QUIC: A Quality of Service Network Interface Layer for
Communication in NOWs *

R. West, R. Krishnamurthy, W. K. Norton, K. Schwan, S. Yalamanchili, M. Rosu! and V. Sarat

Critical Systems Laboratory

Georgia Institute of Technology
Atlanta, GA 30332

Abstract

This project explores the development of a hard-
ware/software infrastructure to enable the provision
of quality of service (QoS) guarantees in high perfor-
mance networks used to configure clusters of worksta-
tions/PCs. These networks of workstations (NOWs)
have emerged as a viable high performance computa-
tional vehicle and are also being called upon to support
access to multimedia datasets. FEzxample applications
include Web servers, video-on-demand servers, im-
mersive environments, virtual meetings, multi-player
3-D games, interactive simulations, and collaborative
design environments. Such applications must often
share the interconnect with traditional compute inten-
sive parallel/distributed applications that are usually
driven by latency requirements in contrast to jitter,
loss rate, or throughput requirements. The challenge
is to develop a communication infrastructure that ef-
fectively manages the network resources to enable the
diverse QoS requirements to be met. The major com-
ponents of QUIC include (1) use of powerful, proces-
sors embedded in the network interfaces, (2) scheduling
paradigms for concurrently satisfying distinct QoS re-
quirements over multiple streams, (3) re-configurable
hardware support to enable complex scheduling deci-
sions to be made in the desired time frames, and (4)
o flexible and extensible virtual communication ma-
chine that provides a uniform interface for dynamically
adding hardware/software functionality to the network
interfaces (NIs). This papers reviews the goals, ap-
proach and current status of this project.

*This work is supported in part by DARPA through the Hon-
eywell Technology Center under contract numbers B09332478
and B09333218, the British Engineering and Physical Sciences
Research Council with grant number 92600699, Intel Corpora-
tion, and the WindRiver Systems University Program.

1 Introduction

The continuing rapid decrease in the cost of both pro-
cessor and network components has led to a tighter
integration of computation and communication. The
result has been an explosion of network-based applica-
tions characterized by the processing and delivery of
continuous data streams and dynamic media [1, 6] in
addition to servicing static data. Numerous examples
can be drawn from web-based applications, interactive
simulations, gaming, visualization, and collaborative
design environments. The changing nature of the work-
load and cost/performance tradeoffs has prompted the
development of a new generation of scalable media
servers structured around networks of workstations in-
terconnected by high speed system area network (SAN)
fabrics. However the ability to construct scalable clus-
ters that can serve both static and dynamic media is
predicated on successfully addressing two major issues.

The first is that node architectures are based on
a CPU-centric model optimized for uniprocessor or
small-scale multiprocessor applications. This can lead
to significant inefficiencies for distributed applications.
Specifically, while CPU and wire bandwidths have been
increasing rapidly over the years, memory and intra-
node I/O bandwidths continue to improve at much
slower rates, resulting in a performance gap that will
continue to widen in the foreseeable future. This im-
plies that interactions between the network and hosts
utilizing main memory are expensive. Additional costs
arise for such interactions from overheads due to I/0
bus usage [4, 5], communication protocol implementa-
tions (e.g., if interrupts are used [2]), and interactions
with the host CPU’s memory management and caching
infrastructure [3]. Consequently, network-based appli-
cations that produce, transport, and process large data
sets suffer substantial losses in performance when these
data sets must be moved through the memory and I/0
hierarchies of multiple nodes.

The second issue is the workload and performance
characteristics of this new generation of network-based
applications. Data types, processing requirements and
performance metrics have changed placing new func-
tional demands on the systems that serve them. Sev-
eral key attributes are as follows [1, 6].

1. Real-Time Response: Interactivity and re-
quirements on predictability, such as when to ser-
vice video streams, make real-time response im-
portant. Such timing constraints cannot be met
unless the network resources can be scheduled and
allocated effectively.

2. Shift from Quantitative to Qualitative Met-
rics: With the new applications there has also
been a shift in metrics that define their perfor-
mance [1, 7]. Traditional quantitative metrics
such as latency and bandwidth give way to more
qualitative metrics such as jitter and real-time re-
sponse. The smooth update of a video stream or
the response time to a user access request is more
important than minimizing transmission latency.
The metrics clearly affects the choice of implemen-
tation techniques. For example packets may be
dropped in a video or audio stream without com-
promising quality whereas this would be unaccept-
able for most transaction processing applications.

3. Hardware Limitations: The service and trans-
fer of video streams and images places increasing
demands on the memory and I/O bandwidths at
a time when the bandwidth gap between the CPU
and memory and I/O subsystems is growing. Fur-
thermore the available physical bandwidth to the
desktop and to the home will grow by several or-
ders of magnitude. Wire bandwidths into the clus-
ter that serves these machines with media will fol-
low or lead this trend. This will exacerbate the
“bandwidth gap” between the CPU and the wire,
thereby making qualitative metrics more sensitive
to the same.

