
A Debugger for Computational Grid Apphcatlons

Robert Hood, Gabriele Jost t

Numerical Aerospace Simulation Systems Division
NASA Ames Research Center

Abstract

The p2d2 project at NAS has built a debugger for applications running on het-

erogeneous computational grids. It employs a client-server architecture to

simplify the implementation. Its user interface has been designed to provide

process control and state examination functions on a computation containing

a large number of processes. It can find processes participating in distributed

computations even when those processes were not created under debugger

control. These process identification techniques work both on conventional

distributed executions as well as those on a computational grid.

1. Introduction

While tools for debugging computationally intensive programs have improved substan-

tially in the last few years [2] [11], there are two areas where further improvement is

needed. First, existing tools do not cope well with applications running on heteroge-

neous computing platforms. Second, they do not provide sufficiently abstract and scal-

able operations for examining and controlling execution. This combination of

inadequacies is particularly felt by programmers building applications to run on large-

scale computational grids, such as NASA's Information Power Grid [6], which is based

on the Globus toolkit [3].

In order to meet these needs, the p2d2 _;project in the Numerical Aerospace Simula-

tion (NAS) Division of the NASA Ames Research Center has taken their existing debug-

ger and extended its capabilities. The original goals of the project were to build a

debugger that was both portable across a variety of target machines and whose user in-

terface scaled to be able to debug at least 256 processes [4]. In this paper we report on the

effort to enhance that debugger to work in a computational grid environment. We begin

with a discussion of how p2d2"s architecture accommodates the debugging of heteroge-

neous computations.

2. Accommodating Heterogeneous Computations

Debuggers, even serial ones, are inherently nonportable. Their basic task is to take a user

request at the source level, map it to the machine level where it can be performed, and

then map the result back to the source level. To accomplish this they rely on information

and services from a variety of sources, for example:

• The compiler provides source line and symbol mapping data.

"This work was supported through NASA contract NAS 2-14303.

tThe authors are employees of MRJ Technology Solutions, Inc. Their address is: M/S T27A-1, NASA Ames
Research Center, Moffett Field, CA 94035-1000; e-mail: {rhood, gj osL }@nas. nasa. gov.

_;"P2d2" stands for portable parallel�distributed debugger.

• The operating system provides services for starting and stopping processes.

• The target machine architecture defines a trap instruction that can be used for

implementing breakpoints.

Thus, making a debugger portable from one target platform to another is a difficult task.

Further complicating matters, a debugger for heterogeneous computations must solve

these portabili_ issues in a way that enables different target platforms to be available at
the same time.

We handled these portability issues in p2d2 by using a client-server architecture to

isolate the platform-dependent code in a debugger server (see Figure 1). The server defines

a collection of C++ objects that would exist in a debugging session, such as Process and

Stack. The client consists of those parts of the debugger that deal with the distributed

nature of the target computation and with the user interface, and it can be implemented

in a highly portable fashion. For example, if the client has a Process *p, it could resume

execution in it by invoking the operation p->Continue (). The object collection is dis-

cussed in detail in a previous paper [5].

In the initial version of p2d2 we decided to build a debugger server based on gdb from

the Free Software Foundation. There were two reasons for this approach: gdb's source is

freely available, and gdb is itself highly portable. In the gdb-based implementation of p2d2

the remote server of Figure 1 is replaced with an instance of gdb. The debugger server is

then an implementation of the C++ objects that uses gdb commands to perform any re-

quested debugger server requests.

3. User Interface Issues

From a user's perspective, a debugger has two primary functions:

• process control, where the user is permitted to start execution of the target compu-

tation and to describe circumstances under which it should stop; and

• state examination, where the user can scrutinize expression values, source code,

run-time stack, and other components of the current computational state.

The challenge in a multiprocess debugger is to provide these functions in a way that

scales well to a large number of processes. In particular, the challenge for process control

is to provide a way to propagate a single process control request, such as Continue, to a

collection of processes. The challenge for state examination is to provide both an abstract,

top-level view of the computation as well as information about a single process that has

the same level of detail as a serial debugger would have.

