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Abstract— Diabetes is a common but serious chronic disease. 

Nearly 8% of Americans who are aged 65 and older (about 10.9 

million) suffer from this deadly disease. Self-management of this 

disease is possible, yet the older population lack knowledge, have 

denial and often lack motivation to do so. Recently we have 

demonstrated sensor-based network architecture within the 

home to monitor daily activities and biological vital parameters 

[25]. The data is mined to find patterns and abnormal values. 

Through daily text messages that are sent to the subjects, we have 

achieved to influence behavior change using persuasive 

principles. In this paper, we analyze the daily data and 

demonstrate that a model to profile the subject’s daily behavior is 

possible using Artificial Neural Networks (ANN). Such a 

profiling has the advantage of knowing the situations, when the 

subject’s daily activity deviates from its “normal profile”, which 

may be a possible indication of an onset of some health condition 

or disease. Lastly we develop an ANN based model to predict 

blood sugar level based on previous day’s activity and diet in-

take. Such a model can be used to help a subject with high blood 

sugar to adjust daily activity to reach a target blood sugar level 

and also gives a care-giver advance notice to intervene in adverse 

situations. 

Keywords- Diabetes, sensor networks, persuasive technology, 

texting, neural networks, healthcare modeling, prediction  

I. INTRODUCTION 

Diabetes mellitus is the most common and serious chronic 
disease facing the entire global population. In the United 
States, there are nearly 26 million Americans with diabetes, 
30% of which are aged 65 and older [1]. California in 
particular has the highest incidence of new diabetes cases and 
nearly 4 million people estimated to be suffering from the 
disease [2]. The costs of caring for this disease are 
astronomical and are estimated to exceed more than $24 
billion in California and $174 billion nationally [1, 2]. 
Diabetes remains a major health problem being responsible for 
up to 8% of national health care expenditure.  
Diabetes is a chronic disease characterized by a sustained 
elevated blood glucose level, caused by a reduction in the 
action of insulin secretion where related metabolic 
disturbances generate severe, acute and long-term 
complications that are responsible for premature death and 
disability [10]. The World Health Organization projects that 

diabetes deaths will increase by more than 50% in the next ten 
years without urgent action. Most notably, diabetes deaths are 
projected to increase by over 80% in low-middle income 
countries between 2006 and 2015 [18].  
Despite the availability of effective treatment, diabetes 
remains poorly controlled. Fewer than 7% of diabetic patients 
meet treatment goals for lipids, blood pressure, and 
glycosylated hemoglobin A1C [3, 4]. Elderly patients with 
diabetes have higher rates of mortality, congestive heart 
failure, myocardial infarction and stroke as compared to age-
matched controls without the disease [5]. Moreover, despite 
evidence that the mortality rate is decreasing over time, the 
rate of complications is remaining the same [6]. As a result, 
the average number of lifetime complications per patient is 
increasing as patients are living longer. With the incidence of 
diabetes rapidly rising, this is a fatal combination for the 
economic wellbeing of our health system. 
Diabetic patients need to self-manage the disease diligently. 
Poor adherence to recommended self-management guidelines 
is well-recognized as a significant barrier to effective 
glycemic control. Improved outcomes have been associated 
with better adherence to medications, blood sugar self-
monitoring, diet and lifestyle changes, and appointment 
attendance [7 - 9]. Barriers include time constraints, 
knowledge deficits, denial, limited social support, inadequate 
resources, and low self-efficacy. 
Many of the older adults have difficulty achieving tight 
control because of the high degree of cognitive resources 
needed to manage diabetes. With age, one has weak problem 
solving skills, they often forget and daily management 
becomes a chore [26]. A major challenge in chronic disease 
self-management, particularly in older Americans, is social 
isolation [15]. Elderly diabetic patients with poor social 
support have twice the mortality rate of those with adequate 
support [16]. Studies consistently show that patients with 
empowered caregivers or peers have better outcomes [16]. 
Using information technology and wireless sensor networks 
within the home, diabetic patients can be assisted. A 
promising approach is to remotely monitor activity of daily 
living (ADL) [14, 19]. Such data if mined properly can 
identify health patterns which can then be used to send 
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effective reminders and feedback [13, 18]. Mobile phones are 
an ideal platform for sending feedback to diabetes patients 
because they are ubiquitous, low-cost, reliable, real-time, and 
versatile; and unlike most technologies, actually enjoy greater 
usage amongst racial/ethnic minorities. Younger patients 
definitely benefit from using a mobile phone but even older 
adults are getting used to smartphones with slightly bigger 
displays [11, 12].  
We have recently implemented a mobile wireless sensor-
network monitoring system within the homes which we call 
“persuasive sensing technology”. We have reported significant 
outcome and positive results in a recent paper [25]. Here we 
briefly describe our “persuasive technologies” 
implementation, which are applications and devices 
intentionally designed to change user behavior [20-23]. In this 
paper, we present new results obtained from mining ADL data 
using machine learning algorithms with Artificial Neural 
Networks (ANN). We call this the predictive modeling engine. 
In fact our models can now predict certain biological and 
physiological parameters 24 hour in advance with relatively 
high accuracy. This paper discusses the details and results of 
our predictive modeling engine using ANN. 

