
UCRL-JC-
PREPRINT

A database system for constructing, integrating, and displaying
maps of chromosome 19

T. Siezak, M, Wagner, M. Yeh, I. Ashworth, D. Nelson, D. Ow, E. Branscomb, and A. Carrano

This paper was prepared for submittal to the 28th Annual International Conference on System Sciences,
Maui, Hawaii, January 3-6,1994

June 1994

I

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

A database system for constructing, integrating, and

displaying physical maps of chromosome 19

Tom Slezak", Mark Wagner, Mimi Yeh, Linda Ashworth, David Nelson,
David Ow, EIbert Branscomb, and Anthony Carrano

Human Genome Center

Biology and Biotechnology Research Program, L-452

Lawrence Livermore National Laboratory,

7000 East Avenue

Livermore, CA 94550

U.S.A.

*To whom all correspondence should be sent: slezak@llnl.gov, (510) 422-5746,

FAX (510) 423-3608

DI'STRIBUTION OF THIS DOCUMENT IS U ~ ~ ~ ~ ~ ~ E ~ ~ ~

1

mailto:slezak@llnl.gov

Abstract

Efforts are underway at numerous sites around the world to construct physical maps of all human

chromosomes. These maps will enable researchers to locate, characterize, and eventually under-

stand the genes that control human structure and function. Accomplishing this goal wil l require a

staggering amount of innovation and advancement of biological technology. The volume and corn-

plexity of the data already generated requires a sophisticated array of computatiord support to col-

lect, store, analyze, integrate, and display it in biologically meaningful ways. The Human Genome

Center at Livermore has spent the last 6 years constructing a database system to support its physical

mapping efforts on human chromosome 19. Our computational supportteam is composed of experi-

enced computer professionals who share a common pragmatic primary goal of rapidly supplymg

tools that meet the ever-changing needs of the biologists. Most papers describing computational

support of genome research concentrate on mathematical details of key algorithms. However, in this

paper we would like to concentrate on the design issues, tradeoffs, and consequences from the point

of view of building a complex database system to support leading-edge genomic research. We intro-

duce the topic of physical mapping, discuss the key design issues involved in our databases, and dis-

cuss the use of this data by our major tools (DNA fingerprint analysis and overlap computation, con-

tig assembly, map integration, and database browsing.) Given the advantage of hindsight, wediscuss

what worked, what didn’t, and how we will evolve from here. As early pioneers in this field we hope

that our experience may prove useful to others who are now beginning to design and construct simi-

lar systems. This work was performed under the auspices of the U.S. Department of Energy by Law-

rence Livermore National Laboratory under Contract No. W-7405-ENG-48.

2

Introduction to Physical Mapping

The Human Genome Project (HGP) is an ambitious multidisciplinary, international effort to locate,

c h s u a c t e ~ , and understand the estimated 100,OOO genes that determine the organization and func-

tions of humans. Genes are regions of DNA which describe proteins. Each protein is composed of a

sequence of smaller units called amino acids, each of which is in turn coded in the DNA by a triplet of

nucleotides. Genes typically range from a few hundred to tens of thousands of nucleotide “base-

pairs” in length, often split into several “coding regions” separated by “non-coding regions” (filler

of uncertain purpose.) Over 90% of the total 3 bdlion base-pairs of the human genome are thought to

be non-coding regions. Defwts in genes (insertion, deletion, substitution, or rearrangement of nu-

cleotides) may lead to trouble; there are an estimated 5,000 diseases of genetic origin.

Physical mapping is the use of various biological techniques to isolate the location of genes and other

markers to specific portions of the 24 chromosomes that comprise the total human genome. The

crudest techniques may place a gene only on a specific chromosome, or perhaps on a particular arm

or “band” on a chromosome. These regions are still far too large for practical use, since a single band

may span several million base-pairs. More sensitive mapping techniques can further refine the loca-

tion of a gene to pieces of a chromosome of clonable size, such as Yeast Artificial Chromosome

clones (YAG, from l00,OOO to over 1,500,OOO base-pairs in length) or cosmidclones (about 40,OOO

base-pairs long.) A collection of clones specific to a region of interest is called a library. Unfortu-

nately, the process of making these cionable objects results in a complete loss of order, thus requiring

the use of additional mapping techniques to order the objects on which the genes are eventually

mapped.

