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Abstract. Grouping patients meaningfully can give insights about the
different types of patients, their needs, and the priorities. Finding groups
that are meaningful is however very challenging as background knowledge
is often required to determine what a useful grouping is. In this paper we
propose an approach that is able to find groups of patients based on a
small sample of positive examples given by a domain expert. Because of
that, the approach relies on very limited efforts by the domain experts.
The approach groups based on the activities and diagnostic/billing codes
within health pathways of patients. To define such a grouping based
on the sample of patients efficiently, frequent patterns of activities are
discovered and used to measure the similarity between the care pathways
of other patients to the patients in the sample group. This approach
results in an insightful definition of the group. The proposed approach is
evaluated using several datasets obtained from a large university medical
center. The evaluation shows F1-scores of around 0.7 for grouping kidney
injury and around 0.6 for diabetes.

Keywords: clustering · machine learning · patient grouping · health
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1 Introduction

The application of machine learning techniques has become omnipresent in the
health care domain over the last few decades. An important reason is the large
amount of data that is collected in different parts and at different levels of health
care systems. The huge amount of data is too complex for traditional methods to
extract novel insights from. Machine learning techniques are able to transform
this data into useful information for decision making by discovering patterns and
trends [7].

One domain in which machine learning can play a role is in Patient classi-
fication systems (PCSs). PCSs provide a categorization of patients. Cases are
usually categorized based on clinical data (i.e. diagnoses, procedures), demo-
graphic data (i.e. age, gender), and resource consumption data (i.e. costs, length
of stay). Initially developed as an information management tool for clinicians to
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monitor quality and use of services, patient classification systems now, serve as a
prospective payment system in many countries [11]. While useful, such systems
often do not align well with the patient groups as clinicians would define them.
For example, patients getting reconstructive breast surgery caused by breast
cancer or gender change could be merged into a single group, while their char-
acteristics are completely different. Ideally, machine learning techniques would
be able to find a suitable grouping that is clinically relevant and useful in prac-
tice. Furthermore, the definition of the group itself should be understandable for
domain experts.

While the previously sketched scenario sounds ideal, it is far from trivial to
establish. Machine learning can be used to cluster patients, but no guarantees can
be given that this clustering is clinically relevant and acceptable for physicians.
Secondly, there is a discrepancy between clinicians view on patients and the data
that is stored about these patients (e.g. billing codes and interventions), making
the task even more difficult [3]. Finally, any approach in this area should be
sufficiently scalable.

In this paper, we present an approach to define patient groups which requires
little input from domain experts. The presented approach defines patient groups
based on a small sample of example patients provided by medical experts. The
approach uses frequent pattern mining to identify common characteristics among
these example patients in the data (billing codes and activities related to the
patient in our specific case), and uses them to create a definition of the patient
group. An evaluation of the approach is performed on two real-life cases at
a large academic hospital in the Netherlands, containing previously identified
patient groups.

This paper is organized as follows. First, the precise problem we are trying
to solve is explained in more detail in Section 2. Next, we describe our proposed
approach (Section 3). We then present the experimental setup in Section 4, and
the results in Section 5. Finally, Section 6 is a discussion.

2 Problem Formulation

In this section, we describe our research problem more in depth. In the following,
we first introduce preliminary concepts such as healthcare process and activities,
events, traces, event logs, and patient groups. These form the basis for our re-
search question and approach. Next, we use these concepts to define and discuss
our research problem.

2.1 Preliminaries

Each patient in a hospital follows a healthcare process, which describes a set of
healthcare activities executed in a certain order to help treating the patient for
a certain disease. An event log of patients is a set of traces, each describing a
patient pathway through the process. The executed activities result in such a
trace of events for the patient, where each event records additional information
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regarding the executed activity. For example, Table 1 shows a snippet of an event
log of a healthcare process. Each row records an event executed, which contains
information such as the event id, the patient id, the activity, the timestamps,
the DBC code, and maybe some additional attributes regarding the event.

Formally, let A be the set of all possible activities and D the set of all
possible diagnostic codes. We have N = {n1, n2, · · · , nm} patients. Let L =
{σ1, σ2, · · · , σm} be the event log of these patients, where σi = 〈e1, e2, · · · , ezi〉 ∈
L is the trace of events of patient ni; each event ej ∈ σi is a tuple < aj , dj , tj >
where aj ∈ A refers to the healthcare activity of ej , and dj ∈ D refers the
diagnostic code of ej , and tj refers to the time when ej is occurred.