To address the process control challenge, p2d2 uses the notion of a control set, which

is the collection of target processes that are subject to process control requests. The user

has a variety of ways of setting membership in the control set. When a process control op-

I user distribution Idebugge_

interface manager I server|

client
4P4_ 4p 4t

FIGURE 1. The client-sewer architecture of p2d2.

eration such as setting a breakpoint or continuing execution is requested, it is forwarded

to all processes in the control set.

To address the state examination challenge, p2d2 defines three zooming levels, pro-

viding a varying degree of abstraction versus detail:

• a top-level view, called the process grid, that provides a programmable display

showing a few bits of information about all processes in the computation,

• an intermediate-level view provides a line of text summarizing the state of all

processes in a user-selected set called the focus group, and

• a low-level view provides full information about a single user-selected process

called the focus process.

The selection of the focus group and the focus process are done in the process grid dis-

play. When the user changes one of the selections, the display is updated to reflect the in-

formation about the new focus. For example, if the user changes the focus process, then

all state examination displays that are focus-process-sensitive, such as the source and

stack displays, will be updated.

Perhaps the most novel feature of the p2d2 user interface is the programmability of

the process grid described earlier. This feature permits a quick scan of a large number of

processes to isolate a process behaving in an unexpected manner. Such a process is a good

candidate for closer scrutiny as the focus process. This feature is illustrated in Figure 4.

If the debugger is to be useful, it must provide mechanisms for handling mundane

tasks. In particular, a debugger for distributed programs should be able to find and con-

trol all of the processes participating in a computation. The user should not be required

to filter through lists of processes running on a large number of machines in order to de-

termine which of them belongs to a job. In the next section we describe how p2d2 address-

es this problem.

4. Finding the Computation's Processes

One of the implementation challenges facing a distributed debugger is how to acquire

control over the processes in the computation. As with serial debuggers there are two
cases to consider:

1. the computation was initiated from the debugger when the user invoked the

Run command, and

2. the user initiated the computation outside of the debugger and then requested

that the debugger "attach" to it.

In order to handle case 1, the debugger needs to resolve a conflict with the process starting

mechanism (e.g., mpirun, globusrun, pvmrun) that initiates the distributed computation.

The conflict comes about because both the debugger and the process starter want to con-

trol the actual fork () and exec () that start the individual processes. A customary way

to resolve this conflict is for the process starting mechanism to allow a user-supplied

proxy program (sometimes called a tasker) to perform the fork and exec. Both pvmrun

and globusrun permit the debugger to gain control over process creation in this way.

If p2d2 is going to be used to initiate a Globus job, the user must include the clause

(paradyn="P2D2_HOST P2D2_PORT p2f12 /u/p2d2/bin/gdbserver")

in the RSL script to be handed off to globusrun. This indicates that/u/p2d2/bin/gdb-

server should be used as a tasker. When the user requests a Run the following happens.

• P2d2 invokes globusrun, changing the P2D2_HOST and P2D2 PORT strings in

the RSL script to the machine name on which p2d2 is running and the number of

a tasker contact port that it created.

• When globusrun starts the tasker, it passes it the machine name and port number

that p2d2 wrote in the RSL script. The tasker and p2d2 then establish a socket.

• The tasker starts the target executable and reports the target's pid on the socket.

The target sleeps.

• P2d2 asks tasker to start gdb and then tells the gdb to attach to the target.

This results with process diagram shown in Figure 2.

In order to handle case 2 above, where the user requests that the debugger attach to

an existing computation, the debugger needs:

• a list of the processes that are participating in a computation, and

• a mechanism for gaining control over them.

If a tasking mechanism exists, it can be used to meet these needs. For example, if p2d2 is

to be used to attach to an existing Globus job, the job must have been started with the

/ u/p2 d2 / bin / gdbs erver tasker described previously. The resulting tasker processes

will each create a port and record the contact information in a single file in the file system.

