derived from 
them can be uniquely identified. However, missing semantic 
information should always be allowed and it can impact the 
capability of uniquely identifying the corresponding entities. 
In this case, we will simply use general semantic based 
matchmaking to identify the data streams satisfying the 
semantics specified in the queries. 

To facilitate infrastructure-wide discovery, whether it is for 
discovering a specific DS or it is a general semantic based 
retrieval, we need to provide some structured information to 
guide query routing. We consider using peer-to-peer 

information structure with super peers maintaining the routing 
information for subsidiary peers [15]. In semantic based 
retrieval, how to design the summary information structure for 
routing can be challenging due to the high dimensionality of 
the semantic information attributes in our model. We plan to 
use the ontology coding technique discussed in [16] to greatly 
reduce the routing information to be maintained at the super 
peers. The specific routing table and routing algorithm designs 
for our DS/DB semantic model will be left for future research. 

5 CASE STUDY: THE SEMANTIC MODEL 

FOR THE CLOUD 
Cloud computing has rapidly evolved and become a prevailing 

paradigm, but behind the convenient cloud provisioning are the 
increasingly complex cloud infrastructures and services that require 
great management efforts. To assure the healthiness of the cloud 
and the quality of the cloud services, cloud monitoring, fault 
detection and diagnosis have been a pressing issue in many cloud 
systems. A lot of cloud monitoring systems have been developed in 
industry and academia, but most of them do not consider how to 
effectively manage their monitoring data. The monitoring data 
are generally stored in proprietary repositories or existing 
databases (such as RRD [3]). Frequently, cloud monitoring 
data can only be interpreted by those who store them. Here, 
we use cloud monitoring as an example case to illustrate how 
to construct the semantics for the monitoring data and how our 
semantic model can enhance the usability of the data.               

5.1 System Ontology for the Cloud  

We reference the cloud concept categorizations in [17] and 
[18] and the general cloud infrastructure to build the System 
Ontology for the Cloud and it is depicted in Figure 7.  

 
Figure 7. System Ontology for the Cloud. 

A cloud has a hardware infrastructure as well as 
applications that are cloud services and/or for apps of 
individual customers. On the left side of the ontology (left of 
VMM), the cloud hardware infrastructure in a data center is 
defined, from host organized in racks to clusters in a data 



center. These hardware entities are linked together by the 
network. On the right side of the ontology, the software layers 
are given, including the VMM hosting VMs, the OS in the 
VM, and the application instances running on top of the OS. 
The VMs and VMMs may communicate via virtual as well as 
physical networks. Each cloud application may have one or 
more App Instances, which may be distributed over multiple 
hosts in the cloud or running on a single host. An App 
Instance can run directly on the OS or on top of some 
application platform. For a distributed application, the app 
platform needs to manage application task distribution, 
communication, synchronization, etc. A system ontology 
instance (the system architecture) should be created for each 
real cloud system based on the ontology. Each entity in the 
ontology can be described following the entity ontology 
defined in Figure 1. 

Cloud monitoring sensors can be deployed to collect 
monitoring data for each entity in the cloud system. Some of 
them are hardware sensors and others are software sensors. 
There are standardized monitoring sensors for cloud hardware 
and host supporting systems (VMM, VM, OS), but the sensors 
for the application instances are application dependent and 
should be provided by the applications.  

5.2 QoS Metric Ontology for the Cloud 

QoS ontology has been explored in the literature. It defines 
the QoS metrics and their relations. Our QoS ontology is 
based on the works of [19], [20], and [21]. We integrate these 
works to build our basic QoS ontology. However, besides the 
QoS metrics themselves, the metric ontology should also 
include information specifying each metric. Our metric 
ontology model is depicted in Figure 8. 