II. SYSTEM ARCHITECTURE AND PROTOTYPE 

Any at-home healthcare solution must detect and respond to 
the activities and/or characteristics of the older person. A 
network of sensors (worn, carried, or environmental) is an 
ideal technology platform for detecting and responding to 
health-relevant parameters such as movement, sleep, weight, 
physiological data and social activity [14]. A WSN device is a 
packaged data collecting or actuating component, which 
includes a sensor and/or actuator, a radio stack, an enclosure, 
an embedded processor, and a power delivery mechanism 
[14]. The sensor interacts with the environment and sends an 
appropriate signal (analog or digital) to the embedded 
processor (also called microcontroller unit). We used Iris 
Mote technology developed by Intel and UC Berkeley labs. 
The mote hardware platform consists of a microprocessor 
and radio chip (MPR). Sensors connect directly to the mote 
processor radio boards via various interfaces. This 
combination gives the mote the ability to sense, compute and 
communicate. The mote enables raw data collected by the 
sensors to be analyzed in various ways before sending it to an 
aggregator (in our case a laptop) that we placed within the 
home. The aggregator then uploads daily activity data to the 
cloud through se- cured channels via the Internet. The 
following different types of sensors were implemented in this 
project: 
Ambient Sensors: A simple on/off switch that detects 
open/close of garage door (through which subjects leaves 
homes), detects the back porch door for outdoor access. An 
infra-red analog sensor was used to detect presence in the 
bedroom. A pressure pad sensor (from Colonial Medical) was 
placed in the couch in the living room in front of TV.  Simple 
on/off switches were used to detect opening and closing of 

medication cabinet and the cabinet containing insulin. A photo 
sensor was connected to the TV to detect television viewing. 
Device-level sensors: A blood glucose monitor device was 
chosen that can connect easily to the laptop via USB and can 
upload BG values daily. A wireless weight machine (from 
Tanita Corporation) that sends value via Bluetooth was placed 
in the family room. 
Body-wearable sensor: A commercial body-wearable sensor 
from BodyMedia Inc. which is an arm-band was given to the 
patient to wear 24 hours. This multi-sensor senses number of 
steps walked, quality of sleep, and many other physiological 
parameters such as skin temperature. Data is uploaded to the 
cloud by connecting it to USB port for five minutes daily. 
 
Two subjects were shown how to log into BodyMedia website 
where s/he could input diet/nutrition information. Our system 
would then fetch daily diet data and we could then compute 
total calories consumed. We also provided the patient with 
bottled water and asked him to only drink that during the 
course of the experiment. This was a simple way for us to 
monitor water intake. 
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Figure 1: Sensor placement within the home 

 
The overall architecture schematic is shown in Fig. 1. The 
on/off switches were not wireless, so we had to run wires from 
them to the microcontroller. We originally had plans to sense 
the kitchen microwave and refrigerator usage also. But as the 
long wires would disturb the subject’s beautification of the 
kitchen, we abandoned that idea.  

III. INTERVENTION AND RESULTS 

A. Intervention and subject recruiting 

Our intervention has two components.  
• System sends daily text/SMS on cell phone. They are 

tailored messages targeting behavior change. 
• A tailored newsletter that summarizes healthy living 

parameters is presented to subject once a week and is 
jointly read by family member or one of our research team 
members. 
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Note our intervention (through the prototype persuasive 
sensing system) is aimed to engage patients in diabetes self-
management through interactive SMS and newsletter 
approaches. It was important to ensure that daily text messages 
sent to the subject were fresh and relevant. Each day the 
subjects received up to 3 text messages that were delivered to 
them over an LG smart phone and an iPhone. Below we show 
an example of how messages were varied for physical activity 
(Tables 1). The physical activity is measured by the number of 
steps obtained from the Bodymedia sensor. 
 