When the user starts up p2d2 and asks for it to attach to the processes named in the file,

the debugger will use the contact information to establish sockets with the taskers. Each

tasker can then start up a gdb which will attach to the target process.

In our discussions so far, we have relied on a tasking mechanism at process startup.

Unfortunately MPI-1 [8] does not have such a feature, because process creation is not part

of the standard. To handle MPI jobs, p2d2 uses rsh to run a copy of gdb on the machine

where the target process exists. There are two remaining needs:

• a list of pairs [machine, pid] for each process in job, and

• a way to keep a newly started process from executing code.

The second condition allows us to handle debugger-initiated runs in an identical manner

to run initiated outside of the debugger. We can address both of these needs by using the

profiling mechanism of MPI and providing a specialized version of MPI_Ini t ().

The MPI Ini t used by p2d2 does the following.
• It calls PMPI_Init ().

• The process with rank 0 gets the machine name and process ID for all processes.

It writes that data in file system.

• If the process was initiated from the debugger, it goes into an infinite sleep loop.

When the debugger attaches, it establishes any necessary breakpoints, terminates the

sleep loop, and then continues execution.

FIGURE 2. After p2d2 initiates a globusrun.

There are two minor limitations in the version of MPI_Init used by p2d2: it is not

possible to debug the code that executes before it MPI_tnit called, and the user must

link the application with p2d2"s version of MPI_Init. The latter condition could lead to

a conflict if other libraries want to use the profiling mechanism of MPI.

While these limitations exist, in practice they restrict p2d2"s capabilities very little.

Furthermore, we are hopeful that an mpirun based on the process control operations in

MPI-2 [8] will provide a tasking mechanism that will eliminate the restrictions altogether.

5. Related Work

There are three commercially available distributed debuggers of note. TotalView [2], from

Etnus, is a third party debugger that runs on a number of high performance computing

platforms. It is currently not capable of debugging heterogeneous computations. Fur-

thermore, while it is capable of debugging thousands of processes and threads, the user

interactions are at a fairly low level. Prism [11], from Sun Microsystems is derived from

the Thinking Machines product of the same name. It is not portable to systems other

than Sun. While its user interface led the way in scalability, it too, could be more abstract.

The final distributed debugger of note is Jessie [9] from SGI/Cray. It is a Java-based front

end to gdb in much the same style as p2d2. [Jessie was just announced; we will have a

more detailed comparison to it in the proceedings version of the paper.]

6. Project Status and Future Work

The current p2d2 system has been demonstrated on several target architectures. After the

recent work to accommodate Globus computations, it has been successfully used to con-

trol 128 processes running on 3 different SGI Origins on the IPG. It has also been used on

heterogeneous computations running under Globus (see Figure 3), as well as MPI, and

PVM [101.

In the near future, we want to use the Globus database, MDS, to record information

about jobs started outside the debugger with globusrun. This will enable us to attach to

Globus computations without a reliance on the target systems sharing a file system with

the debugger host. We will also complete an array viewer that is capable of displaying a

"global" view of data that has been distributed across multiple processes (see Figure 5).

Further in the future we will, if there is sufficient user demand, adapt p2d2 to work

with Legion[7] and Condor [1]. We also plan to enhance p2d2 to find differences between

serial and distributed versions of the same code. This could be particularly useful when

computer-aided parallelization tools are used to perform domain decomposition.

7. Conclusions

In this paper we have described a debugger for heterogeneous, distributed programs. As

we discussed, a client-server model greatly simplifies the implementation. Its user inter-

face has been designed to provide process control and state examination functions on a

computation containing a large number of processes. We also described several

approaches for finding processes participating in a distributed computation and how

those techniques could be used in a computational grid environment.

8. References

[1] The Condor Project. ht _p : / /www. c s. wi sc. edu / condor/ .

[2] Etnus, Inc. The TotalView Multiprocess debugger, ht tp: //www. etnus, corn/products/total-
view/ .

