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Abstract—The Coronavirus Disease 2019 (COVID-
19) began to outbreak since December 2019 and widely
spread over the world. How to accurately predict the
spread of COVID-19 is one of the essential issues
for controlling the pandemic. This study establishes a
general model that can predict the trend of COVID-19
in a country based on historical COVID-19 data in 184
countries. First, Savitzky-Golay (S-G) filter is utilized
to detect multiple waves of COVID-19 in a coun-
try. Then, a PSO-SIR (particle swarm optimization
susceptible-infected-recovery) model is provided for
data augmentation. Finally, a novel PSO-BLS (particle
swarm optimization broad learning system) is proposed
for predicting the trend of COVID-19. Experimental
results show that compared with the deep learning
models (ANN, CNN, LSTM, and GRU), the PSO-
BLS algorithm has higher accuracy and stability in
predicting the number of active infected cases and
removed cases.

Index Terms—Covid-19, Broad Learning, Particle
Swarm Optimization, Epidemiological model, Forecast-
ing

I. Introduction

Coronavirus Disease (COVID-19), which is caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) and has high transmissibility with reproduction
number [1], began to outbreak at the end of December
2019 [2]. Evidence indicates that COVID-19 patients,
presymptomatic patients, and even asymptomatic pa-
tients, who are infected with covid-19 but show no symp-
toms, all have strong person-to-person transmissibility
[3]. The flow of a large amount of COVID-19 patients
(including patients in the incubation period, mild patients
and asymptomatic patients, etc.) play an essential role
in the rapid spread of the virus [4]. When the epidemic
outbreak, a larger number of patients experienced severe
or critical diseases requiring medical care, which would
overwhelm the medical system and finally brings a large

number of deaths [5]. Up to Aug 14, 2020, COVID-19 has
spread to more than 184 countries and caused 21,036,943
infections, with a death toll of 761,926 [6]. Hence, inferring
and predicting the spread of the disease in a country will
help set public health policy and contain the spread of
COVID-19.
Traditional epidemiological models analyze and predict

the spread of an epidemic based on the dynamic changes
in the number of infected and removed cases. However,
these models assume that the transmission environment
is stable and the infection rate of all COVID-19 patients
is constant [7]. Public health interventions and control
measures, such as mask-wearing, keeping social distance,
and handwashing, significantly impact slowing the spread
[8]. Strong intervention measures can effectively reduce the
spread of the disease, and vice versa will help spread the
disease. Traditional epidemiological models are suitable
for analyzing and predicting the overall trend of disease
transmission when the external environment is stable. In
this case, a COVID-19 curve show only a single wave.
However, in reality, a COVID-19 curve always has multiple
peaks. As the traditional epidemiological models have
fixed parameters, these models can describe the first wave
well but have difficulty fitting and predicting the second
or third wave [9]. Therefore, we must establish a data-
driven epidemic model to overcome this problem. Through
data augmentation, we can overcome the limitations of
traditional epidemic models, improve predictive accuracy,
and verify the effectiveness of prevention and control
measures.
In this article, based on COVID-19 data in 184 coun-

tries, we establish a general model that can predict the
number of active infection cases and removed cases. First,
we use the Savitzky-Golay (S-G) filter to detect peaks and
valleys of outbreaks. The COVID-19 curve can be sepa-
rated into several segments, containing only a single wave.
Then, to improve the generalization ability and robustness
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of the model, we combine particle swarm optimization
(PSO) [10] and susceptible-infected-recovery (SIR) model
[11], [12] to generate a set of “artificial COVID-19 spread-
ing data” for data augmentation. Finally, based on his-
torical data and augmented data, a hybrid broad learning
system (BLS) [13], in which PSO is utilized for optimizing
the hyper-parameters of BLS, is proposed. Compared with
several deep learning models (ANN, CNN, LSTM, and
GRU) and BLS, the PSO-BLS model has higher stabil-
ity, robustness, and accuracy. Additionally, the PSO-BLS
model can adapt to complex epidemic disease situations
and accurately predict the trend of an epidemic with
multiple waves.

II. Framework of Data Augmentation
A. COVID-19 data

Figure 1. The cumulative number of confirmed cases in 184 countries
up to Aug 10, 2020.