Case Steps >= 8000 Steps < 8000 

Mon Great Job! Keep up the 
good work. 

Don’t give up on physical 
activity. Try walking a mile 
each day. 

Tue You have exceeded 
your goal. 
Congratulations. 

Don’t give up physical
activity. 
Have you taken the stairs? 

Wed You are doing very 
well. Keep it up! 

Have you reached your 
goal of 8000 steps? 

Thu You are a super hero. 
You have exceeded 
your goal. 

You fell short of your goal. 
Don’t worry. Try to walk a 
mile after dinner. 

Fri You have exceeded 
your goal. Super job! 

Never say never. You can do
it. 

Sat Steps graph for past 5 
days 

Try some brisk when you 
are in the parking lot. 

Sun Great Job. Enjoy the 
Sunday with friends and 
family. 

It is a beautiful day. Go 
out and do brisk walking 
for 30 mins. 

Table 1. Messaging algorithm for physical activity 
 
Similar daily text messages were sent for calorie intake, blood-
glucose measurement values and sedentary activity. 
 
We obtained approval from our university Institutional Review 
Board (IRB). The first subject is an 82 year old white male 
who is retired and lives in the Vista community near San 
Diego. He has type 2 diabetes, and also a few other health 
problems. He agreed to the consent form and we started our 
project implementation. The second subject is a 60-year old 
white female who is obese, suffers from Type 2 diabetes and is 
considered a high-risk patient as her BG values are very high. 
She is very technology savvy and carries an iPhone to conduct 
most of her work. 

B. Results Summary 

Experimental results have been recently reported in a paper 
[25]. Here we provide detailed summary statistics (maximum, 
minimum, mean and standard deviation) of different 
parameters for both subjects as shown in Table 2 (see at end).  
 
In Figure 6, we have plotted the variation of blood glucose 
(BG) level, weight, idle time and number of steps walked per 

day by each subject throughout the experiment duration. 
Figure 6A demonstrates that there is a downward trend on BG 
level for both subjects. The weight (Figure 6B) is also in the 
downward trend, but absolute amount of weight reduction is 
not that significant. This is most likely because drastic 
reduction of weight within such short experiment duration is 
not possible. However, the downward trend of weight should 
encourage running such experiment for longer duration in 
future to potentially observe significant reduction in weight. 
The idle time spent by both the subject during the experiment 
has seen a dramatic downward trend. The number of steps 
taken per day has an increasing trend for both the subject, 
throughout the experiment duration.  
 
HbA1c is a lab test that shows the average amount of sugar in 
your blood over the past 3 months.  It is a reflection of how 
well a patient is controlling their diabetes. An HbA1c of ^% or 
less is normal. We studied pre and post intervention results of 
HbA1c. For subject #1, pre-experiment HbA1c was 12.9% but 
post-experiment it came down to 6.6%. This is a significant 
improvement which proves our main hypothesis that our 
system can lead to better outcomes. For subject #2, the pre and 
post HbA1c values were 8.9% to 8.5%. This may not be as 
much as subject #1 but still an improvement. Keep in mind 
that subject #2 was considered high-risk. 
 
Next, we intend to find the impact of daily activity level on the 
BG level of two subjects. For this first we decided to do 
statistical analysis. However, the various data collected in our 
experiment are not independent, so we cannot run a multi-
variate regression analysis to statistically conclude anything. 
Additionally the number of data points (rows) is small to draw 
any general conclusion from the data items. However, we ran 
several univariate and bivariate regression analysis to see if 
heuristically we can see evidence on the dependency of BG 
level on daily activity levels. We found that for subject 1, BG 
level is highly correlated with weight and idle-time, both of 
which are related to the daily activity of the subject (Table 7). 
We also found for subject 2, the BG level is highly correlated 
with number of steps taken and the total in-out count, which 
are related to the daily activity of the subject. The detail of this 
regression analysis is presented in Table 7. We would like to 
highlight here that such statistical analysis cannot give us any 
concrete conclusion but heuristically we could say BG level is 
dependent on the daily activity level of the subject. Actually, 
the BG level is non-linearly dependent on many different data 
items that the experiment has collected such as calorie intake, 
activity and sleep efficiency. In section VII, we model the BG 
level using an artificial neural network technique (ANN) and 
present some analysis on how well we can model and predict 
the BG level of a subject.  