The "hasMetric" relation is the main relation in the QoS 
metric model. It links various QoS metrics together in a class 
hierarchy. With only the hasMetric relations, our ontology has 
the same model as other QoS ontologies. In addition to the 
hasMetric relation, our QoS metric model adds three 
additional subclasses to describe the metric. The subclass 
MetricDescription gives the natural language description of 
what the metric is. Since different names are used in different 
QoS ontologies for the same concept, we define a 
ConceptPool class for each QoS metric to provide various 
literal definitions for the same concept. For example, 
“CPUTime” has a concept pool of "CPUCredit" [22]. The 
purpose of the concept pool is to facilitates integration and 
interoperation of multiple ontology definitions, in lieu of the 
unavailability of technical terminologies in common linguistic 
ontologies such as WordNet. The Quantitative Definition class 
provides a mathematical definition of the QoS metric based on 
other metrics and/or the timestamps of those metrics Thus, a 
QoS metric may “contain” other QoS metrics in its 
quantitative definitions as specified in the System Ontology in 
Figure 1.  

A partial view of our QoS metric ontology is given in 
Figure 8. In Figure 8(a), we can see that QoSMetricConcept 
includes a set of high level metric classes. Each high level 
class can be expanded into submetrics along the hasMetric 

relation. Figure 8(b) shows the expanded view, i.e., the 
submetrics for the Performance metric class.  We use the 
annotation feature provided in Protege to specify the other 
three descriptive classes (linked to the metric by the 
hasDescription relation) for each metric. The sample 
description class for the "Availability" metric is given in 
Figure 8(c). It includes description and quantitative definition. 
Since availability metric is very standard, there is no 
conceptPool annotation for it. 

 
Figure 8. Partial view of the QoS metric ontology for the Cloud. 

5.3 Measurement Unit Ontology for the Cloud 

The measurement unit ontology is a class hierarchy of units 
of measurements (a partial view is shown in Figure 9(a)). At 
the highest level, the measurement units are classified into 
basic units and aggregate units. The classes of basic units are 
enumerated in Figure 9(b). The aggregate unit class includes 
units that are defined by other aggregate and basic units 
through some mathematical operations. It is further divided 
into three classes, ratio unit, volume unit, and complex 
aggregate-unit classes (as shown in Figure 9(a)). Speed, 
frequency, throughput, etc., are examples of ratio unit. An 
aggregate value obtained from multiple units through 
multiplication operation has a volume unit. An example 
volume unit is VM demand volume (combination of CPU, 
memory, disk requested).  

 
Figure 9. Partial view of the Measurement Unit Ontology for the 

Cloud.  

5.4 Example for Semantic-based Reasoning 

Consider “cluster availability” as an example. Cluster 
availability is derived from the availability of all host 
machines in the cluster. Hence, it is necessary to understand 



the relation between the concepts of “cluster” and “host”, 
which is available in the system ontology instance for the 
specific cloud. Also, availability may not be measured directly 
and the availability data stream should be derived from the 
timestamps of the entity failures and entity recoveries stored in 
the status data stream of the entity. 

In the query for cluster availability, a specific cluster and 
the availability metric are specified. Our Reasoning Engine 
first performs composition reasoning to map a cluster to the 
corresponding hosts based on the Cloud System Ontology 
instance and generates the query that will retrieve the 
availability data streams of individual hosts and aggregates 
them according to the cluster availability metric definition. 
The individual host availability query will then be processed 
by the Reasoning Engine based on the availability definition in 
the Cloud QoS Metric Ontology for availability. The host 
availability query is mapped into a query which retrieves the 
up/down status data stream of the given host and computes the 
availability of the host accordingly. All the mappings results 
will be integrated by the Reasoning Engine into the final 
Mapped Query for the Base TSDB (currently it is the RRD). 

6 LITERATURE SURVEY 
Owing to the rapid development of IoT, huge amount of 

data flows from sensors to databases on a daily basis. This 
trend yields increasing demands on the scalability and 
usability of data storage solutions for handling time series 
data. Time series databases (TSDBs) are, thus, rapidly 
emerging and advancing. TSDBs have several different 
aspects compared to conventional relational or no-SQL 
databases. Due to the continuous flow of data streams, it is 
necessary for TSDBs to incorporate mechanisms to process 
staled data. Due to the additional dimension of time, TSDB 
needs to consider optimal storage to efficiently handle new 
type of queries that involves time criteria. Time based 
interpolation and alignment are also additional considerations 
in TSDBs due to its time dimension. 

