
ar
X

iv
:1

90
2.

07
76

1v
1

 [
cs

.S
Y

]
 2

0
Fe

b
20

19

Formalizing Cyber–Physical System Model

Transformation via Abstract Interpretation

Natasha Jarus, Sahra Sedigh Sarvestani, and Ali Hurson

Department of Electrical and Computer Engineering

Missouri University of Science and Technology

Rolla, USA 65409

Email: {jarus, sedighs, hurson}@mst.edu

Abstract—Model transformation tools assist system designers
by reducing the labor–intensive task of creating and updating
models of various aspects of systems, ensuring that modeling
assumptions remain consistent across every model of a system,
and identifying constraints on system design imposed by these
modeling assumptions. We have proposed a model transformation
approach based on abstract interpretation, a static program
analysis technique. Abstract interpretation allows us to define
transformations that are provably correct and specific. This
work develops the foundations of this approach to model
transformation. We define model transformation in terms of
abstract interpretation and prove the soundness of our approach.
Furthermore, we develop formalisms useful for encoding model
properties. This work provides a methodology for relating models
of different aspects of a system and for applying modeling
techniques from one system domain, such as smart power grids,
to other domains, such as water distribution networks.

Index Terms—Modeling, Model transformation, Formal meth-
ods, Abstract interpretation

I. INTRODUCTION

The multitude of functional and non–functional require-

ments for critical infrastructure cyber–physical systems (CPSs)

present many challenges to system designers. A smart grid

must be able to supply all its customers; it must be fault–

tolerant in the face of component failure; it must be secure

against physical and cyber attacks; and it must achieve all

these goals with efficient infrastructure. To meet all these

requirements, designers must integrate physical components,

cyber control software and hardware, and processes for human

operators into a complete system. This is a truly daunting

task, but one that can be facilitated by model-based design

and evaluation.

A vast body of literature has been published on various

modeling formalisms that capture system performance, de-

pendability, safety, and security. No single modeling formalism

can encompass all aspects of system performance and de-

pendability, necessitating the labor–intensive and error–prone

process of creating multiple system models and propagating

changes across all of these models. Furthermore, designers

must be careful that these models remain consistent with each

other, i.e., that the assumptions made about the system by one

model are not contradicted by those of any other model. For

instance, a dependability model for a smart grid where two

power lines are assumed to be connected in parallel is not

compatible with a power flow analysis where the lines are

placed in series.

One way to alleviate these challenges is through model

transformation, which enables automated or semi-automated

transformations between modeling formalisms. These trans-

formations can ensure that modeling assumptions are consis-

tent across every model of a system by verifying that any

model can be transformed into any other. This approach can

also identify constraints on system design imposed by these

assumptions. Such a model transformation approach should

meet two design constraints. First, it should be applicable to a

broad range of systems and a variety of modeling formalisms

in order to be useful to designers of complex systems. Second,

it should be sound—it should be possible to prove that the

result of a transformation is correct and consistent with the

initial models.

In our earlier work [1], we proposed a model transformation

approach based on abstract interpretation, a static program

analysis technique. Models are seen as abstractions of the

semantics of a system—its structure and behavior. Through

this lens, provably correct model transformation becomes the

problem of defining sound mappings from system semantics

to model semantics and vice versa. By composing these

mappings, we can develop sound transformations between

modeling formalisms.

The research contribution of this work is twofold. We

propose:

1) a formalization of system and model semantics, leading

to a formalization of sound model transformation, and

2) a mathematical structure useful in the development of

structures that capture system semantics.

Our first contribution formalizes the research approach we

outlined in [1] and incorporates several improvements from

feedback we have received since publication of that work. The

second contribution lays the groundwork for integrating real–

world modeling formalisms into this model transformation

approach.

The structure of this paper is as follows: in Section II, we

briefly summarize related model transformation and formal-

ization techniques. Section III presents our formalization of

system and model semantics and describes how we use this

formalization to create a method for model transformation.

Section IV presents tag–option lattices, a structure that we find

http://arxiv.org/abs/1902.07761v1

to be useful when formalizing the semantics of systems. Sec-

tion V summarizes our work and discusses future directions

for our research.

II. RELATED WORK

In the literature, model transformation refers to two different

but related concerns. One concern is integrating models of

different parts of the system into a complete system model; this

is more specifically called heterogeneous model composition.

The other concern is transforming one type of model for a

system to a different model of the same system or a related

system.

Model transformation research specific to CPSs primarily

focuses on building hierarchical models [2]–[5]. Hierarchical

models allow different model types to be combined together to

model complex systems. Each component can be modeled in a

convenient formalism; the hierarchical model is then simulated

by simulating each sub-model in tandem.

The Ptolemy modeling software [6] performs hierarchical

modeling and model composition [7], [8]. As such, Ptolemy

makes it easy to build and link small models. Hierarchical

models can consist of heterogeneous sub–models, allowing

different parts of the system to be expressed using different

types of models [8]–[11]. Model composition is achieved

in part by defining ontologies of system properties, e.g.,

units of model inputs and outputs. Based on these ontolo-

gies, Ptolemy can perform conversions of values transmitted

between sub–models and check for incompatibilities which

indicate modeling errors. Ptolemy also enables heterogeneous

model evaluation: it provides choices for both the modeling

language and the solution or simulation technique used to

evaluate the model [12]. However, Ptolemy does not offer

methods for transforming one system–level model to another.

