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Abstract—Lung cancer is the number one cause of cancer 

deaths. Many early stage lung cancer patients have resectable 

tumors; however, their cardiopulmonary function needs to be 

properly evaluated before they are deemed operative candidates. 

Consequently, a subset of such patients is asked to undergo 

standard pulmonary function tests, such as cardiopulmonary 

exercise tests (CPET) or stair climbs, to have their pulmonary 

function evaluated. The standard tests are expensive, labor 

intensive, and sometimes ineffective due to co-morbidities, such as 

limited mobility. Recovering patients would benefit greatly from a 

device that can be worn at home, is simple to use, and is relatively 

inexpensive. Using advances in information technology, the goal is 

to design a continuous, inexpensive, mobile and patient-centric 

mechanism for evaluation of a patient’s pulmonary function. A 

light mobile mask is designed, fitted with CO2, O2, flow volume, 

and accelerometer sensors and tested on 18 subjects performing 

15 minute exercises. The data collected from the device is stored in 

a cloud service and machine learning algorithms are used to train 

and predict a user’s activity. Several classification techniques are 

compared – K Nearest Neighbor, Random Forest, Support Vector 

Machine, Artificial Neural Network, and Naive Bayes. One useful 

area of interest involves comparing a patient’s predicted activity 

levels, especially using only breath data, to that of a normal 

person’s, using the classification models. 

I. INTRODUCTION 

Non-small cell lung cancer (NSCLC) is the number one 
cause of cancer deaths among both men and women, accounting 
for approximately 25% of such deaths [1].  Many patients with 
early stage lung cancer have a resectable tumor, but may not be 
operative candidates due to comorbidities (obesity, broken leg, 
etc.) or inadequate pulmonary function. Thus, assessment of the 
risk of morbidity and mortality prior to resection is important.  
With proper assessment, appropriate treatment can be selected 
for the patient.  

A Smart Mask is designed to assist with patient evaluation 
at the patient’s convenience, without having to do a hospital visit 
for a cardiopulmonary exercise test (CPET). Because a CPET is 
expensive, labor intensive, and sometimes ineffective, a better 
solution would be to have a light and inexpensive device for the 
patient’s use at home, as well as providing the data for the doctor 
remotely. 

The mask collects CO2, oxygen, respiratory rate and flow, 
and acceleration, while the patient is instructed to perform 
various activities.  It connects to an Android phone via Bluetooth 
and saves data collected from the mask to a cloud service.  

Authorized entities such as doctors can then access the data 
online. 

Section II describes the current state of practice in lung 
cancer patient evaluation.  Section III describes the mask 
hardware in detail and the purpose of the data analytics.  Section 
IV talks about the specific problem, along with the machine 
learning algorithms used. Section V is the experimental 
evaluation section, explaining the details of the data collection, 
the trials ran, and the data flow paths. This section also lists the 
results.  Finally, section VI concludes the paper and discusses 
potential areas of interest in the future. 

II. STATE OF PRACTICE IN LUNG CANCER PATIENT 

EVALUATION 

     Patients traditionally undergo spirometry and diffusion 

testing to determine preoperative pulmonary function, which 

yields FEV1 (forced expiratory volume) and DLCO (diffusing 

capacity of the lung for CO) measures. These raw values are 

 
Fig. 1. How the mask looks on the subject, as well as two angles of the 

mask. Labels are: 1 – PCB in 3D printed enclosure (cap off) with soldered 

on electronics, 2 – CO2 chamber with sensor at the bottom, 3 – motorized 

pump for CO2 sampling, 4 – volume flow meter, 5 – oxygen sensor with 

3D printed cap, 6 – battery pack for the pump. The yellow tubes carry 

pumped air from the mask chamber to the motor, and the to the CO2 

chamber. An exit hole in the chamber allows the air to escape. 

 



compared to other individuals of similar age, weight, height and 

gender to determine the patient’s relative health standing. 

     Both FEV1 and DLCO are independent predictors of 

morbidity and mortality after lung resection for non-small cell 

lung cancer [2].  If FEV1 and/or DLCO place the individual in 

the bottom 40% of the reference population, guidelines 

recommend that the patient undergo cardiopulmonary exercise 

testing (CPET) for further evaluations [3]. 