Many government facilities (mostly the CDC) release
the COVID-19 data to the public [14]. The COVID-19
data utilized in this study include the cumulative number
of confirmed, recovered cases, and death tolls for 45 coun-
tries in Asia, 46 countries in Europe, 24 countries in North
America, 11 countries in South America, 54 countries in
Africa, and 4 countries in Oceania. The total population
of the 184 countries is 7,730,029,662, accounting for most
of the global population. Figure 1 shows the cumulative
number of COVID-19 patients in 184 countries.

B. Multiple Waves Detection
A large number of countries, such as Morocco and

Croatia, have been hit by a second or even third wave
of COVID-19 ( shown in Figure II-B). Here, the Savitzky-
Golay filter is utilized to detect multiple outbreaks in the
historical COVID-19 profiles. Then, based on the detection
results, we can divide the historical profile into several
segments, in which only a single outbreak happens.

The Savitzky-Golay (S-G) filter, a weighted average
convolution algorithm with a moving window based on
the time series data smoothing and the polynomial least-
squares, can filter out noise, ensuring that the shape and
width of the signal remain unchanged [15]. The S-G filter
has two parameters, including window size and polynomial
order, as shown in the following equation:

Y ∗
j =

∑m
i=−m Ci × Yj+1

2m+ 1 , (1)
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Figure 2. Two illustrative examples of COVID-19 profiles with
multiple waves. The dashed line is the historical data, while the solid
line represents the filtered line smoothed by S-G filter. The green
and red dots stand for the peaks and valleys of historical COVID-19
data, while the brown and pink squares reveal the peaks and valleys
of filtered curves, respectively: (a) Morocco; (b) Croatia.

where the Y ∗
j is the fitted values, the Yj+i is the signal

data, Ci is the coefficient of the i − th value filter, m is
the width of half the filter window. Figure II-B shows the
historical and filtered curves of active confirmed cases in
Morocco and Croatia, respectively. S-G filter successfully
smooths the noise and detects the peaks and valleys of
each wave. We can then define a segment between two
valleys as a wave and separate the whole process into
several segments.

C. COVID-19 Data Augmentation
In the traditional SIR model, each individual would be

one of the three possible states: susceptible (S), infected
(I), and recovered/removed (R) [12], [16]. The onefold SIR
model describes the evolution of an epidemic outbreak
in terms of a three-order dynamical system. Consider
a country or city at time t, the number of susceptible
individuals is S(t), the number of infected individuals is
I(t), and the number of recovered or removed individuals
are R(t). Then, the SIR model takes the following form:

dS

dt
= −βIS

N
,

dI

dt
= βIS

N
− γI,

dR

dt
= γI,

(2)

where β is the rate at which a susceptible individual is
infected by a COVID-19 patient, γ is the recovery rate.
Traditional epidemiological models always assume the

system is fixed, which means a country or region con-
tinuously implements the same epidemic prevention and
control measures until totally suppressing the spread of
an epidemic. Hence, the parameters of an SIR model,
including the infected rate β and recovery rate γ, are fixed.
However, in real cases, a country or region will dynamically
update intervention measures, resulting in time-varying
infected rate β(t) and recovery rate γ(t). With different
public intervention in a region, the trend of COVID-19
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Figure 3. COVID-19 data augmentation through SIR-PSO system.

Algorithm 1 Algorithm for data augmentation through
PSO-SIR model.
Input:

The number of infected cases in N = 184 coun-
tries In(t) = {In(t0), In(t1), · · · , In(tT )}, where n =
1, 2, · · · , 184.

Output:
Augmented data: [Î1(t), Î2(t), · · · , ÎN×L(t)] and
[R̂1(t), R̂2(t), · · · , R̂N×L(t)]

1: Data preprocessing: Divide the original dataset and
keep the infection dataset of the first outbreak by using
S-G filter.

2: Parameter Identification Process:
for (n = 0 to N − 1) do
Solve the NLP-(5), where the loss function is as fol-
lows:

Loss =
N∑
i=1

wij(I(ti)− Î(ti |θ ))2

end for
return the optimal parameter set Θ =
{θ∗

1 , θ
∗
2 , · · · , θ∗

N}.
3: Simulation Data Generation Process:

for (n = 1 to N) do
for(i = 0 to L− 1)do

θn,i = θ∗
n + 0.04(i−m)θ∗

n

. Generate artificial profiles from SIR model based
on parameter set θn,i.
return [Î1(t), Î2(t), · · · , ÎN×L(t)] and
[R̂1(t), R̂2(t), · · · , R̂N×L(t)].

will be time-varying. Hence, historical COVID-19 data of
184 countries can not cover all the possible situations.