In addition, it is focused on models of system function and

lacks facilities for modeling non-functional attributes.

OsMoSys [13] and SIMTHESys [14] are modeling systems

motivated by model–driven engineering. Their approach to

model transformation is based on techniques from software

engineering. Graph–based models, such as Petri Nets and

Fault Trees, are described using an object–oriented notation.

Every model has associated interfaces which allow models

of different types to be composed and evaluated. OsMoSys

features compositional models and interfaces with external

tools to evaluate them [15]. SIMTHESys provides a language

in which users can describe new modeling formalisms for use

with OsMoSys. Both are capable of modeling both functional

and non-functional aspects of a system [16]. However, neither

are focused on the problem of model transformation.

Möbius [17] is another modeling tool that supports hier-

archical modeling. It supports several modeling formalisms,

including block diagrams and Petri nets, and additional for-

malisms including stochastic timed systems can be included

via external modeling tools [18], [19]. While this feature offers

considerable flexibility in modeling, Möbius is constructed

around a modeling workflow that builds and evaluates hierar-

chical models and has little support for model transformation.

Its model composition method is based on object–oriented

design principles and is applicable to many state–based model

formalisms.

AToM3 [20] is capable of both model transformation and

model composition. It uses metamodels to describe specific

modeling languages, then defines transformations between

metamodels to transform models [21]. Models are graph-

based and transformations take the form of graph rewriting

rules [22]. However, there is no hierarchy of models, so

introducing a new model requires writing transformation rules

from the new model to each model that AToM3 implements.

CHESS [23] provides a modeling language for describing

systems and includes several model transformation methods

specific to creating dependability models. CHESS is based

on the Unified Modeling Language (UML); transformations

are based on graph rewriting rules. CONCERTO [24] ex-

tends CHESS by introducing modeling techniques for non-

functional system attributes such as dependability [25]. How-

ever, CONCERTO is focused on multicore processing sys-

tems [26], [27] and lacks the features necessary for modeling

complex physical components.

Rosetta [28] is focused on functional multi–formalism mod-

eling [29]. It takes an algebraic approach to relating models:

each formalism is described as a coalgebra—a mathematical

system useful for describing arbitrary transitions among arbi-

trary states [30], [31]. The coalgebras corresponding to each

formalism are placed in a lattice, which provides a structure

for determining how to transform one model into another.

Model transformations can be used to relate different models

of the same system; for example, it is possible to combine a

functional system model with a model of that system’s power

consumption. However, Rosetta lacks many features required

for CPS modeling, especially support for hybrid discrete–

continuous formalisms.

Each of these model transformation tools offers a partial

solution to the model transformation problem; however, none

of them present a solution that is generally applicable. Some

frameworks place constraints on the behavior of transforma-

tion functions (e.g., class inheritance transformation). Others

apply only to specific formalisms. Furthermore, only Rosetta

offers an approach that can be proven to be correct. The work

presented in this paper aims to address these shortcomings

by providing a model transformation approach that relates

a wide variety of modeling formalisms in a provably sound

fashion, and yields results that are sufficiently specific to be

meaningful.

III. ABSTRACT INTERPRETATION OF MODELS

The foundation of our approach is abstract interpreta-

tion [32], [33], a formalism for developing sound semantic

abstractions. In this work, system semantics are represented in

terms of properties that hold for the system. Such properties

might include information about components, their reliabili-

ties, and how they are interconnected. Models are abstractions

of system semantics—they concern certain properties of the

system, but not others. Thus, generating a model from a

system’s properties, then deriving properties of that system

from the generated model, may result in some of the initial

properties not being present in the derived properties. This is

a necessary effect of abstraction—we cannot derive properties

from a model if the model does not capture those properties. To

define mappings from system properties to models and vice

versa, both domains need to allow for this potential loss of

precision.

A. Properties

We first define how system semantics are represented.

Lattices (see [34]) offer a useful formalism for describing the

nature of approximation. We define a complete Properties

lattice ordered by specificity: for p1, p2 ∈ Properties, p1 ⊑
p2 means that the constraints in p1 and p2 are not contradictory

and that p1 places the same or more constraints on a system

than p2 does. For example, p2 could constrain the reliability

of a component to fall in the range (0, 1], whereas p1 could

require that component to have a reliability of 0.95.

The meet (denoted as ⊓) of two elements of Properties

places the constraints of both elements on a system; the join

(denoted as ⊔) implies satisfaction of the constraints of either

element. Suppose p1 requires a component’s reliability to fall

in [0.8, 1.0] and p2 constrains it within [0.75, 0.9]. Then p1⊓p2
will require it to be in [0.8, 0.9] and p1⊔p2 within [0.75, 1.0].

⊔

and
⊔

extend this concept to subsets of Properties.

For certain p1, p2 ∈ Properties are contradictory, p1 ⊓ p2
will result in a constraint that is impossible to satisfy. If p1
requires a component to have a reliability in [0.5, 0.7] and p2
requires it in [0.9, 1], then it is impossible for any component

to meet both constraints. In this paper, we require that every

element of Properties to be satisfiable except for ⊥, the

“impossible” constraint. Therefore, for this example, p1⊓p2 =
⊥. Note that ∀p ∈ Properties,⊥ ⊑ p.