IV. PROFILE BUILDING USING MACHINE LEARNING AND 

NEURAL NETWORKS 

In this section we explain and demonstrate an approach for 
health behavior profiling applying machine learning 
techniques to human behavior data captured by sensors 
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described before. Some of the key challenges in developing 
such profiling are as follows.  

i. The sensor data may have some inaccuracy.  
ii. The daily behavior pattern of a human may not be 

exactly the same  
iii. There may be some deviation in the daily routine 

activities due to unexpected scenarios such as but not 
limited to guest’s arrival at home, and some urgency 
in family.  

We need to develop an approach that addresses these 
situations but still be able to model human behavior that can 
be used for disease profiling.  
 
Fundamentally we have relied on Replicator Neural Network 
(RNN) [9] to model human behavior. Traditionally RNN has 
been used for anomaly and outlier detection. Following this, 
once the RNN is trained with the training behavioral data of a 
subject, the RNN can be used to detect whether any future 
behavior of that human subject matches with the trained 
profile or not.  
 
One of the key characteristics of a RNN is that the input and 
outputs are same. In our scenario, we have used daily human 
behavior data (such as number of steps, hours of sleep, time in 
couch, time in watching TV, number of times went outside) as 
both the input and output. The ANN is trained based on the 
same input and output. During testing, the Mean Square Error 
(MSE) between the input and output is taken as the indication 
of whether the test input data follows the pattern derived from 
the training input data. 
 
One of the challenges in feeding the data of daily behavior 
into RNN is that, the data may have some anomalies due to 
reasons not related to our research and which are out of our 
control (such as visitor in subject’s home, or long absence 
from home due to social visit or due to issues related to 
sensors). The first step in building the profile data is to 
identify the data points that represent the normal behavior of 
the subject. For this we applied K-mean clustering technique 
on the daily behavioral data of the subject. The data points 
related to the largest cluster in the K-mean output is taken as 
the routine daily behavior of the subjects. This daily behavior 
data is then fed into RNN as both input and output to train the 
RNN. Figs. 2 and 3 depict the process. 

Figure 2: Building RNN model for disease profile 
 

Figure 3: Using RNN model for disease identification 
 
We collected the daily behavior data of two subjects (marked 
as subject 1 and subject 2) over the course of 21 days and 30 
days respectively. The data included – (i) weight (ii) blood 
glucose (iii) number of steps taken (iv) quality of sleep (v) 
total minutes lied down (vi) total sleep time (vii) Total calorie 
in-take (viii) bed room time (ix) couch time (x) TV time and 
(xi) total number of in and out of the house. These data items 
were computed on a daily basis from the raw sensor data 
received. Thus the data had 11 columns, one for each data 
item. For subject 1, we had 21 rows and for subject 2, we had 
30 rows (one row per day per subject). 
 
We first applied K-clustering algorithm on the data set of each 
subject. For both subjects, the clustering resulted in only one 
cluster, indicating that there were no outlier data rows present 
in the data-set of each subject.  For each subject, we identified 
the first 14 days (2 weeks) of data as the training data and the 
rest of the data as the testing data. Thus for subject 1 we had 
7 days of testing data and for subject 2 we had 16 days of 
testing data. Each data points in both the training and testing 
data set had 11 fields as described before.  
 
The training data set is then fed into the RNN with 11 input 
variables, 11 output variables and 2 hidden layers each with 8 
neurons. Typically the configuration of neural network is a 
trial-error process through multiple iterations. The neural 
network was configured in the training period and the 
configuration that gives the least training error has been 
selected for the testing phase. The detailed characteristics of 
the final neural network are given in Table 3.  
 

Number of input 11 
Number of output 11 
Number of Hidden Layers 2 
Error Function tLinear 

Training Algorithm Incremental 
Activation Functions Elliot Symetric (1st hidden 

layer) 
 Sigmoid S Stepwise (2nd 

hidden layer) 
Number of epochs 1000 
Training data set First 14 days of the 

experiment duration 
Testing data set Data from the rest of 

experiment duration 
Table 3: RNN Parameters for Behavior Profiling 
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In neural networks, there is no set way of defining the various 
network parameters. It was done by trial and error in the 
training phase. The objective was to minimize the training 
error. For both the subject 1 and subject 2, we ended up having 
similar neural network parameters as given in Table 3. For 
both subjects, once the ANN model has been built up, we fed 
the second group, i.e. the testing data set into the model. The 
average MSE of the testing data for the RNN came out to be 
just 6.21% for subject 1 and 3.52% for subject 2. The 
summary result for training and testing error for subject 1 and 
2 is given in Table 4.  
 