4. Heterogeneity: Systems such as real-time me-
dia servers need to service hundreds and, possi-
bly thousands, of clients typically each with their
own distinct quality of service (QoS) requirements,
such as packet dropping vs. reliable message
transmission, low latency vs. jitter, or throughput
vs. latency. We must concurrently meet diverse
service requirements with the same set of hard-
ware and software resources.

The QUIC project studies the issues inherent in
Quality of Service management for cluster machines.

Our project focuses on the functionality of the network
messaging layer in providing QoS guarantees. Our ap-
proach is based on the development of an extensible
QoS management infrastructure for which we carefully
select components that are to be implemented within
programmable network interfaces (NIs). In Section 2
we provide a brief overview of the project while a de-
scription of the overall Quality Management infrastruc-
ture can be found in Section 3. The rest of the paper
describes the approach taken in the implementation of
each of key QUIC components.

2 Project Overview and Goals

Cluster Environment Computing Node

P][p][»][P]

TN

||: Scheduler

Network Interface

Figure 1: An Overview of the QUIC Development In-
frastructure.

This project has a strong experimental component and
therefore our infrastructure is biased towards rapid
prototyping and evaluation. An overview of the QUIC
infrastructure is illustrated in Figure 1. Our devel-
opment environment is a cluster of 16 quad-Pentium
Pro nodes interconnected via Intel’s i960 based In-
telligent I/O (I20) network interface cards running
the VxWorks operating system and interconnected via
100 Mbits/sec Ethernet. Concurrent development pro-
ceeds under the Windows NT and Solaris node operat-
ing system environments. Individual nodes have mul-
tiple network interfaces, multiple CPUs and eventually
will coordinate services from multiple nodes[13].

Our goal is the development of an effective qual-
ity management infrastructure that can service a large
number of connections, each with distinct service re-

quirements, while minimizing host-NI interactions for
NIs whose functionality can be easily and dynamically
extended. Our approach also investigates the extension
of NI functionality to include computations on data
streams as they pass through the network interface.
By performing such stream computations 'on the fly’ as
data is passed through the interface we can avoid costly
traversals of the memory hierarchy and thereby ob-
tain finer control over service quality, for example real-
time response. We are investigating supporting such
stream computations through the use of programmable
hardware in the form of dynamically configurable field
programmable gate arrays (FPGAs) within the NIs.
By placing quality management functionality “close”
to the wire and I/O components attached to the 120
boards, we expect to enable QoS guarantees at higher
levels of resource utilization than commodity clusters
will otherwise permit. The following sections describe
the individual aspects of the QUIC project.

3 QUIC Quality
Infrastructure

Management

The QUIC QoS infrastructure has several components
that jointly permit the implementation of a variety of
quality management functions and policies applied to
the information streams into and out of CPUs.

e At the core of QUIC resides the extensible NI soft-
ware architecture, which is designed for runtime
extension with functions that manage the infor-
mation streams used by particular applications.
Two types of functions are supported: (1) stream-
lets that operate on the contents of data being
streamed out of or into hosts, via the NIs on which
the QUIC infrastructure’s core components reside,
and (2) scheduling or quality management func-
tions that manage such streams, typically by ap-
plying certain scheduling algorithms to streams as
they pass through NIs and the NI-host interface.
This paper’s principal focus is on these scheduling
functions and on the manner in which they are
applied to streams.

o QUIC offers two types of interfaces to applica-
tions: (1) a communication interface that directly
supports its information streams, using standard
communication protocols enhanced with the abil-
ity to specify scheduling functions or streamlets
applied to them, and (2) an extension interface
using which applications can define new quality
management (scheduling) functions or streamlets
to be applied to their information streams.

¢>
]

Ethernet
Interfaces

. Secondary ||
Primary PCI
PCI Interface
|
SCSI

Interface
Host <
Interfaces
1960Rx | _ HD
Processor | ¢

System -
DMA
Channels D DMA

Channel

— -
-

Local Bus
. Flash
DRAM ROM

Figure 2: Architecture of the 120 Network Interface.

e QUIC also offers functions within each NI that
permit the coordination among multiple NIs that
jointly operate on certain information streams or
cooperate to support applications. This ‘control
layer’ of QUIC is also described below.

These functional components of QUIC are reviewed in
the following sections.

3.1 Network Interface Architecture

Hardware Platform Intel’s IQ80960RD66 Evalua-
tion Platform Board serves as the underlying hardware
upon which the QUIC NI software architecture is be-
ing instantiated. The board is designed to be a testbed
for systems that offload I/O processing from the host.
The architecture of the network interface is shown in
Figure 2. The board resides in a PCI slot on the host
machine and provides two network ports and two SCSI
ports on an isolated PCI bus. The cards single pro-
cessing unit is an Intel iI960RX processor running at
66Mhz providing sufficient compute power to experi-
ment with the movement of non-trivial computations
to the interface[14, 15].