To summarize, each element of the Properties lattice

describes one or more systems. In the general case, p describes

a set of systems, all of which meet the constraints in p. If every

constraint in p ∈ Properties has exactly one possible choice,

p will describe a single system.

B. Models

We now consider how modeling formalisms can be repre-

sented in this lattice framework. As a given element of the

Properties lattice may not define a single system, we must

account for the possibility that the lattice may not specify the

system well enough for a single model to be abstracted from

it. If p ∈ Properties does not constrain the reliability of a

component to a single value, a single reliability model cannot

be abstracted from p. Instead, we abstract a set of models, one

for each possible assignment of the component’s reliability,

subject to the constraints of p.

Therefore, in the same way that the Properties lattice

is defined, we also define the domain of each modeling

formalism to account for the nature of potentially imprecise

system specifications. To ensure that this approach is broadly

applicable, we define this domain using structure external to

the modeling formalism itself. Thus we do not have to require,

say, that a reliability model formalism be able to express the

concept of a component having a range of possible reliabilities.

We use a powerset lattice to provide this extra structure.

For a given model formalism, the set Model contains all

possible models expressible in that formalism. The powerset

lattice P(Model) then forms a lattice ordered by specificity:

for M1,M2 ⊆ Model, M1 ⊆ M2 indicates that M1 contains

fewer possible models describing a system, and thus places

more constraints on the system, than M2 does. Likewise, M1∩
M2 produces a set of models that fit the constraints associated

with M1 and with M2; M1 ∪ M2 produces a set of models

where constraints from either may hold.

Singleton sets (i.e., sets of the form {m}, m ∈ Model)

correspond to fully-specified models, and ∅ = ⊥ corresponds

to an “impossible” system—one with contradictory modeling

requirements.

To make the notation clearer and more consistent, we will

define Model = P(Model), as the powerset lattice of the

original set of models, Model . For the powerset lattice

Model, we will use the rounded operators (⊆,
⋂

,
⋃

) to prevent

confusion with the square operators of the lattice Properties,

and of lattices in the abstract.

C. Correctness

In this work, we represent the set of systems by S. We think

of these systems abstractly; thus, we do not concern ourselves

with the representation of S or its elements. When we speak

of a system s ∈ S, we understand s to be the system to be

modeled.

Any system s ∈ S is described by a number of elements of

Properties. To formalize this notion, we use a correctness

relation to relate a system to properties (and later, models)

that describe it. We suppose a relation RP : S → Properties

where sRP p if and only if p describes the system s. We must

assume the existence of RP, since the properties of the system

being designed are determined by the designer. However,

abstract interpretation allows us to induce correctness rela-

tionships between systems and models based on RP—in other

words, abstract interpretation enables sound transformations

between system properties and system models.

Definition 3.1: A correctness relation RL : S → L relates

systems to elements of a lattice L. Two attributes hold for RL:

(i) If sRL l1 and l1 ⊑ l2, then sRL l2.

(ii) If ∀l ∈ L′ ⊆ L, s RL l, then sRL

⊔

L′.

In terms of Properties and its correctness relation RP,

Property (i) states that we can relax correct constraints without

violating their correctness. The reverse does not hold, oth-

erwise, the inconsistent constraint ⊥ would describe every

system. The formalization of relaxation of constraints as

described by Property (i) allows us to generalize constraints

and therefore plays a crucial role in modeling abstraction.

Property (ii) requires that for any set of constraints L′ there

exist a “best” constraint that correctly describes any system

described by every constraint in L′. We can apply this property

to the constraints derived from several models to narrow down

our description of a given system’s properties. In this sense,

it allows us to derive a specific result from a number of more

general results. Note that the converse of (ii) follows from (i),

so (ii) could also be written as a biconditional.

D. Abstraction and Concretization

Given a correctness relation RP for Properties, we desire

to define a mapping between Properties and a modeling

formalism Model that induces a correctness relation RM :
S → Model. Furthermore, this mapping must allow for the

modeling domain to abstract system constraints. For instance,

a topology model should be able to discard constraints on

component reliability.

The formalism of choice for this task is a Galois connection:

Definition 3.2: A Galois Connection (P, α, γ,M) between

two complete lattices P and M consists of a pair of monotone

functions α : P → M and γ : M → P for which the following

relationships hold:

(γ ◦ α)(p) ⊒ p (1)

(α ◦ γ)(m) ⊑ m (2)

We refer to P as the concrete domain, M as the abstract

domain, α as the abstraction operator, and γ as the concretiza-

tion operator.

In terms of models and properties, α abstracts a model, m,

from a set of constraints on a system, p, and γ derives, or

concretizes, system constraints from a model of that system.

Relationship (1) states that abstracting the model m from

constraints p, then concretizing constraints from that model,

results in constraints that are at most more general than

those of p. In other words, abstraction may relax constraints

irrelevant to the model formalism, but it cannot produce a

model that implies constraints that contradict p. Relationship

(2) requires that Properties be able to completely capture the

constraints imposed by each model formalism, meaning that

if constraints are concretized from a model, m, of a system,

any other model abstracted from these constraints will be as

least as specific as the original model, m. Concretization may

introduce additional constraints, but in practice, the ⊑ of (2)

will often be strict equality in practice.