Suppose a new wave has happened in a country or
region. The historical data of infected and removed cases
during the early stage of the spread form an initial trend.
We can assume that the new wave will be slightly different
from one or several historical waves that happened previ-
ously in one or several countries. Then, this initial profile is
“similar” with one or several sets of historical profiles. The
basic idea of data augmentation is to generate artificial
epidemic data from historical data through the SIR model

to cover more possible cases. First, for each historical wave,
we optimize the key parameters of the SIR model (2) to
make the generated growth profile that matches historical
cases. Then, we slightly vary the optimal parameter values
and generate “artificial profiles” to simulate the effect
of different intervention measures and establish a library
of spreading profiles covering various possible situations.
Thus, a new outbreak would likely follow a combination
of several profiles in the library.
Here, we define S0 = S(t0), I0 = I(t0) and R0 = R(t0),

which are the initial number of susceptible, infected and
recovered individuals in a country or region, respectively.
Additionally, The SIR model (2) has two unknown param-
eters β and γ. In conclusion, the unknown parameter set
is:

θ = {β, γ, S0, I0, R0}. (3)

Hence, we have to identify a suitable parameter set θ
to make the estimated growth trajectory that matches
historical data.
Let X(t) be the extended state vector, i.e., X(t) =

[S(t), I(t), R(t)], then, model (2) can be reformulated
as:

Ẋ(t) = f(X(t) |θ ), (4)

where f(x) is the right side of (2). Then, the parameter
estimation problem can be formulated as the following
constrained nonlinear optimization problem:

P0: min
θ

N∑
i=1

wij(I(ti)− Î(ti |θ ))2

s.t.

{
(i) Ẋ(t) = f(X(t) |θ ).
(ii) ΘU ≥ Θ ≥ ΘL,

(5)

where Î(ti |θ ) represents the estimated number of infected
individuals at time ti with parameter set θ. wij stands for
the weighted coefficient. The searching space of unknown
parameter set is bounded between ΘL and ΘU . Evolu-
tionary algorithms have been extensively used in non-
linear optimization [17], [18]. Particle Swarm Optimization
(PSO) is a global optimization algorithm in order to
avoid being trapped in local minima and search the global
optima parameters. In this article, PSO is utilized to solve
NLP-(5) and find the optimal parameter set θ∗ [10]. Then,
we expand the a library of different spreading profiles by
generate N parameter for each θ∗:

θi = θ∗ + 0.04(i−m)θ∗, (6)
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where i = 1, 2, · · · , 2m and m ≥ 1. In this work, empir-
ically, the ratio in [0.03, 0.08] produces a relatively good
result, and the results are robust. Hence, we adopt 0.04 in
Eq. (6). Then, we utilize parameter set θi and model (2)
to generate 2m + 1 artificial profiles to augment dataset.
The specific process is shown in Figure 3.

III. Framework of Hybrid PSO-BLS Model

Algorithm 2 Algorithm for forecasting COVID-19
through the PSO-BLS model.
Input:

Augmented dataset and historical data
[I1(t), I2(t), · · · , IN (t)] and [R1(t), R2(t), · · · , RN (t)] .

Output:
Prediction results: [Ī1(t), Ī2(t) · · · ĪN (t)] and
[R̄1(t), R̄2(t) · · · R̄N (t)]

1: Base on Eq. (7a) and Eq. (7b), restructure the aug-
mented data and historical data to form the training
set and testing set:

TrainingSet = [Î(t)X , R̂(t)X , Î(t)y, R̂(t)y]
TestingSet = [I(t)X , R(t)X , I(t)y, R(t)y]

2: Parameter Identification Process:
Input the training set [Î(t)X , R̂(t)X , Î(t)y, R̂(t)y] and
testing set [I(t)X , R(t)X , I(t)y, R(t)y]
for (n = 0 to N − 1) do

Adopt the following loss function and optimize
F,W,E,C through PSO:

Loss1 = 1
T

T∑
i=1

(In(ti)− Īn(ti))2,

Loss2 = 1
T

T∑
i=1

(Rn(ti)− R̄n(ti))2

end for
return optimal initial hyper-parameters
[F1, F2, · · · , FN ], [W1,W2, · · · ,WN ], [E1, E2, · · · , EN ]
and [C1, C2, · · · , CN ].