The quality management infrastructure executing
within this NI will be layered on VxWorks, a real-
time operating system from Wind River Systems. Our
motivation for using VxWorks is its provision of cross
compilation tools as well as a runtime layer using which
our ideas concerning suitable NI functionality for qual-
ity management may be prototyped rapidly.

In general, the criteria for choice of an embedded
kernel can be delineated very simply as follows: small
footprint, lightweight, configurability, support for de-
vices on the I/O controller card, and cross platform

development and debugging facilities. When choosing
an NI for this project, the first option we considered
was to construct a custom kernel for the 1960. Our
desire to rapidly prototype a functional system led to
the choice of a commercial kernel for the 19960 RD card.
Two viable offerings from Wind River Systems are the
IxWorks system developed as part of the 120 indus-
try initiative and the VxWorks kernel. The ROM-
resident IxWorks system provides a flexible environ-
ment for 120 device driver development, for monitor-
ing driver performance, and it offers sophisticated mes-
sage passing and event queues between multiple IOP
boards. However, it assumes that message transport
is performed using the 120 standard. We decided not
to pursue this approach due to our focus on high per-
formance (including low latency) communications. To-
ward this end, we wish to experiment with alternative
120 - host communication interfaces. Such experimen-
tation is enabled by the second commercial offering
from Wind River Systems for the 1960 RD environ-
ment: the VxWorks development environment. The
VxWorks operating system kernel is based on the same
microkernel as the IxWorks 120 system. In contrast to
IxWorks, VxWorks is highly configurable, as it can be
scaled from a small footprint ROMable version to a
larger footprint, full-featured Operating System. Vx-
Works makes no specific assumptions about the 120 -
host interface[20, 19].

QUIC Communication Paradigm QUIC utilizes
a general model of processing stream data closer to the
network interface wherein the nature of the process-
ing may include simple data computations as well as
scheduling computations. Towards this end, QUIC en-
ables the dynamic placement of computations within
the NI. A request for the establishment of a connec-
tion will identify the required computations and specify
desired levels of service quality based on which addi-
tional functionality such as admission control, polic-
ing (for network bandwidth) and scheduling may be
performed. At this point, we simply point out that
the establishment of a connection concerns not just
the allocation of communication bandwidth to enable
real-time transmission, but also the identification of
the computations relevant to the data stream and the
allocation of appropriate computational resources so
that the data may be operated on in real-time. The
two classes of computations considered in our work are
(1) computations that operate on the actual stream
data and (2) those that concern the runtime control
(ie., scheduling) for streams. In either case, concern-
ing communication coprocessors, this implies the run-
time extension of these coprocessors with functionality

suited for specific streams. An architecture and suit-
able interfaces for this purpose is being developed and
is described as follows.

Virtual Communication Machine To application
programs, the NI is abstracted as virtual communica-
tion machine (VCM), where its visible interface to ap-
plications is one that (1) defines the computations (in-
structions) it is able to perform on the applications’ be-
half and that (2) offers functions for the machine’s run-
time extension to add or subtract instructions as well
as reporting necessary elements of its internal state.

Internally, the VCM’s software architecture aims to
provide adequate support for using the NI processor to
improve the performance of streams used by network
applications. Towards this end, the VCM provides an
efficient environment for executing application-specific
computational modules that can benefit from running
‘closer to the network’. We use the term application
specific extension modules (ASEM) to refer to such
application-specific code that is ‘directly’ using the NI
resources. In our testbed, the VCM will execute on the
i960-based 120 coprocessor to which multiple disks and
network links are attached. ASEMs provide a common
abstraction and can be dynamically placed in the NI
to process streams, perform scheduling, or manage NI
resources such as disks.

Host applications communicate with the VCM
through shared (host or NI) memory. The union of
all these memory regions is called the VCM address
space. Applications issue execution requests to the NI
as VCM tasks. Tasks can be created and destroyed
dynamically. The first VCM task of an application is
created automatically when the application connects
to the NI. The most common example of a task is one
that executes a VCM program which in turn is com-
prised of core and ’added’ instructions.

VCM programs are built as sequences of core and/or
‘added’” VCM instructions. Core instructions imple-
ment VCM functionality always resident on the VCM,
including the functionality shared by all extensions
and that required to configure the VCM’s operation.
Added instructions implement the extensions used by
certain application programs. In other words, added
instructions are functions specific to certain applica-
tions.

The VCM instruction dispatcher is implemented as
an interpreter running on the NI processor. The dis-
patcher reads each VCM instruction, checks the avail-
ability of its parameters and activates the appropriate
code. The NI processor transfers back results to the
application by writing into the memory regions shared
between the NI and the application.