2.2 Research Problem - Grouping Patients

In general, data recorded about the patients, the patients diagnosis, and the
activities associated with the patient in the hospital are made available. We
aim to cluster patients into meaningful groups by using (1) the original patient
diagnostic classification (known in the Netherlands as Diagnostic and Billing
Code (DBC)), (2) the activities recorded for each patients, and only (3) a small
sample of patients provided by the medical expert. The sample contains examples
of patients who should be grouped into one cluster.

Many existing researches have conducted into various techniques to cluster
the patients into a number of meaningful clusters (see e.g.,[5,6,8,10]) by for ex-
ample using healthcare or patient diagnostic codes. However, existing algorithms
have difficulties handling the big data characteristics of the healthcare data (e.g.,
up to 6 thousands number of features and 120 thousands of patients to be clus-
tered, see Section 4). Furthermore, they do not result in insightful definitions of
the cluster that are in line with those of medical experts.

In this paper, we formulate the research problem as follows. Assuming a
sample P of the patients N that should be clustered into one group G is given,
we would like to find all other patients in N\P that belong to this group G with
the highest recall and precision possible. In this way, we can also validate our
results of each cluster independently with the experts and leverage the labeled
patients. Additionally, we want the criteria for the grouping to be understandable
for medical specialists.

Formally, given the healthcare activities A, the diagnostic codes D, the pa-
tient ids N , the event log L of the patients N , and the set of patients P ⊂ N
that belongs to group G labeled by the domain expert (the doctor), we would
like to compute a set Ĝ ⊂ N of patients, such that the set difference between G
and Ĝ is minimized.

3 Proposed Approach

As explained before, only for a small sample of patients P ⊂ N with |P | << |N |
we know that they belong to the group G: ∀p∈P : p ∈ G. For all other patients
we do not know whether they belong to the group or not. Our challenge is to find
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Table 1: A snippet of an event log of a healthcare process
Patient ID Activity Attribute Date

Patient1 Action1 DBC1 Date1

Patient2 Action2 DBC2 Date1

Patient3 Action1 DBC1 Date3

Patient1 Action1 DBC1 Date2

Patient2 Action5 DBC5 Date2

a definition of the group based on the sample P and the data we have available
from this sample. Since we do not have any negative examples and due to the
overwhelming number of features, we have decided to apply frequent pattern
analysis as a first step, followed by a further refinement of the definition in a
second step. Finally, we determine how to apply the found definition to identify
the group members.

3.1 Finding Frequent Patterns

Let us start with the definition of a frequent pattern. A frequent pattern is a
pattern (a set of items, subsequences, sub graphs, etc.) that occurs in a dataset
with frequency no less than a user-specified threshold. The approach originated
from market basket analysis and was first proposed in [1]. In our case, we intend
to find frequent patterns among the activities conducted around a patient (i.e.
from the set A) as they are the key identifiers of the patient groups according to
the medical experts. Assume that Ap is the set of activities that occurs in the
event log of patient p: ∀ai ∈ Ap : ∃ej ∈ σp : ej =< ai,−,− >. As said, we are
looking for frequent patterns across the different patients. Such frequent patterns
can contain one or more activities F = {a1, . . . , ak}. Frequent patterns have a
certain support, representing among what fraction of the patients in sample P
the pattern occurs:

support(F ) =
|{p|F ⊂ Ap}|

|P |
(1)

Patterns are only considered when they meet a certain support threshold φa, i.e.
support(F ) ≥ φa.

The most well-known algorithms for finding frequent patterns are Apriori [2]
and FP-growth [4]. We have selected FP-growth since its run time increases
linearly with the number of patients and activities, while for Apriori the run
time increases exponentially depending on the number of activities. Running the
algorithm results in a set of frequent patterns. We then select the most specific
pattern (i.e. the pattern with the highest value for k) from this set. We select
only one pattern to make the definition of the group understandable for domain
experts and the longest frequent pattern is the most specific characterization of
the group. We will refer to it as Fa from now onwards. We have now obtained a
way to define the group, however merely activities showed to be insufficient to
identify the group completely. We therefore add additional criteria.
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3.2 Finding Additional Criteria

To make the patterns more specific, we add criteria related to the DBC code
(remember the example given in the introduction for the breast cancer and
gender patient, these could at this point still be categorized under the same
group). We add the DBC code in a bit different way, namely by how often the
activities in the selected frequent pattern and the billing codes coincide. Assume
Dp is the set of DBC codes in the logs of patient p: ∀di ∈ Dp : ∃ej ∈ σp : ej =<
−, di,− >. For each d: d ∈ Dp, p ∈ P , we compute the fraction of patients from
sample P for which d coincides with at least one element of our initial frequent
pattern F as these are the core mechanism to select the patients on:

support(d) =
|{p|b ∈ Bp ,∃ej ∈ σp,∃ak ∈ Fa : ej =< ak, b,− >}|

|P |
(2)

If the support exceeds a certain threshold φd, we add the code to the set of DBC
codes D. Hence, D = {d|d ∈ Dp, support(d) ≥ φd}.