3: PSO-BLS Prediction Process:
Input the training set [Î(t)X , R̂(t)X , Î(t)y, R̂(t)y] and
testing set [I(t)X , R(t)X , I(t)y, R(t)y];
Input the PSO-BLS parameters [F1, F2, · · · , FN ],
[W1,W2, · · · ,WN ], [E1, E2, · · · , EN ] and
[C1, C2, · · · , CN ].
for (n = 0 to N − 1) do

Calculate Īi(t) = {Īi(t0), Īi(t1), · · · , Īi(tT )} and
R̄i(t) = {R̄i(t0), R̄i(t1), · · · , R̄i(tT )} from BLS model.
return [Ī1(t), Ī2(t) · · · ĪN (t)] and
[R̄1(t), R̄2(t) · · · R̄N (t)].

In this part, the dataset is reconstructed to meet
the multi-step prediction. Since the incubation period
of COVID-19 is 14 days, we use the number of active
infection cases and the number of removed cases in the
past 14 days to predict the number of infections and cures

on the seventh day in the future. That is, constructing X
with the Equation (7a) and y with the Eq. (7b) as the
input of the model.

X =


x1(t− 14) x1(t− 13) · · · x1(t)
x2(t− 14) x2(t− 13) · · · x2(t)

...
...

...
...

xN (t− 14) xN (t− 13) · · · xN (t)

 (7a)

Y =
[
x1(t+ 7), x2(t+ 7), · · · , xN (t+ 7)

]
(7b)

The Broad Learning System (BLS), a single-layer in-
cremental neural network, is proposed in 2017 [13]. The
network is based on a random vector function linked neural
network (RVFLNN) [19] and a single layer feedforward
neural network (SLFN) [20]. Compared with the deep
network model, the BLS are faster convergence, more
conciseness, and support for precise accuracy. The input
matrix A of BLS is composed of the mapped feature and
the enhanced feature. The mapped feature Z is obtained
by linear mapping and activation function transformation
of the primal matrix.

Zi = φ(XWei
+ βei

), i = 1, · · · , n, (8)

where the W and β matrices are randomly generated. We
can record the mapping nodes obtained by n times of
mapping changes as Zn = [Z1, Z2, · · · , Zn]. Similarly, the
enhanced nodes are transformed by the mapping nodes
through linear mapping and activation functions:

Hm ≡ ζ(ZnWhm
+ βhm

). (9)

Therefore, the model of width learning can be expressed
as Eq.(10)

Y =[Z1, Z2, · · · , Zn]|ζ(ZnWh1 + βh1),
· · · , ζ(ZnWhm

+ βhm
)Wm

=[Z1, Z2, · · · , Zn|H1, · · · , Hm]Wm

=[Zn|Hm]Wm

(10)

There are four core parameters for BLS: the number
of feature windows W , the number of feature nodes F ,
the number of enhanced nodes E, and the ridge regres-
sion regularization value C for pseudo-inverse. Since the
BLS model does not use backpropagation for parameter
learning, it obtains the output weight Wout by seeking the
pseudo-inverse, which means that the initial parameters
of the BLS play a vital role in the output weight of
the network. Meanwhile, the BLS with a high-quality
parameter combination can output the predicted value
stably and accurately. Here, we use the PSO algorithm
to optimize the BLS and find the most suitable initial
parameters for each country and then import the BLS for
prediction. The specific process is shown in the algorithm
2 and Figure 4.