The overhead of the interaction between applica-
tions and VCM instructions is low because of the
shared-memory-based implementation. To further
lower this overhead, access patterns to the shared re-
gions are used to determine their placement in the host
or the NI memory. Using shared memory also helps in
decoupling the executions on the host and NI. Towards
this end, applications and interface layer can build in
the VCM address space arbitrary long chains of ‘tasks-
to-be-executed’ and of ‘tasks-completed’ descriptors,
respectively. In addition to the shared-memory-based
interaction, the interface layer can also signal to ap-
plication processes using signaling primitives provided
in the host operating system. We note that certain
elements in the proposed architecture were influenced
by our experience with a small prototype built around
an OC-3 ATM card (FORE SBA-200E). This commer-
cial NI features a 25 MHz i960CA processors and 256K
SRAM. Some details of our design appear next.

Extension Functionality and Interface We now
comment on the ‘extension’ instructions part of the
core instruction set. The conceptual basis for this work
are (1) our previous experiences with the implementa-
tion of a VCM for FORE ATM interface boards[4] and
(2) event-based mechanisms developed by our group
for uniprocessor and distributed systems. The basic
idea of these mechanisms is to permit applications to
define events of certain types, to associate (at runtime)
handlers for these events, and to create event channels
to which event producers and consumers can subscribe.
In our system, handlers are executed anytime an event
is produced or consumed, at the producing and at the
consuming side of the event channel. For online VCM
extension, then, the application may produce an ex-
tension event and provide a new handler for this event
type. The handler code is installed at runtime on the
VCM, resulting in the creation of a new VCM instruc-
tion ready for use by the application program. Inter-
actions of the new VCM instruction with lower level
VCM facilities are resolved at installation time, as well.

The advantage of using this event-based approach
is our ability to have any number of VCM’s listen for
extension events from any number of application pro-
grams, thereby offering a scalable approach to system
extension even for large-scale machines. Some imple-
mentation details on VCM extension follow.

Each extension module is assigned one or more VCM
instruction opcodes and control message IDs. An ex-
tension module is a collection of the following types of
handlers:

e VCM instruction handlers invoked by the VCM

instruction dispatcher upon encountering an in-
struction assigned to the module,

e control message handlers, invoked upon the deliv-
ery of a control message with an ID assigned to
the module, and

e time-out handlers.

These handlers share the state of the extension mod-
ules, which is stored in the NI memory. We imple-
mented five extension modules in the ATM prototype
VCM. They all share the structure outlined above and
they consist from 120 (the simplest) to 1170 (the most
complex) lines of C code.

3.2 QUIC Runtime Environment

The QUIC runtime environment (RTE) is implemented
as the VCM’s runtime layer. This layer has two
components, the first of which provides a set of
technology-independent low-level communication ab-
stractions. These abstractions make writing extension
modules easier, as the application programmer does
not have to be aware of the hardware details of a par-
ticular NI card. In addition, these abstractions are
independent of the underlying networking technology
(Ethernet, ATM, or Myrinet), thereby making the ex-
tension modules portable at the source code level. On
top of this layer, the second component of the RTE is
comprised of communication abstractions that support
a collection of core services needed by most extension
modules. By providing these services as part of the
RTE, most of the functionality overlap between exten-
sion modules is eliminated. The implementation of this
RTE component takes advantage of all the hardware
support available on the NI to provide the best perfor-
mance and, consequently, is highly dependent on the
NI hardware.

Principles Guiding RTE Design The NI-
dependent implementation of the first RTE component
depends on the speed of the NI processor, the capacity
of the NI memory, and the overheads of driving the
network interconnect at full speed. A single-threaded
library implementation of the RTE is the right choice
for NIs with limited resources. An implementation
based on a kernel for an embedded operating system
should only be used for NIs with sufficient resources:
fast processors, large memories, and interconnect-
specific hardware that support the NI processor in
driving the attached interconnects. Between these
two alternatives sits the RTE implementation as a
multithreaded

RTE Components The RTE is comprised of several
components. The key issue in including components
in the RTE is that they are used by several different
extension modules. Our current design includes the
following components.

Control Messaging System: This component imple-
ments reliable and in-order delivery of short messages
between the NI processors. These short messages are
called control messages and are used by extension mod-
ules on different NIs to exchange information. We
found both reliability and in-order delivery very con-
venient when writing extension modules. Reliability
needs to be implemented in the NIs as most SANs do
not guarantee 100% message delivery. As message loss
rates and latencies are relatively low on SANs, imple-
menting in-order delivery should not increase the over-
head of the NI processor considerably. Ideally, the la-
tency of control messages should be only slightly higher
than the hardware-imposed limit. To achieve this per-
formance goal, buffers for control messages are pre-
allocated in the NI memory. In our current prototype,
reliable delivery is based on a sliding window proto-
col. Block acknowledgments are used between interface
processors to acknowledge the receipt of multiple mes-
sages although upon request, certain control messages
can be acknowledged immediately. This latter feature
is useful in building fault-tolerant applications. For in-
stance, we implemented this feature in our prototype
and used it in an remote write extension module. This
extension module is designed to improve the perfor-
mance of applications that achieve fault-tolerance by
maintaining a copy of their state in the memory of a
remote host.