Next, we show that each Galois connection induces a

correctness relation RM on the abstract domain.

Theorem 3.1: Given a Galois connection (P, α, γ,M) and a

correctness relation RP : S → P, the relation RM : S → M

defined by sRM m ⇐⇒ sRP γ(m) is a correctness relation.

Proof: We must show that properties (i) and (ii) from

Definition 3.1 hold for RM. Take s ∈ S and m1,m2 ∈ M.

sRM m1 ∧m1 ⊑ m2

⇐⇒ sRP γ(m1) ∧m1 ⊑ m2 (Defn. of RM)

⇐⇒ sRP γ(m1) ∧ γ(m1) ⊑ γ(m2) (γ monotone)

=⇒ sRP γ(m2) (Prop. (i) for RP)

⇐⇒ sRM m2 (Defn. of RM)

The proof of (ii) uses the fact that γ is completely mul-

tiplicative, that is,

⊔

{γ(m) | m ∈ M′} = γ (

⊔

M′). Take

s ∈ S and M′ ⊆ M.

∀m ∈ M′sRM m

⇐⇒ ∀m ∈ M′, s RP γ(m) (Defn. of RM)

=⇒ sRP

⊔

{γ(m) | m ∈ M′} (Prop. (ii) for RP)

⇐⇒ sRP γ
(

⊔

M′
)

(Multiplicativity of γ)

⇐⇒ sRM

⊔

M′ (Defn. of RM)

Put in terms of models and system properties, if we define

a Galois connection between Properties and the lattice

for a given modeling formalism Model, then every correct

collection of system constraints abstracts to a correct model

and every correct model concretizes to a correct collection of

system constraints. Therefore, we have developed a provably

sound definition of the nature of model abstraction.

E. Model Transformation

Given this formalization of system and model seman-

tics, we can now formalize the problem of model trans-

formation. Suppose we have a properties domain and two

modeling formalisms with associated Galois connections to

the properties domain (Properties, αM1
, γM1

,Model1) and

(Properties, αM2
, γM2

,Model2). Furthermore, we have a

correctness relation RP which induces correctness relations

RM1
and RM2

.

Definition 3.3: A model transformation from Model1 to

Model2 is a semantically sound mapping τM2

M1
: Model1 →

Model2. That is, if m1 ∈ Model1 is correct, then τM2

M1
(m1)

is also correct.

We can define τM2

M1
by first concretizing constraints from

m1 ∈ Model1, then abstracting an element of Model2 from

it.

Theorem 3.2: The mapping τM2

M1
(m1) = (αM2

◦ γM1
)(m1)

is sound.

Proof: Take s ∈ S and m1 ∈ Model1.

sRM1
m1

⇐⇒ sRP γM1
(m1) Defn. of RM1

=⇒ sRP (γM2
◦ αM2

◦ γM1
)(m1) Eqn. (1), Prop. (i)

⇐⇒ sRM2
(αM2

◦ γM1
)(m1) Defn. of RM2

To sum up the transformation process: begin with a model

m1 ∈ Model1. Concretize properties of the system from

{m1}, then apply τM2

M1
to produce a set of models M ′

2
⊆

Model2. Finally, select a model from M ′
2

by introducing

information about the system not present in m1.

Figure 1 illustrates the domains, mappings, and relationships

present in this formalization of model transformation.

s s s
...

...
...

RM1
=⇒ RP =⇒ RM2...

...
...

Model1 Properties Model2γM1
αM2

τM2

M1

Fig. 1. Sound model transformation.

F. Selection and Specificity

Recall that the elements of Model are sets of models. To

concretize properties of a single model m ∈ Model, we

first map it to {m} ∈ Model, then apply γ. Conversely, for

a set of models M produced from an abstraction operation,

each model in that set equally captures the system constraints

from which M was abstracted. If M = ∅, then the chosen

modeling formalism cannot reason about the given system

constraints. If M = {m}, then the abstraction process has

produced a single model describing the system. Otherwise,

the system constraints lack some information about the system

that is relevant to this modeling formalism. In this case, the

user must introduce new information about the system by

selecting one model from this set. For example, one may

have to provide information about component reliability when

selecting a reliability model.

We represent this selection process as a function σ :
Model → Model; the definition of σ depends entirely upon

the exact system being modeled. While the known system

constraints may not be precise enough to indicate exactly

which model in the set is correct, they still indicate that the

correct model is in the given set of models. Therefore we

can constrain σ to not produce a model which we know is

incorrect even when we do not have enough information about

the system to produce a single model.

Definition 3.4: The function σ : Model → Model is a

selection operator if the following conditions hold:

(i) σ(m) ∈ m

(ii) If sRM m, then sRM {σ(m)}

Given a selection operator, we can incorporate the newly

introduced information back into the system properties do-

main, allowing future transformations to include these con-

straints and therefore produce more specific results. Take

p ∈ Properties such that sRP p. Derive the exact model

of formalism Model by letting m := (σ ◦ α)(p). By def-

inition of σ we know sRM {m}, so sRP γ({m}). Finally,

we can construct a more specific element p′ ∈ Properties

by p′ := p ⊓ γ({m}). The correctness of p′ follows from

property (ii) for RP, and by definition of ⊓, p′ ⊑ p.