     CPET is a clinically-administered test in which the patient 

runs on a treadmill while many sensors are attached, such as a 

facemask, electrodes for ECG, and heart rate sensor [4]. The 

tubing from the mask connects to a bulky and expensive 

machine, and then to a gas mixing chamber where CO2 and 

Oxygen levels are sampled. The patient is asked to gradually 

increase her physical activity to a level she can sustain.  The 

data collected can be used to stratify patients for risk of 

morbidity and mortality after lung resection.  

     Such testing is expensive, labor intensive, and sometimes 

inaccurate if the patient cannot fully perform the exercises.  At 

this point stair climbing may be used instead of the treadmill; 

however, stairclimbing carries its own limitation problems due 

to musculoskeletal or peripheral vascular diseases. 

III. SMART MASK 

A. Project Vision 

Due to recent advances in information technology, a 

continuous, inexpensive, in-home and patient-centric device 

can be developed for evaluation of a patient’s pulmonary 

function. A light mobile mask is developed that can be easily 

taken on and off the face, and collects essential breathing 

parameters that CPET collects.  When the mask is turned on 

with a switch, a Bluetooth connection is established to an 

Android smartphone, and data collection can begin.  When the 

trial ends CO2, Oxygen, flow rate and volume, and acceleration 

data is sent to a cloud service.  This “modern day” solution 

allows patients to perform necessary testing at home and 

doctors to have near real-time data. 

B. Mask Hardware 

A 2.5” by 1.8” board is designed and printed to house the 

Programmable System-on-Chips (PSOC) 4 and 5, sensor 

connections, and remaining circuitry. The PSOC4 allows for 

connection to a BlueTooth Low Energy Enabled Android 

phone, sending data in real time. The O2 sensor (SST LOX-O2 

model) uses fluorescence quenching to detect changes in 

oxygen concentration, with a detection range of 0-25%. 

Because atmospheric levels are around 21% and respiration 

levels at 16%, this range is sufficient.  The MinIR 100% CO2 

sensor uses Non-Dispersive Infrared (NDIR) detection, and can 

measure typical CO2 breath levels (near 4%). Using infrared 

technology over mass spectrometer is acceptable even though 

the response time is slower – accuracy can theoretically be 

achieved up to 0.05% [5]. All the sensors and chips are powered 

and downregulated with a 9V rechargeable battery. The flow 

meter (Honeywell AWM730B5) measures pressure difference 

from either end, and measures up to ±300 liters per minute 

(close to person’s maximal breathing). 

The accelerometer reports data in the 3-D coordinate space, 

and after an internal high pass filter reads zeros while the 

accelerometer is still. 

Both CO2 and O2 sensors allow for polling of data at 2 Hz, 

whereas the flow and accelerometer have much higher polling 

capabilities. A sampling rate between 11 Hz and 12 Hz was 

used for all mask sensors. 

Heart rate data is measured with a separate device – a Polar 

H7 Heart Rate Sensor and FitnessTracker, which straps to the 

wearer’s chest and picks up heart rate at 1 Hz. The sensor pairs 

with a watch and sends requires syncing post-trial. 

The mask is comprised of a rubber face mask and a 

neoprene cover to hold the rubber in place. The mask contains 

three holes – the central one holds the flow meter, the right hole 

contains the oxygen sensor, and the left hole is barricaded with 

a plastic cap. The CO2 sensor is placed underneath the mask -  

it proved to saturate during testing when blown on directly, and 

was placed in a 3D printed chamber and attached to a motorized 

pump, which moves air from the mask chamber into the smaller 

CO2 chamber, giving the sensor a constant sampling of exhaled 

air.  A separate battery pack was attached to the right side of the 

mask to power the pump, powered by three AAA batteries.  

Specific hardware details for the CO2 and O2 sensors and chip 

design are omitted here but can be found in [6] (flow meter and 

sensors rearrangement are newer modifications). 

C. Data Analytics 

Using the data collected from the Smart Mask, one can 

apply data analytics and machine learning techniques to answer 

predictive questions. In machine learning terms, the concept of 

prediction stems from the idea of using a set of pre-labeled data 

derived from a large set of trials to train predictive models. 

Once the models are sufficiently trained, new data coming from 

the sensors can be used directly on the models. Such tools 

provide the opportunity for various hypotheses to test - such as 

predicting activity using the data, and specifically the breathing 

data. 