Time-out Components: A second RTE component im-
plements several of time-out primitives, with different
granularities and precision. The extended set of time-
out primitives is necessary because we expect more pre-
cision and/or finer granularity to imply higher NI pro-
cessor overhead.

Message Management Components: Routines for ef-
ficient assembling/disassembling of large messages
from/into arbitrary collections of memory segments,
placed either in the host or NI memory, are another
RTE service. Our ATM-based prototype includes rou-
tines implementing zero-copy messaging: outgoing or
incoming data is moved between the network registers
and final destination without any intermediate copies
in the host or NI memory. Our remote memory ac-
cess and bulk messaging extension modules use these
routines.

Memory Management Component: The RTE includes
a dynamic memory management system. Qur proto-
type includes a heap module which is implemented as

buddy system to achieve better predictability.

4 QUIC Quality of Service
Management

The QUIC scheduler represents an approach that em-
phasizes dynamic adaptation of scheduler parameters.
We are pursuing an approach wherein existing schedul-
ing algorithms can be modeled while permitting the
algorithms to be adapted over time in an application-
specific manner to respond to varying QoS needs.

4.1 QoS Management Paradigm

The QUIC project is exploring a flexible scheduling
paradigm to concurrently satisfy diverse QoS require-
ments across multiple data streams. Packet priorities
are dynamically updated at run-time to enable QoS re-
quirements to be met. Essentially the packet priority
is scaled as a function of the QoS that a packet has ex-
perienced up to that point in time relative to the QoS
requested by the packet. Such an update operation
has been referred to as priority biasing [7, 9, 8] since
the priority value is biased by the relative degrada-
tion of its service. The biasing operation couples the
effect of the scheduler (e.g., queuing delay) with the
QoS demand (e.g., jitter bound). This distinguishes
this approach from priority update mechanisms such
as age counters that do not distinguish between QoS
requested by distinct connections.

For example, consider only constant bit rate (CBR)
connections where QoS is measured by the bandwidth
allocated to a connection. The priority of a packet
can be computed as the ratio of the queuing delay to
the connection’s inter-arrival time. Increasing queuing
delay increases its priority in successive scheduling cy-
cles. However, the rate at which the priority increases
depends on the bandwidth of the connection. Such a
priority biasing mechanism couples the ongoing effect
of the switch scheduler (queuing delay) with a mea-
sure of the demands made by the application (connec-
tion bandwidth). As the negative impact of the switch
scheduler grows so does the priority, effectively ”bias-
ing it” with time. Thus different connections are bi-
ased at different rates, i.e., higher speed connections
are biased faster.

QUIC explores a hardware/software implementa-
tion of a generalized priority biasing framework. Our
hypothesis is that by customizing biasing calculations
by stream and data type and providing the ability to
dynamically control biasing calculations we can achieve
more effective utilization of network resources and

thereby satisfy the QoS requirements of a larger num-
ber of communication requests. Two major issues the
framework must address are: when is the priority of a
scheme biased and how is it biased. QUIC currently
implements a dynamic window constrained scheduling
algorithm (DWCS) that provides two parameters for
controlling the “when” and “how” components of gen-
eralized priority biasing. This paradigm is quite pow-
erful in that it has been shown to be able to model
a range of existing scheduling algorithms [17] while it
also provides for dynamic control of scheduling param-
eters thus providing new avenues for optimizing the
performance of heterogeneous communication streams.
The remainder of this section describes the current in-
stantiation of DWCS hosted within the network inter-
faces.

4.2 QUIC Quality Management - The
DWCS Approach

The first parameter utilized by DWCS controls the in-
terval of time between priority adjustments of its sec-
ond parameter. The second parameter is simply the
biasing value, used to decide which stream has the
highest priority and, hence, which stream should be
scheduled for transmission. Simply, the biasing value
is dynamically adjusted at specific intervals of time.
Furthermore, DWCS is flexible, that the biasing value
could be adjusted based on the needs of individual
streams. Qur current implementation utilizes packet
deadlines and loss-tolerance as the two scheduling pa-
rameters. The motivation for this choice and detailed
description are provided in the following.

Applications, such as real-time media servers need
to service hundreds and, possibly, thousands of clients,
each with their own quality of service (QoS) require-
ments. Many such clients can tolerate the loss of
a certain fraction of the information requested from
the server, resulting in little or no noticeable degrada-
tion in the client’s perceived quality of service when
the information is received and processed. Conse-
quently, loss-rate is an important performance mea-
sure for the service quality to many clients of real-time
media servers. We define the term loss-rate[16, 12] as
the fraction of packets in a stream either discarded or
serviced later than their delay constraints allow. How-
ever, from a client’s point of view, loss-rate could be
the fraction of packets either received late or not re-
ceived at all.