[3] The Globus Project. h'2tp : //'_-ww. globus, org/ .

[4] R. Hood. "The p2d2 Project: Building a Portable Distributed Debugger," Proceedings of the SIGMET-

RICS Symposium on Parallel and Distributed Tools, May 1996.

[5] R. Hood and D. Cheng. Accommodating heterogeneity in a debugger--a client-server approach. Pro-
ceedings of the Twenty-eighth Annual Hawaii International Conference on System Sciences, Jan. 1995. [Also

published in an extended form as a chapter in Tools and Environments for Parallel and Distributed Sys-
terns, Kluwer Academic Publishers, Norwell, MA.]

[6] The Information Power Grid Project Plan. http : //www. nas. nasa. gov/-wej / IPG/ .

[7] The Legion Project: hv.tp : / / 2egion. virginia, edu/ .

[8] MPI committee. Message Passing Interface. http : //www-unix. mcs. anl. gov/mpi/.

[9] SGI, Inc. The Jessie Cross Platform Integrated Development Environment.
http://oss.sgi.com/projects/jessie/ .

[10] Vaidy Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency: Practice and
Experience 2(4):315-339, 1990.

[11] Thinking Machines Corporation. Prism User's Guide. Thinking Machines Corporation, Cambridge,
MA, Dec. 1991;also:h_tp ://www. sun. com/servers/hpc/software/configura-

tion.html#prism.

6

process grid focus group

Step into Step owr Step out

I: in m_m__gPid_pr___ w/ (9unknown?), line 132, in "main.F"

focus process

FIGURE 3. Debugging a heterogeneous computation running under Globus.

Four processes are running on an SGI Origin (local) and four on a PC running
Linux (indus). The process grid shows all of the processes in the computation.

The focus group displays one line of text for each process in the selected
column of the process grid. The focus process part of the display resembles a

serial debugger on the single process selected in the process grid.

7

X J
>,.....

/ j'

? j'

/ J

if process is stopped

- -r,_ _,: _ _ _ e- - if process is _lnil|g

i> 24836 local s if process has selected brealc, poml

2> 24851 wk225

3> 24850 wk226

4> 24849 _k226

5> 24848 _k:

6> 24847

i
i

if file

,_z]

_,DwOrk " re. I

2tic _pp,

-r% ".Ok,

LF_'_ -_Th2

Lr"c :-Otll

S if expression evaluates to TRUE i=1 process ,i

if process I$ on machine: i
_f #lle

S if process is ronning executable:

S if process's stack has a call to fuflclJon: r

if node debugger is busy d#or
otherv_se

(disab_d) LJ I

i_ stopped)

"stSsetops.c"

"slgsetop8.c"

"spmd.p2d2.c"

if expression evaluates to TRUE in process --I I I me F, 2 == 0

if process is ronning executable: --J II_pm,dMast.er

2---_ °then'ise "-'J I

irnE StP

FIGURE 4. Programming the process grid.

In this example, the process grid view has been programmed so that running
processes are depicted as green rectangles, processes where the expression "me % 2

== 3" is true are depicted with a checkmark, processes running "spmdMaster" are
marked with an X, and all other processes with a question mark. For each process, this
list of predicates is evaluated in order until a true one is encountered. The process is

then depicted in the grid using the picture corresponding to that predicate.

FTle Edit View Find Help

selectect#ane: [u_.. _, l, 1)

5eleclecls_c[ion: lu;' -. _, i, ii

!),dr_h ,, _i 3[J .s -.,, J j.(t, i, 1, Z) : [5_-_t42857t?28575_6.2" IITran,posed

FIGURE 5. Distributed array visualization.

The picture shows a global display of a 2-dimensional slice of the 4-dimensional array
ux at the breakpoint indicated in figure 3. The code is a parallel implementation of the

Euler equations in 3D. The array tu¢ is distributed across 8 processors of an SGI
Origin. The local parts of array u_¢are gathered from each processor and assembled to
a global picture. The array elements that reside on the focus process are highlighted.

8