RRDtool [3], as the pioneer of TSDB, is a file-based 
database. It models data collected from different sensors as 
different data sources (DSs) and handles them independently. 
Also, it interpolates data to fit a predefined, fixed time 
interval.  Graphite [4] adopts the data model of RRD but 
modifies the design of exact time interpolation with the use of 
timestamps for recording the actual data collection time. 
Though RRDtool and Graphite present an efficient solution to 
handle time series data, they have scalability problem due to 
their single-node based solution. OpenTSDB [5], like many 
other TSDBs, is a table-based (wide-column) database. It 
considers the situation that some correlated data streams may 
come to the system together and may be accessed together 
and, hence, allow users to define these data streams together in 
one table. Consequently, the write and read performance can 
be improved. However, table-based TSDBs have the problem 
of having to store redundant tags to differentiate the data 
streams. To compensate this space overhead, OpenTSDB 
introduces the Rowkey design which is essentially a 

compromise from table storage to DS based storage (like 
RRD), but only for a time segment. Thus, it achieves 
performance gain as well as space saving benefits. Although 
OpenTSDB offers high scalability, it is built on top of an 
existing distributed non-SQL database, which introduces an 
extra layer and incurs extra overhead. Thus, newer TSDBs 
build their cluster solutions from scratch. RiakTS [6] and 
InfluxDB [7] are such databases. Though all of them have the 
wide-column table based data model, RiakTS allows the user 
to define the partition key to guide the application-specific 
sharding and potentially achieve better access performance. 
InfluxDB, on the other hand, focuses on indexing all the table 
attributes, such as measurement names, tags, and time, to 
facilitate efficient random-access query processing.  

As the data continuously flow in to the storage system, it is 
impossible to keep expanding the storage infinitely. Thus, 
freeing up space for new data but at the same time allowing 
the retrieval of historical data is a crucial feature of TSDB. 
Different TSDBs provide various retention policies. RRD 
allows users to specify consolidation policies to consolidate 
old data into coarser grained archives. Also, it provides 
multiple level of archives for further consolidation. Similarly, 
OpenTSDB designs the downsampler to consolidate data. 
InfluxDB believes that to consolidate a data stream is just a 
special case of deriving a new data stream from an existing 
one. Thus, instead, it allows users to define continuous queries 
that are executed periodically to create new data streams from 
the existing ones. The original data are discarded after the 
retention duration. 

Data sharding is needed in all distributed storage systems. 
Unlike no-SQL databases in which data are ordered by their 
keys, sharding for time series data has to consider the key and 
the time spaces. RRD and Graphite do not consider sharding. 
Sharding in OpenTSDB is handled by the underlaying 
distributed file system (together with their row key design). 
RiakTS allows the user to define the “partition key” to control 
how to shard the data. However, naïve users may give 
improper partition key design which can greatly hinder the 
system performance. InfluxDB allows the user to specify a 
time range for sharding. Multiple data streams in one table 
within the user specified time quantum will be stored in one 
shard.  

Though most TSDBs handle sharding and down-sampling 
issues, their considerations in data semantics are limited. In 
RRD and Graphite, the data source (DS) name is the only 
semantic information to describe each data source. The table-
based TSDBs [5] [6] [7] support a better semantic description 
for the data streams than RRD by using multiple attributes 
(metric name and tags). But the flat attribute schema does not 
offer relational information among the attributes. Also, tags 
are used for differentiating data streams and cannot be used to 
add additional semantic information. Lacking a good semantic 
model in existing TSDBs implies their inflexibility in data 
retrieval. The retrieval queries have to provide the specific 
database and data stream names. It is also difficult to track the 
data streams after their migration, consolidation, or evolution. 
Our SE-TSDB is designed targeting these shortcomings to 



enhance the semantics of existing TSDBs. 
Though existing TSDBs do not support semantic definitions, 