IV. Experimental results
In this study, four deep learning models (ANN, CNN,

LSTM and GRU) were adopted to compare with the PSO-
BLS model. We use RMSE,MAE,R2 as the evaluation
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Figure 4. Hybrid PSO-BLS model for COVID-19 forecasting in 184 countries.
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Figure 5. Prediction results of deep learning model and PSO-BLS
model in Croatia, Germany and Argentina.

metrics to better evaluate the performance of each model.
Table I presents the experimental results of state-of-art
algorithms for prediction of active infection cases, while
Table II presents the experimental results of prediction of
removed cases, and the following experimental conclusions
can be drawn:

1) The predictive accuracy of removed cases is higher
than the predictive accuracy of active infection cases
in each model;

2) The proposed PSO-BLS model has the best predic-
tive performance than the other four deep learning
models, with 0.998 for R2;

3) The PSO-BLS model has higher stability and robust-
ness in various situations. For the prediction of the
number of active infection cases, the average R2 of
PSO-BLS can reach 0.892, while for the prediction
of the number of removed cases, the average R2 can

Table I
Experimental results of the state-of-art algorithm for

prediction of active infected cases in Croatia, Spain, South
Korea, and Germany.

Country Model RMSE MAE R2
PSO-BLS 136.978 116.906 0.907
ANN 436.438 197.511 0.053

Croatia CNN 4192.466 4184.963 -86.385
LSTM 130.787 91.165 0.915
GRU 171.992 115.661 0.853

PSO-BLS 11150.418 7228.758 0.890
ANN 13866.232 8318.905 0.830

Spain CNN 25395.119 21884.663 0.429
LSTM 58818.135 49402.704 -2.065
GRU 58825.003 49364.759 -2.065

PSO-BLS 1177.622 599.195 0.658
ANN 6033.208 1601.960 -7.979

Korea CNN 14657.027 14571.302 -51.993
LSTM 1904.8104 1072.478 0.105
GRU 1914.324 1061.910 0.096

PSO-BLS 6064.660 3429.111 0.908
ANN 17442.331 5652.251 0.243

Germany CNN 12995.350 11087.806 0.580
LSTM 24941.054 15421.189 -0.548
GRU 24971.560 15453.019 -0.552

reach 0.992. In all cases, the PSO-BLS model has
the highest average R2.

The prediction results generated by ANN, CNN, LSTM,
GRU, and PSO-BLS are shown in Figure 5. Here, we
adopt two representative countries, including Spain and
Germany. Results reveal that the predictive results of
ANN and CNN are unstable, while the generalization
ability of LSTM and GRU is insufficient. Therefore, the
performance of these methods in predicting the number
of active infected cases and the number of removed cases
is relatively unsatisfactory. However, the PSO-BLS model
has higher stability and robustness. The prediction results
are consistent with the trend of historical data so that it
can predict the number of COVID-19 active infection cases
and the number of removed cases more accurately.

V. Conclusion
In this study, a particle swarm algorithm-based Broad

Learning System (PSO-BLS) was proposed to predict the
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Table II
Experimental results of the state-of-art algorithm for

prediction of removed cases in Croatia, Spain, South Korea,
and Germany.

Country Model RMSE MAE R2
PSO-BLS 108.173 80.703 0.992
ANN 139.331 95.275 0.986

Croatia CNN 25872.577 25856.990 -475.136
LSTM 828.525 588.574 0.512
GRU 818.956 523.482 0.523

PSO-BLS 6894.854 4759.910 0.992
ANN 9018.762 3934.652 0.987

Spain CNN 22460.331 21382.969 0.918
LSTM 125847.041 100035.744 -1.577
GRU 125855.852 99818.427 -1.578

PSO-BLS 489.634 0.779 0.989
ANN 798.840 289.396 0.976

Korea CNN 7599.815 7031.374 -1.573
LSTM 7034.5965 5813.314 -1.204
GRU 7059.165 5821.311 -1.2198

PSO-BLS 5891.619 3432.747 0.995
ANN 8951.795 3817.620 0.988

Germany CNN 45283.7424 37782.707 0.694
LSTM 129128.684 100798.186 -1.491
GRU 129157.261 100805.745 -1.493

number of COVID-19 active infected cases and removed
cases in 184 countries. Furthermore, we use the S-G Filter
algorithm to detect a secondary outbreak in the country
and propose a particle swarm algorithm-based infectious
disease dynamics model (PSO-SIR) to generate a large
number of augmented data. Compared with classical deep
learning (DL) algorithms, the PSO-BLS model has a bet-
ter performance. Moreover, the PSO-BLS algorithm can
effectively adapt to predicting complex epidemic disease
situations and accurately predict the outbreak trend of
COVID-19, even under the outbreak of multiple waves.
The proposed PSO-BLS can be extended and suitable for
other epidemic prediction problems.
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