One of the problems with using loss-rate as a perfor-
mance metric is that it does not describe when losses
are allowed to occur. For most loss-tolerant applica-
tions, there is usually a restriction on the number of

consecutive packet losses that are acceptable. For ex-
ample, losing a series of consecutive packets from an
audio stream might result in the loss of a complete
section of audio, rather than merely a reduction in the
signal-to-noise ratio. A suitable performance measure
in this case is a windowed loss-rate, i.e. loss-rate con-
strained over a finite range, or window, of consecutive
packets. More precisely, an application might tolerate
x packet losses for every y arrivals at the various ser-
vice points across a network. Any service discipline at-
tempting to meet these requirements must ensure that
the number of violations to the loss-tolerance specifica-
tion is minimized (if not zero) across the whole stream.

Some clients cannot tolerate any loss of information
received from a server, but such clients often require
delay bounds on the information. Consequently, these
type of clients require deadlines which specify the max-
imum amount of time packets of information from the
server can be delayed until they become invalid. Fur-
thermore, some multimedia applications often require
jitter, or delay variation, to be minimized. Such a re-
quirement can be satisfied by restricting the service for
an application to commence no earlier than a specified
earliest time and no later than the deadline time.

To guarantee such diverse QoS requires fast and ef-
ficient scheduling support at the server. This section
describes the features specific to a real-time packet
scheduler resident on a server (specifically designed
to run on either the host processor or the network
interface card), designed to meet service constraints
on information transferred across a network to many
clients. Specifically, we describe Dynamic Window-
Constrained Scheduling (DWCS), which is designed to
meet the delay and loss constraints on packets from
multiple streams with different performance objectives.
In fact, DWCS is designed to limit the number of late
packets over finite numbers of consecutive packets in
loss-tolerant and/or delay-constrained, heterogeneous
traffic streams.

4.3 The DWCS Scheduler

DWCS is designed to maximize network bandwidth us-
age in the presence of multiple packets each with their
own service constraints. The algorithm requires two
attributes per packet stream, as follows:

e Deadline — this is the latest time a packet can com-
mence service. The deadline is determined from a
specification of the maximum allowable time be-
tween servicing consecutive packets in the same
stream (ie., the maximum inter-packet gap).

e Loss-tolerance — this is specified as a value z;/y;,
where z; is the number of packets that can be lost

or transmitted late for every window, y;, of con-
secutive packet arrivals in the same stream, i. For
every y; packet arrivals in stream 4, a minimum of
y; — x; packets must be scheduled on time, while
at most x; packets can miss their deadlines and
be either dropped or transmitted late, depending
on whether or not the attribute-based QoS for the
stream allows some packets to be lost.

At any time, all packets in the same stream have
the same loss-tolerance, while each successive packet
in a stream has a deadline that is offset by a fixed
amount from its predecessor. Using these attributes,
DWCS: (1) can limit the number of late packets over
finite numbers of consecutive packets in loss-tolerant
or delay-constrained, heterogeneous traffic streams, (2)
does not require a-priori knowledge of the worst-case
loading from multiple streams to establish the neces-
sary bandwidth allocations to meet per-stream delay
and loss-constraints, (3) can safely drop late packets
in lossy streams without unnecessarily transmitting
them, thereby avoiding unnecessary bandwidth con-
sumption, and (4) can exhibit both fairness and un-
fairness properties when necessary. In fact, DWCS can
perform fair-bandwidth allocation, static priority (SP)
and earliest-deadline first (EDF) scheduling.

4.4 DWCS Algorithm

Dynamic Window-Constrained Scheduling (DWCS)
orders packets for transmission based on the current
values of their loss-tolerances and deadlines. Prece-
dence is given to the packet at the head of the stream
with the lowest loss-tolerance. Packets in the same
stream all have the same original and current loss-
tolerances, and are scheduled in their order of ar-
rival. Whenever a packet misses its deadline, the loss-
tolerance for all packets in the same stream, s, is ad-
justed to reflect the increased importance of transmit-
ting a packet from s. This approach avoids starv-
ing the service granted to a given packet stream, and
attempts to increase the importance of servicing any
packet in a stream likely to violate its original loss
constraints. Conversely, any packet serviced before its
deadline causes the loss-tolerance of other packets (yet
to be serviced) in the same stream to be increased,
thereby reducing their priority.

The loss-tolerance of a packet (and, hence, the cor-
responding stream) changes over time, depending on
whether or not another (earlier) packet from the same
stream has been scheduled for transmission by its dead-
line. If a packet cannot be scheduled by its deadline, it
is either transmitted late (with adjusted loss-tolerance)
or it is dropped and the deadline of the next packet in

the stream is adjusted to compensate for the latest time
it could be transmitted, assuming the dropped packet
was transmitted as late as possible.