IV. PATIENT ACTIVITY DETECTION USING BREATHING DATA 

A. Problem Statement 

Unlike previous studies that utilize wearable inertial sensors 

on the body to predict activities [7,8,9], or utilize various sensor 

networks for health monitoring [10], our primary motivation is 

to be able to predict a user’s activity from the mask data, and 

more specifically breathing data, from several seconds. If an 

accurate predictor is regularly predicting that the patient is 

doing an activity she is not actually doing, that could be an 

immediate trigger for the monitoring doctor to look more in 

depth and perhaps call the patient on site for a CPET. 

 A potential constraint for this mask is not having CO2 and 

O2 sensor levels be as calibrated as for the in-hospital CPET. 

Due to the lightweight and mobile nature of the mask, and the 

fact that there is no mixing chamber as in a CPET, the 

measurements may not be as accurate as those done with 

medical hardware. 



B. General Approach 

To train predictive algorithms, first data needs to be 

collected. We devise an activity order for the patients to 

perform, and collect trial data. Then the data is split into testing 

and training sets, with activity done as the output label – the 

training set is used to train the networks, and the testing set 

gives an accuracy of how well the network performs. If a model 

is predicting at a high accuracy (such as 80%), that model can 

be used for reliably.  

C. Machine Learning Models 

Five models were chosen for predicting activity – K Nearest 

Neighbor, Random Forest, Support Vector Machine, Artificial 

Neural Network, and Naive Bayes.  Classifiers chosen followed 

a previous exercise classification study [11]. The networks 

were trained with various combinations of sensor data, and 

accuracies are to be gauged and compared.  

1) K Nearest Neighbor 

The K Nearest Neighbor (KNN) algorithm is the simplest 

classification algorithm of the list.  It locates the k nearest 

neighbors to each input vector that share a label. Using the 

distance metric of (1), the Euclidean distance, the algorithm can 

compute proximities between all n dimensional points p and q, 

with n defined in the feature selection stage of the training area.  

                         𝑑(𝑝, 𝑞) =  √∑ (𝑞𝑖 − 𝑝𝑖)
2𝑛

𝑖=1                  (1)          

The output of KNN is a class membership determined by 

majority vote of k closest neighbors, with  k ≥ 1. When k = 1, 

the closest neighbor to the input vector is the assigned label. 

2) Random Decision Forest 

Random Decision Forests (RDF) are constructed as an 

ensemble of decision trees. Each tree is independently trained 

from different subsets of the same training data. By averaging 

lots of trees the chance of overfitting the data greatly decreases. 

Training a random decision forest involves maximizing 

information gain at each node [12], which is defined as 

Entropy(parent) – Weighted Sum of Entropy(Children), with 

equation (2) formally defining entropy for tree node n, with P(i) 

as the fraction of classes with class i at node n. 

𝐻𝑛 =  − ∑ 𝑃(𝑖)𝑙𝑜𝑔2𝑃(𝑖)𝑖                        (2) 

 

 

3) Support Vector Machine 

Support Vector Machines (SVM) classify data by 

calculating the optimal hyperplane separating two classes. 

When a new data point is received, the SVM predicts class 

ownership by determining what side of the hyper-plane the 

point falls on.  By maximizing the margin between the 

hyperplane and closest training points, (also known as the 

support vectors), an optimal linear separation can be achieved.  

The general equation for a hyper-plane is given in (3), where w 

and b are the hyper-plane normal vector and offset, 

respectively. All points on the hyper-plane xp satisfy (4). 

𝑓(𝑥) =  𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 = 0             (3) 

                     𝑓(𝑥𝑝) =  𝑤𝑇𝑥𝑝 + 𝑏 = 0                          (4) 

4) Naive Bayes 

This classification model uses conditional probabilities 

p(Ck|x) of each class Ck, given input features x, with the most 

probable class returned as the prediction. Naive Bayes (NB) 

makes a strong independence assumption between features, 

resulting in a much simpler but less realistic model.  