 Training Error Testing Error 
Subject 1 1.2% 6.21% 
Subject 2 1.8% 3.52% 
Table 4: RNN Mean Sq. Error for Behavioral Modeling 

 
Figure 4: ANN Model for Behavior Profiling 

 
The low testing error (Table 4) demonstrates that the RNN 
(Fig. 4) served the purpose of profiling the subject based on 
daily sensor data. Once the model has been built for a subject, 
the model can be used on daily basis to identify any major 
deviation from the profiled model for the subject and thus 
possible health condition of the subject that needs attention.  

V. PREDICTING BLOOD GLUCOSE LEVEL 

In this section, we demonstrate how the daily behavior data 
can be used to build an ANN based model for predicting blood 
glucose level. It is a known medical knowledge that calorie 
intake and the physical activity directly impact the blood 
glucose level [24]. However, based on various daily activities, 
it becomes difficult for a subject to know whether the daily 
activity and the calorie in-take have been appropriate to reach 
the target blood sugar level. In this section, we demonstrate an 
ANN based model that can be used by subject to predict the 
daily blood sugar level based on behavioral data captured by 
sensor. We propose two models for this purpose.  
 
In both models, we use the behavioral data captured by 
sensors in day D to predict the blood glucose level in D+1 

morning (Fig. 5).   In the first model, we do not include the 
BG level of day D as input to predict the BG level of D+1. 
Whereas, in the second model, we include the BG level of day 
D as input of the model.  
 
For this model, for subject 1 we have 20 data rows; note that 
we don’t have the blood glucose (BG) level for 22nd day of the 
experiment. So we use the behavioral data for 20th day to 
predict the value for 21st day which is known. We prepare 20 
rows, where the input is the behavioral and physiological data 
in day D and the output is the morning blood glucose level in 
day D+1. In similar fashion we also prepare the data rows for 
subject 2, where we will have 29 rows. 
 
As before, we identified the first 14 days of data as training 
data set and the rest of the data set as testing data set. Thus we 
have 6 testing data rows for subject 1 and 15 testing data rows 
for subject 2. First we train a neural network model with the 
training data set and appropriately configure the neural 
network that provides the least error.  The configuration of the 
neural network is given in Table 5. 
 

Number of input 10 
Number of output 1 
Number of Hidden Layers 2 
Error Function tanh 

Training Algorithm Resilient 
Activation Functions Elliot Symetric (1st hidden 

layer) 
 Sigmoid S Stepwise (2nd 

hidden layer) 
Number of epochs 200 
Training data set First 14 days of the 

experiment duration 
Testing data set Data from the rest of 

experiment duration 
Table 5: RNN Parameters for BG level Prediction 

 
Next, we ran the testing data set through the model to measure 
the testing error. For subject 1, we got an error of 7.5% as 
follows, 

Level  BGActual
100  |Level  BGActual -  Level BGPredicted|

1ccuracy %

Level  BGActual

100  |Level  BGActual -  Level BGPredicted|
 %

×
−=

×
=

A

Error
 

i.e. the model is able to predict the next day’s blood glucose 
level with an average accuracy of 92.5% for subject 1. For 
subject 2, the error was 6.6%, i.e. the prediction accuracy for 
subject 2 was 93.4%.  The details of the testing and training 
errors are given in Table 6.  
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Figure 5: ANN Model Blood Glucose Level Prediction 

 
 BG level of previous 

day not included in the 
model 

BG level of previous 
day included in the 

model 
 Training 

Error 
Testing 
Error 

Training 
Error 

Testing 
Error 

Subject 1 3.3% 7.5% 3.1% 4.1% 
Subject 2 2.4% 6.6% 2.9% 6.1% 

Table 6: Training and Testing Error for Blood Glucose 
Modeling 

 
Next, we added the blood sugar level of day D in the input 
layer. In this model, we predict the morning blood glucose 
level of day D+1 based on behavioral and physiological data 
in day D and the morning blood glucose level in day D. Other 
than addition of the day D morning blood glucose level in the 
input layer, the neural network structure and characteristics 
remains same as in Figure 5.  Similar to the previous scenario, 
here also we divide our data into two sets training and testing. 
First we train the model and then we test it using the test data. 
We got a test error of only 4.1% for subject 1 and 6.1% for 
subject 2. The details of the training and testing error are given 
in Table 6.  
 