Pairwise Packet Ordering
Lowest loss-tolerance first
Same non-zero loss-tolerance, order EDF
Same non-zero loss-tolerance & deadlines,
order lowest loss-numerator first
Zero loss-tolerance & denominators,
order EDF
Zero loss-tolerance, order
highest loss-denominator first
All other cases: first-come-first-serve

Table 1: Precedence amongst pairs of packets

Table 1 shows the rules for ordering pairs of pack-
ets in different streams. Recall that all packets in the
same stream are queued in their order of arrival. If two
packets have the same non-zero loss-tolerance, they
are ordered earliest-deadline first (EDF) in the same
queue. If two packets have the same non-zero loss-
tolerance and deadline they are ordered lowest loss-
numerator z; first, where z;/y; is the current loss-
tolerance for all packets in stream i. By ordering on
the lowest loss-numerator, precedence is given to the
packet in the stream with tighter loss constraints, since
fewer consecutive packet losses can be tolerated. If
two packets have zero loss-tolerance and their loss-
denominators are both zero, they are ordered EDF,
otherwise they are ordered highest loss-denominator
first. If it is paramount that a stream never loses more
packets than its loss-tolerance permits, then admission
control must be used, to avoid accepting connections
whose QoS constraints cannot be met due to existing
connections’ service constraints.

Every time a packet in stream i is transmitted, the
loss-tolerance of i is adjusted. Likewise, other streams’
loss-tolerances are adjusted only if any of the pack-
ets in those streams miss their deadlines as a result of
queueing delay. Consequently, DWCS requires worst-
case O(n) time to select the next packet for service
from those packets at the head of n distinct streams.
However, the average case performance can be far bet-
ter, because not all streams always need to have their
loss-tolerances adjusted after a packet transmission.
Loss-Tolerance Adjustment. Loss-tolerances are
adjusted by considering z;/y;, which is the original
loss-tolerance for all packets in stream ¢, and z}/y},
which is the current loss-tolerance for all queued pack-
ets in stream 4. The basic idea of these adjustments
is to adjust loss numerators and denominators for all

buffered packets in the same stream 7 as the packet
most recently transmitted before its deadline. The de-
tails of these adjustments appear in [17, 18]. Here, it
suffices to say that DWCS has the ability to imple-
ment a number of real-time and non-real-time policies.
Moreover, DWCS can act as a fair queueing, static pri-
ority and earliest-deadline first scheduling algorithm,
as well as provide service for a mix of static and dy-
namic priority traffic streams.

4.5 Programmable Hardware Support

The explosive growth in the functionality of config-
urable or programmable hardware in the form of field
programmable gate arrays (FPGAs) is changing the ar-
chitecture of information systems that deal with data
intensive computations [10, 11]. For example, we have
seen the advent of configurable computing systems
where programmable hardware is coupled with pro-
grammable processors. Hardware/software co-design
has emerged as an associated design paradigm where
the programmable hardware components (in the form
of FPGAs) and software components (executed on
processors) are designed concurrently with efficient
trade-offs across the HW/SW boundary. While this
paradigm is largely targeted towards embedded com-
puter systems, we can apply relevant concepts to the
design of intelligent network interfaces.

FPGA devices effectively represent hardware pro-
grammable alternatives to system level application spe-
cific integrated circuit (ASIC) designs and at a dras-
tically reduced cost. Modern devices can be dynam-
ically and incrementally re-programmed in microsec-
onds, have increased memory on chip, and operate two
to four times faster than current chips. FPGA devices
perform particularly well on regular computations over
large data sets. This technology naturally fits in archi-
tectures that stream and operate on large amounts of
data as in the bulk of emerging network-based multi-
media applications. The hardware functionality in the
interfaces can be re-programmed ”“on the fly” almost
as if we were swapping out custom devices.

We are motivated to include FPGA devices in the
NIs for two specific reasons. The first is to host priority
biasing calculations. Such calculations are inherently
parallel with priorities being computed across many
connections. A large number of relatively simple in-
dependent computations can be effectively supported
within FPGAs. However, the overhead of such com-
putations can render software NI implementations of
certain biasing calculations either infeasible or greatly
reduce the link utilizations that can be achieved. The
second reason is the ability to host certain classes of

data stream computations in the network interface.
For example, data filtering, encryption, and compres-
sion are candidates for implementation with FPGAs
available in the NI. Such computations can be nat-
urally performed on data streams during transmis-
sion rather than via (relatively) expensive traversals
through the memory hierarchy to the CPU. The VCM
environment can provide access to these hardware de-
vices via extension modules that can be used to load
configuration data into the FPGAs. Thus, the abstrac-
tions used to extend the NI functionality dynamically
are the same for functions implemented in software or
programmable hardware. Our goal is to leverage this
FPGA technology to enable more powerful yet (rel-
atively) inexpensive network interfaces that can sub-
stantially enhance the performance of network appli-
cations.