there are research works that define ontologies relevant to 
monitoring data streams. The sematic sensor network (SSN) 
[23] defines a specification model for sensors and later 
extended to actuators. Fiesta-IoT [24] and IoT-Lite [25] 
generalize SSN from sensor specific to the generalized 
“Device” concept.  Fiesta-IoT merges sensor and actuator 
ontologies in SSN into one and further clarified their relations 
to the System class. These ontologies can be used for the 
specification of the “entities” in our System Ontology of the 
Measurement Description Ontology. In SSN, etc., the concept 
of “System” focuses on platforms and deployment, not the 
correlations of entities that constitute the system. Thus, cannot 
be used to derive the properties of a higher level entity from 
the properties of the lower level entities. The Observation 
class in SSN is defined for the sensor and Fiesta-IoT modified 
it so that the Observation becomes the central entity that uses a 
sensor for data readings. Thus, it is similar to our Data Stream 
class, except that our data stream class is data-centric and, 
hence, include more specific information about the “data” 
(such as Provenance, etc.) and the “storage” (such as the 
retention scheme, etc.) concepts. The observation in Fiesta-IoT 
has “QuantityKind”, which is similar to our “Metric” concept. 
But our Metric is described by a Metric Ontology, which can 
facilitate derivation of one metric from other metrics and it is 
not supported by QuantityKind in Fiesta-IoT.  

There are some concrete ontologies that can be very helpful 
in data stream specification. Specific metric ontologies, such 
as QoSOnt [26] and DAML-QoS [20] which define QoS 
metrics for service-based systems and the Trustworthiness 
ontology in [21] which defines the reliability, security etc. 
attributes, can be incorporated as a part of the metric ontology 
in the computing domain. The measurement units ontologies, 
such as M3-IoT [27] which defines a relatively complete 
taxonomy of metrics that current IoT sensors measure and 
UCUM [28] (unified code for units of measure) which defines 
the units of measures commonly used in science, engineering, 
and business fields, can be used to help build the metric and 
measurement unit ontologies in the corresponding domains.  

In general, the semantic solutions discussed above are not 
specific for data stream specifications and, hence, can only 
offer partial solutions under the overall ontology discussed in 
this paper. Also, our SE-TSDB tool suite can support the 
semantic based derivations instead of simply providing the 
specification solutions. 

7 CONCLUSION 
In this paper, we consider the data storage issues in IoT-

based monitoring systems, especially those for fault detection 
and diagnosis of critical target systems. Problems in existing 
TSDBs in terms of their lack of semantic descriptions have 
been identified. A Measurement Data Description semantic 
model has been developed to support the proper specifications 
of monitoring data streams and to enable semantic-based data 
retrieval. We have also developed the SE-TSDB tool suite, 

which can run on top of existing TSDBs to add the semantic 
power to them. We use the cloud system as a case study to 
illustrate how to construct the detailed semantic models and 
how a reasoner can use the semantic information in our model 
to reason for semantic based queries. 

Our future research in SE-TSDB include several directions. 
First, we plan to define a set of Semantic Matching Rules to 
enable more powerful reasoning of semantic-based queries. 
We have defined the similarity-based matchmaking principles. 
We will encode them into rules and evaluate their 
effectiveness in realistic scenarios.  

We also plan to expand our approach to achieve semantic-
based data stream discovery in the IoT-Edge-Cloud 
infrastructure. Specifically, we will consider the peer-to-peer 
system structure with super-peers and explore various 
summarization techniques for the super-peers to build routing 
tables. The goal is to achieve efficient query routing in order 
to quickly discover the desired monitoring data.  

Moreover, as discussed in Section 4, we sometimes need to 
discover data streams using the provenance information 
associated to the data streams. We plan to extend our work in 
integrated data provenance and information flow control [29] 
to establish the provenance information for monitoring data 
streams. We will validate the provenance data model defined 
in this paper and examine its effectiveness in tracking data 
sources in the IoT-Edge-Cloud infrastructure. We will also 
develop tools to support effective provenance-based data 
stream discovery. 
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