Figure 2 depicts the relationship between these given func-

tions and domains.

Model Properties

Model

α

γ

σ m 7→ {m}

Fig. 2. Mappings between Model, Model, and Properties

IV. TAG-OPTIONS LATTICE

In our formalization of systems and models, we assume a

properties domain that is a lattice of constraints on a system;

its elements are ordered by specificity. A common pattern

arises when defining this domain: a lattice that assigns a set of

potential values to each element of a set of names or tags. Two

examples are assigning possible reliabilities to components

and defining whether a state is considered functional or failed.

We will refer to this type of lattice as a Tag–Options Lattice;

it is comprised of a tag lattice and a family of options lattices.

For instance, one may use a tag lattice where each element

is a set of components known to be part of a system; each

element of the corresponding options lattice is a function that

assigns possible reliabilities to each component.

A. Tag Lattice

Let T := {t1, t2, · · · } be a set of tags.

Definition 4.1: The tag lattice T := P(T)∂ is the dual of the

powerset lattice of T, where ⊑:=⊇,

⊔

:=
⋃

, and
⊔

:=
⋂

.

In this lattice, ⊤ = ∅ corresponds to a system where no tags

are known to apply—for example, a system with no known

components. Thus, every system is described by ⊤. Lattice

elements are ordered by specificity; if T1, T2 ∈ T and T1 ⊑ T2,

then T1 contains more information than T2 about tags that

apply to a system.

B. Options Lattice Family

Let O = {o1, o2, · · · } denote the set of options—potential

values—for each tag.

Definition 4.2: For each set of tags T′ ∈ T we can define

a corresponding options lattice OT′ . The elements of OT′ are

functions f : T′ → P(O) that assign a set of possible options

to each tag. For any f, g ∈ OT′ , f ⊑ g if and only if f(t) ⊆
g(t) for all t ∈ T′.

We can alternatively view the elements as sets of tuples

(t,o) where t ∈ T′ and o ∈ P(O). Each set contains exactly

one tuple per tag.

For any set of elements of an options lattice, O′ ⊆ OT′ , we

define

i)
⊔

O′ = λt.
⋃

{f(t) | f ∈ O′}, and

ii)

⊔

O′ = λt.
⋂

{f(t) | f ∈ O′}.

We refer to the family of options lattices associated with tag

set T by O(T).

t1 7→ O

t1 7→ {x} t1 7→ {y}

t1 7→ ∅

Fig. 3. Hasse diagram for O{t1}

For example, if T′ := {t1, t2} and O := {x, y}, then

f := {(t1, ∅), (t2, {x, y})} and g := {(t1, {x}), (t2, {y})} are

elements of OT′ . Furthermore,

f ⊔ g = {(t1, {x}), (t2, {x, y})}

f ⊓ g = {(t1, ∅), (t2, {y})}

Theorem 4.1: OT′ is a complete lattice.

Proof: The proof that ⊑ is a partial order on OT′ follows

directly from ⊆ being a partial order on f(t), f ∈ OT′ for

all t ∈ T′. Likewise, the proof that

⊔

and
⊔

are complete

follows from the completeness
⋂

and
⋃

.

From these definitions it follows that ⊤(t) = O and ⊥(t) =
∅ for all t ∈ T′. We can always imagine a system where any

of the given options holds for each tag; a system where no

tag corresponds to any of the options is a system about which

our abstractions cannot reason.

Hasse diagrams for O{t1} and O{t1,t2} are shown in Figure 3

and Figure 4, respectively.

Thus far, we have defined a lattice of system tags T and a

family of options lattices O(T) := {OT′ | T′ ∈ T} consisting

of mappings of tags to options. What remains is to combine

these lattices into a single tag–options lattice.

C. Options Lattice Homomorphisms

Before we can develop a tag–options lattice, we must define

how elements of different options lattices are related. The

tool of choice is a lattice homomorphism: a mapping between

lattices that preserves meets and joins.

Definition 4.3: For all sets of tags A,B ∈ T we define a

function φB
A : OA → OB by

φB
A(f) := λt.

{

f(t) if t ∈ A ∩B

O if t ∈ B−A

Or, from a sets-of-tuples perspective,

φB
A(f) = {(t,o) ∈ f | t ∈ A ∩B} ∪ {(t,O) | t ∈ B−A}

φ allows us to convert a function with one domain to a

related function with a different domain: if f : A → P(O),
then φB

A(f) : B → P(O).
Theorem 4.2: φB

A is a lattice homomorphism. That is, for

all O′ ⊆ OA,

i)

⊔

{

φB
A(f) | f ∈ O′

}

= φB
A (

⊔

O′) and

ii)
⊔
{

φB
A(f) | f ∈ O′

}

= φB
A (

⊔

O′).