5 Concluding Remarks

The goal of the QUIC project is the development of an
effective quality management infrastructure that can
service a large number of connections, each with dis-
tinct service requirements. Towards this end we are
constructing an experimental infrastructure using a
cluster of PCs interconnected by fast ethernet using
i960 based interface cards. At the center of our efforts
is an extensible software and quality management in-
frastructure. By placing quality management function-
ality “close” to the wire and I/O components attached
to the 120 boards, we expect to enable QoS guarantees
at higher levels of resource utilization than commod-
ity clusters will otherwise permit. Our current efforts
are geared towards creating a rapid prototyping en-
vironment to provide a basis for experimentation and
investigation.

References

[1] K. Dienfendorff and P. Dubey. How multime-
dia workloads will change processor design. IEEFE
Computer, vol. 30, no. 9, pp. 43-45, September
1997.

[2] Richard P. Martin and Amin M. Vahdat and David
E. Culler and Thomas E. Anderson. Effects of Com-
munication Latency, Overhead and Bandwidth in a
Cluster Architecture. Proceedings of the 2/th An-
nual International Symposium on Computer Archi-
tecture, June 1997.

[3] Wilson C. Hsieh, Kirk L. Johnson, M. Frans
Kaashoek, Deborah A. Wallach, and William E.

Weihl. Efficient implementation of high-level lan-
guages on user-level communication architectures.
Proceedings of the 5th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP ’95), 1995.

[4] Marcel-Catalin Rosu and Karsten Schwan and
Richard Fujimoto, Supporting Parallel Applica-
tions on Clusters of Workstations: The Intelligent
Network Interface Approach. Proceedings of the
Sixth IEEE International Symposium on High Per-
formance Distributed Computing (HPDC-6), Au-
gust 1997.

[6] M. Rosu, K. Schwan, and R. Fujimoto. Support-
ing parallel applications on clusters of workstations:
the virtual communication machine-based architec-
ture. Cluster Computing, pp. 1029, November 1997.

[6] C. E. kozyrakis and D. Patterson. A new direction
for computer architecture research. IEEE Com-
puter, vol. 31, no. 11, pp. 24-32, November 1998.

[7] A. A. Chien and J. H. Kim. Approaches to quality
of service in high performance networks. Proceed-
ings of the Workshop on Parallel Computer Rout-
ing and Communciation, pp. 1-20, June 1997.

[8] J. H. Kim. Bandwidth and latency guarantees in
low-cost high performance networks. Ph.D. Thesis,
Department of Computer Sciences, University of
Illinois, Urbana-Champaign, January 1997.

[9] D. Garcia and D. Watson. ServerNet II. Proceed-
ings of the Workshop on Parallel Computer Rout-
ing and Communication, pp. 119-136, June 1997.

[10] J. Villasenor and W. H. Mangione-Smith. Config-
urable computing Scientific American, pp. 66-71,
June 1997.

[11] W. H. Mangione-Smith, B. Hutchings, D. An-
drews, A. DeHon, C. Ebeling, R. Hartenstein, O.
Mencer, J. Morris, K. Palem, V. K. Prasanna,
H. Spaanenburg. Seeking solutions in configurable
computing. IEEE Computer, vol. 30, no. 12, pp.
38-43, December 1997.

[12] Domenico Ferrari. Client requirements for real-
time communication services. IEEE Communica-
tions Magazine, 28(11):76-90, November 1990.

[13] I,O Special Interest Group.
www.i20sig.org/architecture/techback98.html.

[14] Intel. 960 Rz I/O Microprocessor Developer’s
Manual, April 1997.

[15] Intel. IQ80960Rx Ewvaluation Platform Board
Manual, March 1997.

[16] Jon M. Peha and Fouad A. Tobagi. A cost-
based scheduling algorithm to support integrated
services. In IEEE INFOCOMM’91, pages 741-753.
IEEE, 1991.

[17] Richard West and Karsten Schwan. Dynamic
window-constrained scheduling for multimedia ap-
plications. Technical Report GIT-CC-98-18, Geor-
gia Institute of Technology, 1998. To appear in the
6th International Conference on Multimedia Com-
puting and Systems, ICMCS’99, Florence, Italy.

[18] Richard West, Karsten Schwan, and Christian
Poellabauer. Scalable scheduling support for loss
and delay constrained media streams. Technical
Report GIT-CC-98-29, Georgia Institute of Tech-
nology, 1998.

[19] WindRiver Systems. VzWorks Reference Manual,
1 edition, February 1997.

[20] WindRiver Systems. Writing IO Device Drivers
in IxWorks, 1 edition, September 1997.