At an even lower level, individual clones can be split into restriction digest fragments that range from

500 to 15,000 base-pairs in length, and genes can then be mapped onto one or more of these frag-

ments. Current DNA sequencing technology can only reliably determine 400-500 base-pain at a

time, so the restriction fragment(s) containing the gene are split st i l l further and sequenced in multi-

ple small pieces, which again require a re-assembly process to restore order. Sequencing is a rela-

tively expensive and time-consuming process, so it is generally highly desirable to sequence only

regions of interest.

3

For some traits or diseases biological “probes” exist that allow the associated gene(s) to be mapped

to the various objects described above. These probes often come from genetic studies of families that

possess the hereditable disease or trait. The great bulk of the estimated l00,OOO human genes have no

probes at this time and must be detected via other methods. Establishing a physical map of overlap-

ping clones of various sizes that spans all the linear DNA of each human chromosome will emure the

rapid mapping of any new genetic diseases or traits whenever probes are generated.

‘It should be noted that there are numerous possible different approaches to constructing a physical

map, depending on the exact characteristics of the particular type(s) of clones used and the exper-

imental techniques used to order them and map genes upon them. Approaches which rely on the larg-

er YAC clones as their primary objects are often referred to as “top down” approaches, whereas the

use of smaller cosmid clones is a “bottom up” method. Techniques employing new BAC and PAC

clones which range from 50-300Kbp (lalo base-pairs) are now being evaluated as potentially more

efficient schemes. The HGP is currently employing vasiations on several strategies as the various

biological and computational techniques are being developed and evaluated.

Overview of the LLNL Mapping System

Livennore’s current role in the HGP is to provide a physical map of human chromosome 19, which at

an estimated length of 60 million base-pairs is one of the smaller chromosomes. Surprisingly, it is

also considered to be “gene rich”, containing an estimated 2,000 genes. As of this writing, probes are

available for -300 of those genes, most of which have been mapped to cosmid clones in our library.

Included in this set of known genes are ones that cause a form of muscular dystrophy, cause a rare

form of skincancer, andcontrol the senseof smell. Livermore focused onchromosome 19 because of

prior work on a set of DNA repair genes that exist on chromosome 19. These genes are capable of

locating and correcting certain mutations that are due to the effects of ionizing radiation (Weber,

1988). It is anticipated that the remaining estimated 1,ooOt genes on chromosome 19 control many

other important functions and may lead to significant advancement in human health knowledge,

diagnosis, and treatment.

In the past 6 years we have constructed a system to facilitate the acquisition, storage, analysis, query-

ing, and presentation of all our physical mapping data for chromosome 19. The processing of cosmid

4

clone overlap data comprised the bulk of our work in the early phases. We have now “fingerprinted”

over 15,000 cosmid clones, analyzed them for overlap, and reassembled 10,424 of them into 802

contigs that are spanned by 3,536 clones (Figure 1). (Some clones were rejected due to data quality

problems related to the complexity of the underlying biological techniques. Other clones are “or-
phans”due to inability to reliably detect overlaps of less than 30%. Many clones incontigs are redun-

dant to the near-minimal subset required to span all the linear DNA represented in the contig). Our

efforts now have switched to utilize Fluorescence Insitu Hybridization(FISH) mapping, YAC/F3AC/

PAC hybridization, EcoRI restriction mapping, and other techniques to both reduce the number of

gaps and to order the cosmid clone contigs.

Building a Lab Notebook and Physical Mapping Database

Since starting our human genome database in 1989 we have accumulated nearly two hundred tables

containing over 215MB of data and indices. In addition, a separate database contains 1.5GB of raw

cosmid clone fingerprint data (Figure 2). We have several SUN workstations with access to the ge-

nome databases via our custom browser serving 40 local and several remote end users. Our database

has live links to other major genome repository databases (GDB at Johns Hopkins and Genbank at

various sites). Our database is implemented using Sybase, a commercial server/client relational da-

tabase, on a Sun Sparc 2 workstation. All our custom programming uses C, AWK, or PERL on the

Unix operating system.