Proof: To show

⊔

{

φB
A(f) | f ∈ O′

}

= φB
A (

⊔

O′),
suppose A,B ⊆ T and O′ ⊆ OA and take arbitrary t ∈ B.

t1 7→ O

t2 7→ O

t1 7→ {x}
t2 7→ O

t1 7→ O

t2 7→ {x}
t1 7→ {y}
t2 7→ O

t1 7→ O

t2 7→ {y}

t1 7→ {x}
t2 7→ {x}

t1 7→ {x}
t2 7→ {y}

t1 7→ {y}
t2 7→ {x}

t1 7→ {y}
t2 7→ {y}

t1 7→ {x}
t2 7→ ∅

t1 7→ ∅
t2 7→ {x}

t1 7→ {y}
t2 7→ ∅

t1 7→ ∅
t2 7→ {y}

t1 7→ ∅
t2 7→ O

t1 7→ O

t2 7→ ∅

t1 7→ ∅
t2 7→ ∅

Fig. 4. Hasse diagram for O{t1,t2}

Case 1: t ∈ A.

φB
A

(

⊔

O′
)

(t)

=
(

⊔

O′
)

(t) (Defn. of φB
A)

=
⋂

{f(t) | f ∈ O′} (Defn. of

⊔

for A)

=
⋂

{

φB
A(f)(t) | f ∈ O′

}

(Defn. of φB
A)

=

⊔

{

φB
A(f) | f ∈ O′

}

(t) (Defn. of

⊔

for B)

Case 2: t /∈ A.

φB
A

(

⊔

O′
)

(t)

=O (Defn. of φB
A)

=
⋂

{O | f ∈ O′} (Set Properties)

=
⋂

{

φB
A(f)(t) | f ∈ O′

}

(Defn. of φB
A)

=

⊔

{

φB
A(f) | f ∈ O′

}

(t) (Defn. of

⊔

for B)

The proof that
⊔
{

φB
A(f) | f ∈ O′

}

= φB
A (

⊔

O′) is anal-

ogous.

We now prove a corollary necessary to show the complete-

ness of the tag–option lattice:

Theorem 4.3: If A,B,C ∈ T such that A ⊑ B ⊑ C and

f ∈ OA and g ∈ OC such that φC
A(f) ⊑ g, then φB

A(f) ⊑
φB
C(g).

Proof: Take arbitrary t ∈ B.

Case 1: t ∈ C. Then f(t) ⊆ g(t), φB
A(f)(t) = f(t), and

φB
C (g)(t) = g(t). Therefore φB

A(f)(t) ⊆ φB
C (f)(t).

Case 2: t 6∈ C. Then φB
C(g)(t) = O and φB

A(f)(t) ⊆ O.

D. Tag-Options Lattice

So far, we have developed a lattice that relates sets of tags

that apply to a given system and a family of lattices that relate

option values given a set of tags. Now we combine these into

a lattice that can relate option values between sets of tags.

Definition 4.4: A tag–options lattice Λ(T,O(T)) is a lattice

of tuples (T′, f) where T′ is an element of T and f is an ele-

ment of OT′ . Given elements (A, f) and (B, g) ∈ Λ(T,O(T)),
(A, f) ⊑ (B, g) if and only if A ⊑ B and φB

A(f) ⊑ g.

(Note that if (A, f) ⊑ (B, g), A⊔B = B, so φA⊔B
A = φB

A

and φA⊔B
B = λx.x.)

For any subset Λ ⊆ Λ(T,O(T)), let V := {T ′ | (T ′, f) ∈
Λ}. Then we can define

i)
⊔

Λ :=
(

⊔

V,
⊔

{

φ
⊔

V

T ′ (f) | (T ′, f) ∈ Λ
})

, and

ii)

⊔

Λ :=
(

⊔

V,

⊔

{

φ ⊔V
T ′ (f) | (T ′, f) ∈ Λ

})

.

In this lattice, ⊥ = (⊥T,⊥OT
) is the system where no

options are valid for any tag. ⊤ = (⊤T,⊤O∅
) corresponds

to the system where no tags are known to apply.

For example, suppose we have a set of tags T = {t1, t2, t3}
and take elements T1,T2 ∈ T where T1 = {t1, t2}, and

T2 = {t2, t3}. Let the options set be O = {x, y}.

Let f : T1 → P(O) be an element of OT1
where f =

{(t1, ∅), (t2,O)}. Let g : T2 → P(O) be an element of OT2

where g = {(t2, {x}), (t3, {y})}. Then (T1, f) and (T2, g) are

elements of Λ(T,O(T)).
Furthermore, we can compute the meet of (T1, f) and

(T2, g) as follows:

(T1, f) ⊓ (T2, g)

=(T1 ⊓T2, φ
T1⊓T2

T1
(f) ⊓ φT1⊓T2

T2
(g))

=(T1 ∪T2, {(t1, ∅), (t2,O), (t3,O)}

⊓ {(t1,O), (t2, {x}), (t3, {y})})

=(T, {(t1, ∅ ∩O), (t2,O ∩ {x}), (t3,O ∩ {y})})

=(T, {(t1, ∅), (t2, {x}), (t3, {y})}).

Theorem 4.4: Λ(T,O(T)) is a complete lattice.

Proof: That ⊑ is a partial order follows from the partial

orders defined on T and the lattices of O(T).
To show that

⊔

is a well–defined meet operator, take an

arbitrary subset Λ ⊆ Λ(T,O(T)), and let V := {T | (T, f) ∈
Λ}.