The above results demonstrate two important aspects in our 
approach. First, if the blood glucose level of a day is known 
and is used to model and predict the blood glucose level for 
the next day, the accuracy will be higher, than if the blood 
glucose level is not at all available. The second, and the most 
important learning is, it is possible to model the blood glucose 
level (an important metrics for diabetic patients) based on 
daily behavioral data of a subject with an accuracy of about 
93-94%.  
 
To demonstrate the error visually, we plotted in Fig. 7 both the 
predicted and actual BG level for subject 2 when the previous 
day BG level has not been included in the model. We can 
definitely see from Figure 7, that our predicted values have 
followed the pattern of the actual values.  
 

Additionally to demonstrate the dependency of BG level on 
our intervention, we did a regression analysis assuming BG 
level as the dependent variable, and calorie intake, physical 
activities (such as number of times in-out, steps walked, total 
idle time) and physiological data (such as weight) as 
dependent variable. We understand that with such a small 
data-set no statistical conclusion can be drawn. However, such 
a regression analysis will at least give some heuristic result. 
The regression result has been presented in Table 7. We can 
see that for subject 1, there is a high correlation of BG level to 
weight and idle time.  For subject 2, there is a high correlation 
of BG level to number of steps and total number of in-out. 
Thus in both subjects the BG level is dependent on some 
variable related to physical activity, which is being influenced 
by persuasive technology. 

II. CONCLUSIONS 

We designed and build a in-home activity monitoring system 
using ambiant sensors and body-wearable sensors. Using a 
pre-post experiment method, the subject received daily text 
messages based on his/her behavior the previous day. These 
persuasive messages used strategies such as motivate, priase, 
guilt or reward to encourage positive behavior change. The 
subject also received a tailored health newsletter at the end of 
each week that summarized various physiological and 
biological parameters. The subject showed improvements in 
hbA1c levels. Although we were limited to only 2 subjects in 
our study, we consider these as case studies from which we 
can learn what works. Our aim in future is to scale this study 
up to several subjects to gain a deeper understanding of the 
potential impact of the technology. We further demonstrated 
that using ANN techniques it is possible to design predictive 
modeling software that can accurately predict BG values of 
diabetic patients. Such advance knowledge of the BG values 
can benefit the patient, can notify care givers to take action 
and can be crucial in saving lives.  
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  Subject Weight 

Blood 

Glucose Steps 

Sleep 

Efficiency 

Lying Time 

(Minutes) 

Sleeping 

time 

(Minutes) 

Calorie 

Intake 

Bedroom 

Time not 

including 

sleeping 

(Minutes) 

Total 

In-Out 

Number 

Idle Time 

(minutes) 

Max 1 202.60 155.00 12571.00 0.88 863.00 647.00 2277.00 1606.00 52.00 1912.00 

2 265.80 336.00 3942.00 0.92 644.00 565.00 2382.00 14.00 23.00 189.00 

Min 1 191.40 108.00 2328.00 0.60 481.00 383.00 1120.00 27.00 0.00 216.00 

2 256.60 89.00 91.00 0.58 351.00 222.00 410.00 3.00 5.00 2.00 

Mean 1 193.26 125.42 5251.42 0.78 660.47 509.74 1548.78 530.94 18.05 770.93 

2 261.70 190.41 2445.97 0.83 522.10 436.00 1514.58 6.52 10.33 71.83 

STDEV 1 3.09 12.85 2644.60 0.07 100.22 74.87 291.65 384.16 14.93 430.92 

2 1.67 60.57 743.65 0.08 83.70 79.60 501.91 2.51 4.47 51.34 

Table 2: Statistics for Collected Data 
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Figure 6: Physical and biological parameters results A) Blood glucose levels; B) Weight trends; C) Idle Time and D) 

Number of Steps Walked. 
 

 

  

Dependent 

Variables p-Value t-stat 

Correlation 

Coefficient 

Subject 1 Weight 0.0178 2.7847 0.8257 

Idle Time 0.0008 4.5413 

Subject 2 Steps 0.0095 2.8694 0.6471 

Total In-out 

number 0.0067 3.0239 

      
Table 7: Heuristic Dependency Analysis for BG 

 

 
 

Figure 7: Comparison of Expected and Actual BG level for Subject 2 

237