After these two steps we end up with a frequent pattern F for activities and
a set of selected DBC codes D.

3.3 Classification

Now we can score all the patients p based on how far they satisfy our two newly
defined criteria. Here, 0 is the optimal score, showing no discrepancy between
the patient and the definition of the group.

activity score(p) = |F | − |{ai|ai ∈ Ap, ai ∈ F}| (3)

dbc score(p) = |D| − |{di|di ∈ Dp, di ∈ D}| (4)

Combining these into one measurement is not a trivial task, neither is deter-
mining when a patient is still in the group. In the next part, we will explain how
we determine the cut-off based on P .

3.4 Determining cut-off values

The grouping of our patients depends on both the support thresholds (φa and
φd) used to find patterns, and cut-off values for how many of the found criteria
should meet to be considered part of the group.

For the support thresholds, we assume a domain expert sets the support
threshold. To do that, we start with φa = 1 and decrease its value with a small
step size. By decreasing the value of this parameter, the constraints on the
frequent patterns become more relaxed and new activities are added to Fa. In
each step, the expert can study the new activities added to Fa, and see if they
can be good features of the input sample group. The procedure will stop when
the expert finds new activities not being representative for the sample group.
Then, φd should be adjusted by the same strategy. As said before, the frequent
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DBCs are dependent on Fa (the opposite dependency is not the case). That is
why φd should be adjusted after φa .

For the cut-off values, let us define the precise meaning of these first. A
patient is defined as part of the group Ĝ when it remains under or is equal to
the cut-off value for both criteria we have explained before:

ĜαF ,αD
= {p|p ∈ N, activity score(p) ≤ αF , billing score(p) ≤ αD} (5)

The cut-off values are referred to as αF and αD. When we are optimizing the
grouping (and thus these parameters) based on our small sample we would like
to optimize both the precision and recall, and hence, use the F-measure:

precisionαF ,αD
=
|ĜαF ,αD

∩G|
|ĜαF ,αD

|
(6)

recallαF ,αD
=
|ĜαF ,αD

∩G|
|G|

(7)

Fn measureαF ,αD
= (1 + n2) · precisionαF ,αD

· recallαF ,αD

(n2 · precisionαF ,αD
) + recallαF ,αD

(8)

Do not having access to negative examples, making it near impossible to optimize
our parameters on this. We therefore focus on the recall in this stage, and focus
on getting the highest recall among the group of patients we know should belong
to the group (i.e. from our sample P ):

recallαF ,αD
=
|ĜαF ,αD

∩ P |
|P |

(9)

Assuming that |P | is a representative sample, the expected value of recall is
equal to the real value of the recall. Of course, just optimizing on the recall is
likely to give us a very loose definition, and hence a low precision. We therefore
use an elbow based method to identify the point where the recall increase starts
to flatten, and select that as the cut-off point. An alternative criteria which is

suggested in [9], is to find the set of parameters which maximize recall
2

|Ĝ| .

4 Experimental Setup

We evaluate the proposed approach on anonymized records of patients of the
VU University Medical Center Amsterdam, collected between 2013 and 2017.
This dataset contains the event logs of the patients in line with the description
in Section 2. In total 329,783 patients are present in the dataset. There are 8,360
unique activities and 2,273 unique DBCs. In total more than 35 million activity
events are recorded in the dataset. Figure 1a shows the number of patients and
Figure 1b shows the number of activities in different years.
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(a) #Patients each year (b) #Activities each year (c) Size of ground truths

Fig. 1: General information over dataset and ground truth

In addition to the event logs, lists of patients for two groups that were defined
by medical experts (diabetes and kidney injury) in each year were provided. The
number of patients in these groups (Gdiabetes and Gkidney) over different years
is shown in Figure 1c. These groupings are assumed to be the ground truth.
According to the domain experts, labelling approximately 30 patients would be
a feasible task. Hence, we take a random sample of 30 patients for both groups
(Pdiabetes and Pkidney, with |Pdiabetes| = |Pkidney| = 30. To study the validity of
the parameter settings and the impact on the quality of the grouping, we split
this sample in a 50/50 way again, using 15 patients to generate our definitions of
the set. The remaining patients in the group, but outside of this sample of 30 is
left for calculating recall. Finally, we set the support threshold to φa = φd = 0.8
based on preliminary experiments with domain experts. Furthermore, we use the
F1-score as our final evaluation metric.