Take arbitrary (T ′, f ′) ∈ Λ(T,O(T)) such that ∀l ∈
Λ, (T ′, f ′) ⊑ l. Thus, T ′ ⊑

⊔

V. Furthermore,

∀l ∈ Λ, (T ′, f ′) ⊑ l

=⇒ ∀(T, f) ∈ Λ, T ′ ⊑ T ∧ φT
T ′(f ′) ⊑ f (Defn. of ⊑)

=⇒ ∀(T, f) ∈ Λ, φ ⊔V
T ′ (f ′) ⊑ φ ⊔V

T (f) (Thm. 4.3)

=⇒ φ ⊔V
T ′ (f ′) ⊑

⊔

{

φ ⊔V
T (f) | (T, f) ∈ Λ

}

(Defn. of

⊔

for O ⊔V)

Therefore (T ′, f ′) ⊑

⊔

Λ. The proof that
⊔

is a well–defined

join operator is analogous.

For an example of how a tag–options lattice might be

used to construct a concrete properties domain, consider the

task of assigning reliabilities to components. In this case,

we define a set of component names Components :=
{c1, c2, · · · } to use as tags. The elements of the tag lattice

Components := P(Components)∂ consist of sets of

component names. If an element of Components applies to

a given system, then we know that the system consists of at

least those components. The set of options is Probability =
{x ∈ R | 0 < x ≤ 1}. Finally, the tag–options lat-

tice Λ(Components,Probability(Components)) con-

sists of pairs (C, p) where C is a set of components

known to comprise a given system and p(c) assigns a

range of possible reliabilities to each c ∈ C. Thus

Λ(Components,Probability(Components)) is a lattice

of constraints on component reliability ordered by specificity.

It can be used as part of a definition of a properties domain

in conjunction with other lattices that capture other relevant

system properties.

V. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated a formalization of

model and system semantics. Models abstract system seman-

tics; therefore, we can derive, or concretize, constraints on a

system from models of it. Conversely, given constraints on a

system, we can abstract a set of models that are consistent

with those constraints.

To formalize the soundness of this approach, we apply

abstract interpretation, which defines a correctness relation

between systems and constraints. If our abstraction and con-

cretization mappings between a given modeling formalism and

system constraints form a Galois connection between the two

domains, we can show that these mappings and the correctness

relation for system constraints induce a correctness relation

between systems and the models of the modeling formalism.

Through this lens, the process of model transformation be-

comes the process of concretizing system properties from one

model, then abstracting a second model from these properties.

We show that this process is sound; that is, if the initial model

is correct, then the final model will also be correct.

Future work will take several directions. We are currently

working on relating models of different aspects of a system—

in this case, reliability and topology. This work will demon-

strate both how topology affects system reliability by intro-

ducing dependencies between components and how reliability,

via the same dependencies and the constraints on system

functionality, constrains the choice of topologies for which

that definition of reliability holds.

We plan to further extend the work of this paper to other

model types and other choices of system properties. Expanding

the possible transformations will allow us to relate modeling

techniques from various system domains; for example, we may

apply a water distribution network analysis technique to a

power grid, or incorporate both cyber and physical models

into a cyber–physical model.

Another avenue of research is to expand the formalization

of models and systems to other metamodeling tasks. A salient

challenge in the design of complex systems is that of het-

erogeneous model composition: combining component models

that use various modeling formalisms into a single model

of a complete system. The abstraction and concretization

functions defined in this work provide a basis for developing

these connections. It may even be possible to perform this

composition at a higher level, enabling the creation of hybrid

modeling formalisms and associated solution and evaluation

techniques.

Finally, the task of developing this approach into a tool

for system designers will certainly present its own challenge.

Such a tool must be interactive and scalable to complex, real–

world systems, all without requiring the user to have a deep

understanding of the underlying theory.

REFERENCES

[1] N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Models, metamodels,
and model transformation for cyber–physical systems,” in 7th Interna-

tional Green and Sustainable Computing Conference, pp. 1–8, Nov.
2016.

[2] P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli, “Addressing
modeling challenges in cyber–physical systems,” tech. rep., Mar. 2011.

[3] T. H. Feng and E. A. Lee, “Scalable models using model transforma-
tion,” tech. rep., July 2008.

[4] K. Wan, D. Hughes, K. L. Man, and T. Krilavicius, “Composition
challenges and approaches for cyber–physical systems,” in 2010 IEEE

International Conference on Networked Embedded Systems for Enter-

prise Applications (NESEA), pp. 1–7, Nov. 2010.
[5] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl, “Multi–domain

modeling of CPS using architectural views,” 2010.
[6] C. Ptolemaeus, ed., System design, modeling, and simulation: using

Ptolemy II. Berkeley, Calif: UC Berkeley EECS Dept, 1. ed., version
1.02 ed., 2014.

[7] Y. Xiong, E. Lee, X. Liu, Y. Zhao, and L. Zhong, “The design and ap-
plication of structured types in Ptolemy II,” in 2005 IEEE International

[9] H. Feng, Model transformation with hierarchical discrete-event control.
PhD thesis, Citeseer, 2009.

[10] C. Brooks, T. H. Feng, E. A. Lee, and R. van Hanxleden, “Multimod-
eling: A preliminary case study,” tech. rep., Jan. 2008.

[11] S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee, “A modular formal
semantics for Ptolemy,” Mathematical Structures in Computer Science,
vol. 23, pp. 834–881, Aug. 2013.