               𝑝(𝐶𝑘|𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
=

𝑝(𝐶𝑘)

𝑝(𝑥)
∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑛

𝑖=1        (5) 

             𝑝(𝑥𝑖|𝐶𝑘) =  
1

√2𝜋𝜎𝑘
2

𝑒
−

(𝑥𝑖−𝜇𝑘)2

2𝜎𝑘
2

                      (6) 

      The denominator of (5) is effectively a constant for a given 

feature vector and does not affect the final classification.  The 

prior probabilities, p(Ck) are calculated by looking at the  

occurrence probabilities of each class in the training set.  The 

conditional probabilities, p(Ck|x), are modeled using a Gaussian 

distribution over all feature/class pairs as shown in (6). The 

individual distributions are calculated by taking training data 

for each class/feature pair and calculating the mean and 

variance. These can then be used along with (6) to calculate 

conditional probabilities.  

5) Artificial Neural Networks 

The Artificial Neural Network [13] is a family of classifiers 

characterized by sets of nodes densely interconnected by 

weighted edges, capable of modeling non-linear, high-

dimensional functions via a supervised learning algorithm. This 

study uses a neural network of two fully connected hidden 

layers with sigmoid activation function and a third output layer, 

with sigmoid function (7) at each output neuron. 

                                𝜑(𝑧) =  
1

1+𝑒−𝑧                               (7) 

Eq. (7) outputs [0, 1] - the largest value correlates to the 

predicted label. 

 
Fig. 3. Randomly selected trial data. Y and z axes profiles are omitted due to space considerations. 

 
Fig. 2. Order of activities performed, with timestamps. 



V. EXPERIMENTAL EVALUATION 

A. Setup and Methodology 

For this study eighteen trial members were instructed to 
carry out a fifteen minute set of exercises (Figure 2). Once the 
heart rate device is attached and the mask is turned on (refer to 
III.B), the trial can begin. The Android application is 
programmed to notify the user of transitions automatically, and 
stops at exactly the 900 second mark. 

For the first two minutes (maskoff) of the trial the mask is 
laying on a flat surface, off the face, allowing the CO2 and O2 
sensors to calibrate to atmosphere levels. All sensors are 
collecting data starting at the zero minute mark, and read close 
to zeros for flow and acceleration. Here the individual is 
standing still, and baseline heart rate is picked up.  

At the two minute mark the mask is put on the face, 

continuing to stand. The next two minutes are walking, then two 

minutes of jogging, two minutes of running and one minute of 

jumping in place.  After jumps there is two minutes of walking 

again (labeled as walk2) and standing (stand2). During the trial 

the administrator moves with the trial member, making sure the 

mask is properly positioned and the app collecting data. At the 

fifteen minute mark the app stops the data collection and all 

data is saved to a cloud data service (Firebase). The heart rate 

stopwatch is turned off as well. 

B. Data Pre-Processing 

After all 18 trials have been performed, the raw data from 

the sensors is pulled from the cloud storage service, Firebase.  

Then heart rate data is exported from the Polar watch and 

extrapolated to fit the sampling of the sensors. A randomly 

selected profile is plotted in Figure 3. 

Since only the period when the mask is on the face is of 

interest, the first two minutes of each trial are removed from the 

statistics calculations, leaving 13 minutes of activity for the 

training models. 

The experiment organization follows Figure 4. To 

standardize heart rate values for each user, the first two minutes 

of each trial’s heart rates are averaged and taken as their 

baseline heart rate and subtracted from the input heart rate 

vector. 

Accelerometer data is taken from the three axes and 

optionally combined to get the magnitude of the acceleration.  

This vector provides a good idea of total head movement during 

activity, without keeping information of direction. 

Optional data scaling follows. Standardization of the data is 

performed by applying (8) to each element of the vector. 

                                 


xx
x


'                                 (8) 

This transforms each input vector into a zero mean, unit 

variance vector, giving a vector of z-scores.  The other type of 

standardization is feature scaling:  

                         
)min()max(

)min(
'

xx

xx
x




                            (9) 

Eq. (9) scales all data to the range [0, 1].  Each scaling 

method exactly preserves the shape of the original data graph, 

but provides useful information to the models when comparing 

among trials. 

A window size needed to be chosen to set the input vector.  

Window sizes from 1 to 5 seconds in length were experimented 

with, to see if generalized error was increased, and it was 

noticed that a one second window gave performance on the 

same if not better level as larger sizes.  A one second window 

provides an input vector from minimally length 1 (just one heart 

rate sample) to maximally length 67 (one heart rate sample 

along with 6 sensor samples at 11Hz).  