5 Results

Let us move to the results. First, we will present the results related to the
frequent patterns, followed by the optimization of the parameters. We end with
the F1-scores we obtain.

5.1 Frequent Patterns

The first step in this approach is finding frequent patterns of activities and the
relevant DBCs for the training samples of the two groups under investigation.
Table 2 shows the sets Fdiabetes and Ddiabetes that were found based on a sample
from 2017. For the sake of brevity, we do not show the table related to kidney
injury.

5.2 Classification of Sample Patients

For each patient in the dataset, two distances from the training sample group
are calculated as explained in the approach (i.e. activity score and dbc score).
Figure 2 shows the average activity score for the patients inside and outside the
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Table 2: Frequent activities and DBC codes for Diabetes in 2017.
Fdiabetes Ddiabetes

first polyclinic visit diabetes mellitus without

hemoglobin (including extra measurements) secondary complications

hemoglobin A1 blood

potassium.

creatinine

blood collection and chemical and microbiotic analysis

phone consult

sample of labeled patients used to generate the patterns for both use cases. As
depicted in Figure 2, there is a significant difference between the distances of
patients inside and outside ground truth. This shows that patterns have been
found that distinguish the group of patients from other patients.

(a) Diabetes (b) Kidney injury

Fig. 2: Average number of missed frequent activities for patients in and outside
of G

5.3 Classification of All Patients

Now that we have found patterns that seem to distinguish the patients, we are
still faced with finding proper cut-off values. For this we use the estimation of the
recall based on our small sample. Figure 3a shows how the value of overlinerecall
computed over the 15 patients in the test set compares to the true recall (which
we can compute for this study as we have access to the full grouping). Spear-
man’s correlation test shows a strong correlation between these the recall on
the small sample and the overall recall (correlation=0.87, pvalue=6.9e-47). As
explained before, we select the optimal values for the parameters αF and αD
based on the elbow of the recall. Figure 3b shows that in general by increasing
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(a) recall VS. recall
(b) Number of selected pa-
tients VS. recall (c) F1− score

Fig. 3: Graphs related to kidney injury in 2017: (a) relationship between recall
and real recall, (b) recall versus the number of patients included in Ĝ, and (c)
recall and number of selected patients versus the F1-score.

the size of selected group, |Ĝ|, the value of recall is increasing. However, a clear
turning point can be seen where the recall does not increase significantly with
a substantial increase of |Ĝ|. The accompanying parameter values are selected.
In Figure 3b, and Figure 3c, this point is highlighted in red. Note again that we
do not use any additional information besides the sample to determine this.

Following this approach for the two diseases and years, we evaluate how
suitable the grouping is given the ground truth of all patients. As can be seen,
the maximum achieved F-measure for kidney injury is always higher than the
value for diabetes. One reason is that although the number of patients with
diabetes is higher than number of patients with kidney injury (Figure 1c), the
size of the training sample group is the same. Hence, it could potentially be
a too diverse group. For example in year 2017, more than 10% of the whole
patients with kidney injury is used as training set, while this percentage is less
than 1% for Diabetes. Still, the results on the F1-score are within reasonable
bounds according to domain experts.

Fig. 4: Maximum achieved F-measure for two diseases in different years. In each
case, a sample group of 15 patients is used as training set.



10 S. Tabatabaei et al.

6 Conclusion and Future Work

We have presented an approach that is able to extract a definition of a group of
patients based on a small sample of example patients given by a medical expert.
Hereto, frequent item sets have been exploited, and extended to make them
suitable for the case at hand. The approach results in an insightful definition
of the group. An experimental evaluation of the approach based on a real life
dataset with two groups defined by medical experts shows that the approach is
able to generate reasonable F1-scores. The proposed approach is very feasible
since it puts a minimum load on the domain experts. Moreover, The approach is
flexible in that it allows for varying strictness of the group definition by varying
the parameters of the approach.

For future work, we plan on extending the selection mechanism to make it
more robust and improve the F1-scores even further. Furthermore, we want to
apply the approach to more rare cases and involve medical experts more heavily
in the process.
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