[12] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and C. Goble, “Het-
erogeneous composition of models of computation,” Future Generation

Computer Systems, vol. 25, pp. 552–560, May 2009.
[13] V. Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis, “The

OsMoSys approach to multi-formalism modeling of systems,” Software

and Systems Modeling, vol. 3, pp. 68–81, Nov. 2003.
[14] E. Barbierato, M. Gribaudo, and M. Iacono, “SIMTHESysER: a tool

generator for the performance evaluation of multiformalism models,”
tech. rep., Universitı́ degli Studi di Napoli, Belvedere Reale di San
Leucio 81100 Caserta, Italy, 2012.

[15] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca, and V. Vit-
torini, “Towards an object based multi-formalism multi-solution mod-
eling approach,” Proceedings of the Second Workshop on Modelling of

Objects, Components and Agents Aarhus (MOCA02), Denmark, vol. 26,
no. 27, pp. 47–65, 2002.

Conference on Granular Computing, vol. 2, pp. 683–688 Vol. 2, July
2005.

[8] B. Lickly, C. Shelton, E. Latronico, and E. A. Lee, “A practical ontology
framework for static model analysis,” in Proceedings of the Ninth ACM

International Conference on Embedded Software, EMSOFT ’11, (New
York, NY, USA), pp. 23–32, ACM, 2011.

[16] M. Iacono, M. Gribaudo, and E. Barbierato, “Exploiting multiformalism
models for testing and performance evaluation in SIMTHESys,” ACM,
2011.

[17] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. Doyle,
W. Sanders, and P. Webster, “The Möbius modeling tool,” in 9th

International Workshop on Petri Nets and Performance Models, pp. 241–
250, 2001.

[18] S. Gaonkar, K. Keefe, R. Lamprecht, E. Rozier, P. Kemper, and
W. H. Sanders, “Performance and dependability modeling with Möbius,”
SIGMETRICS Performance Evaluation Review, vol. 36, pp. 16–21, Mar.
2009.

[19] C. Buchanan and K. Keefe, “Simulation debugging and visualization
in the Möbius Modeling Framework,” in Quantitative Evaluation of

Systems (G. Norman and W. Sanders, eds.), no. 8657 in Lecture Notes
in Computer Science, pp. 226–240, Springer International Publishing,
Sept. 2014.

[20] J. De Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism
and meta-modelling,” in FASE, vol. 2, pp. 174–188, Springer, 2002.

[21] T. H. Feng, M. Zia, and H. Vangheluwe, “Multi–formalism modelling
and model transformation for the design of reactive systems,” in
Proceedings of the 2007 Summer Computer Simulation Conference,
SCSC ’07, (San Diego, CA, USA), pp. 505–512, Society for Computer
Simulation International, 2007.

[22] J. De Lara, H. Vangheluwe, and M. Moreno, “Using meta-modelling and
graph grammars to create modelling environments,” Electronic Notes in

Theoretical Computer Science, vol. 72, no. 3, 2002.

[23] “CHESS Project Website - CHESS.” http://www.chess-project.org/.

[24] “CONCERTO Project.” http://www.concerto-project.org/.

[25] L. Montecchi, P. Lollini, and A. Bondavalli, “A reusable modular
toolchain for automated dependability evaluation,” in Proceedings of the

7th International Conference on Performance Evaluation Methodologies

and Tools, pp. 298–303, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2013.

[26] V. Bonfiglio, L. Montecchi, F. Rossi, P. Lollini, A. Pataricza, and
A. Bondavalli, “Executable models to Support Automated Software
FMEA,” pp. 189–196, IEEE, Jan. 2015.

[27] A. de Matos Pedro, D. Pereira, L. M. Pinho, and J. S. Pinto, “Towards a
runtime verification framework for the ada programming language,” in
Reliable Software Technologies–Ada-Europe 2014, pp. 58–73, Springer,
2014.

[28] C. Kong and P. Alexander, “The Rosetta meta-model framework,” in
10th IEEE International Conference and Workshop on the Engineering

of Computer-Based Systems, pp. 133–140, Apr. 2003.

[29] J. Streb and P. Alexander, “Using a lattice of coalgebras for heteroge-
neous model composition,” in Proceedings of the MoDELS Workshop

on Multi-Paradigm Modeling, pp. 27–38, 2006.

[30] N. Frisby, M. Peck, M. Snyder, and P. Alexander, “Model composition
in rosetta,” in 2011 18th IEEE International Conference and Workshops

on Engineering of Computer Based Systems (ECBS), pp. 140–148, Apr.
2011.

[31] P. Alexander, “Rosetta: Standardization at the system level,” Computer,
vol. 42, pp. 108–110, Jan. 2009.

[32] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in 4th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pp. 238–252, ACM, 1977.

[33] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program

Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

[34] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge University Press, 2 ed., 2002.

http://www.chess-project.org/
http://www.concerto-project.org/

	I Introduction
	II Related Work
	III Abstract Interpretation of Models
	III-A Properties
	III-B Models
	III-C Correctness
	III-D Abstraction and Concretization
	III-E Model Transformation
	III-F Selection and Specificity

	IV Tag-Options Lattice
	IV-A Tag Lattice
	IV-B Options Lattice Family
	IV-C Options Lattice Homomorphisms
	IV-D Tag-Options Lattice

	V Conclusion and Future Work
	References