Activity labels are either selected from a range of [1,7] or a 

range of [1,5]. As mentioned earlier in the section, there are 7 

phases of activities in the 13 minutes of a trial. If we distinguish 

between the different phases of walking and standing, we have 

7 labels for the activities. If we consider all walking and 

 
Fig. 4. Experiments organization, from raw sensor data to training and testing stage 

 

 

 



standing phases to be equivalent, we label the data with only 5 

labels. Having these two sets of labels provides another 

opportunity to see if the models can distinguish between the 

same physical but somewhat different breath profiles.  

Because a person’s transition from one phase to another is 

not instantaneous, five seconds of data around each transition 

are discarded from model training.  For an activity of two-

minute duration, 110 seconds of data are kept for training, 

(jogging retains 50 seconds). 

C. Results 

Due to space constraints, the top two performing models are 

discussed in depth; however, all results are shown in Figures 5-

9, with a summary in Figure 10. 

 
Fig. 5. Testing accuracies for various feature selections using KNN with k=10. Abbreviations: AM = acceleration magnitude, fs = feature scaling, std = 

standardization. Drawn horizontal lines represent accuracy using random selection. 

 
Fig. 6. Test & train accuracies for support vector machine (SVM). 

 
Fig. 7. Test & train accuracies for random decision forest (RDF). 

 
Fig. 8. Test & train accuracies for Naive Bayes (NB). 

 
Fig. 9. Test & train accuracies for artificial neural net (ANN). 



SVM proved to be the best performing model - results of the 

training and testing phase of the SVM are shown in Figure 6. 

Optimal performance on 5 labels occurs when standardizing 

acceleration magnitude and heart rate, at 96.2%. SVM also 

provides the best breath-only prediction of all the models, with 

an accuracy of 68% and 65% for 5 and 7 labels, respectively. 

Figure 7 summarizes RDF results.  The RDF gives 94.5% 

accuracy for 5 labels using standardized acceleration magnitude 

and heart rate, the second-best performance. Standardized 

breathing gives 63% and 57% for 5 and 7 labels, respectively. 

Standardization typically performs better than feature scaling, 

which performs better than raw data.  Also of note is the fact 

that the training accuracy scores are near perfect – a feature of 

random decision forests. 

D. Discussion 

The best-scaled results are summarized in Figure 10 for 5 

labels. Using all features with acceleration magnitude, the best 

testing accuracy comes from SVM at 96.2%. Using just 

breathing features, the accuracy is 68% and 65% for 5 and 7 

labels, respectively. 

The best prediction results come from using acceleration 

(either magnitude or split) along with heart rate.  This 

combination gives accuracies of >85% for all the models 

(usually >90%). Using acceleration to predict physical 

activities was expected to yield high accuracies – previous 

studies have used standalone and smartphone accelerometers to 

predict activity with >90% accuracy [14, 15].  

Breath only data (flow, CO2, and O2) on 7 activities gives a 

65% prediction result.  This accuracy result is promising, but 

not quite high enough to be used with great confidence.  Also 

of note is the fact that flow data is the more dominant predictor 

of activity compared to the gas percentages. 

 We believe that higher accuracy can be achieved using 

breath-only statistics, but will require more highly calibrated 

mask sensors with a carefully designed, air tight mask. Also, 

having a growing patient data set delimited by age, weight, 

gender, and health condition would add more parameters to 

training the network and would likely improve accuracy.  In 

part this is because maximum oxygen uptake, for example, is 

linearly proportional to age and varies with gender [16]. 

VI. CONCLUSION 

     The purpose of this study is to see how accurately machine 

learning models can predict user activity based on breathing 

data, and if they can achieve the same accuracies as acceleration 

and heart rate. From this study one can see that several machine 

learning algorithms, especially SVM and Random Decision 

Forest, can be used to predict activity using breathing data with 

an accuracy of >65%. We hope that this analysis will lead future 

research into activity prediction using breath, with potentially 

more breakdown by age, gender, and weight. Such research 

could be helpful for troubleshooting a patient’s breathing data 

without complicated, in-house treatments. With time such 

networks could help doctors pinpoint lung cancer patients 

susceptible to problematic resectable tumor operations. 
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Fig. 10. Summary of testing accuracies for all models, using 

standardization. 