Physical mapping was in its infancy when we started designing our database. New cloning systems,

experimental methods, and mapping concepts have been constantly developed over the life of this

project. There still is no consensus about what is the necessary degree of resolution needed forphysi-

cal maps or what level of confidence to place on maps constructed by varying methods. Groups that

attempted to apply classical software engineering methodologies appropriate for static problem do-

mains tended to have fared poorly supporting genome physical mapping. We adopted strategies for

survival in this chaotic environment, providing useful tools in a timely fashion and measuring om
success by that of the biologists we were supporting.

We decided quite early to separate our laboratory notebook database from that needed to produce

final, integrated physical maps. This was primarily due to the fact that nobody could define what

5

those final maps should be, and if we didn’t solve the immediate experimental data problems we

would never have survived to the end. Over 3 years elapsed before matters stabilized to the point

where it was possible and necessary to wony about physical map integration.

l. aburatury Notebook Database Design

Genome laboratory notebook database development at LLNL is done in an iterative fashion that is

dictated by the rapidly-changing needs of the end users, rather than formal design theory. The major

steps in the development cycle include defining biological requirements for data tables, table design,

conducting client walkthroughs to confirm the design, table implementation, automating data con-

version, designing and implementing customized user interfaces, and user training. Automated data

conversion is often required because the users don’t tell us about new types of data until they are

certain that the experiments are working and data has piled up in random files or spreadsheets. We

require the users to specify a query usage for every data field that they propose; data that they can’t

usefully query remains in paper notebooks. We did not attempt to achieve a paperless lab nor did we

do explicit formal data or process modeling. Our database schema diagrams (Yeh, 1994) and data

dictionary (Ashworth, 1994) are available via anonymous ftp.

Our design effort involves a close collaboration of the scientists who produce and use the data, and

the database specialists. The biologists are an integral part of the design of “their” tables, including

any iteration steps that may be required. Since they “own” the data and wil l be responsible for all

input of their data, they are highly motivated to get the tables designed properly. A useful side-effect

is that OUT biologists now have acquired a working knowledge of relational databases and can often

provide us with good initial designs. We conduct design walkthroughs with all the people affected by

the related group of tables, updating om database schema and data dictionary at the same time. When

initial consensus is reached, we implement the tables, rules, triggers, indices, and input scripts. If

data already exists in files we write a conversion script. In most cases we implement the new tables

within adayortwoand awaituserfeedback. OEtentwoorthreeiteratiomareneededtobringthenew

tables to equilibrium, until the next change in techniques occur.

Database table design for the cutting edge of human genome research is much different from design-

ing a database for a well-defined business or control system. The end users are constantly creating

I

i
!

I -

new objects and techniques. Sometimes they can not predict how future experiments wdl impact the

relations among data presently stored in the database. We have found that our users generally need

time to use and understand the data to arrive at the best design. We have evolved techniques and built

systems which anticipate frequent change and attempt to minimize its cost.

Although we utihe all the available techniques to ensure database integrity and security (ie., sepa-

rate user accounts, field rules, triggers, read-only views, etc.) we found that it is sometimes neces-

sary to break or bend some of the rules of good database design in order to satisfy practical concerns.

We are not dogmatic about normalization; it is more important to us that our end users understand

how their data is stored and accessed and that they are motivated to use the system. We also have

found it necessary for performance reasons to construct some de-nomalid tables to prevent cer-

tain multi-table joins from causing unacceptably slow response.

We use several different ways to enter human chromosome 19 data into database tables. Many of our

analysis programs input directly to the database. We wrote our own SybaseJC interface library

(Wagner, 1990) on top of the one provided by S ybase to ease the task of accessing the database from

programs and to insulate us from various peculiarities. The most common way for our users to enter

experimental data is to use Unix shell command script programs. These programs are easy to write,

require no compilation and are espially suited for frequent modifications. Using minimal key

strokes, the users can enter their data in a logical and efficient manner, with defaults or repetitive data

automatically supplied. All custom data entry programs we have built offer both input error checking

as well as the ability to hide all details of table linkage from the users. Most of our data entry pro-

grams are complicated, generally involving over 10 related data tables and more than ZOO0 lines of

script code. We tried using the Sybase 4GL tool to create screen forms for data input, but our end

users objected to the excessive amount of mouse movement that was rquired and the inability to

feed it bulk data.

Physical Mapping Database Design

Other genome labs have taken the approach that genomic cartography should be seen as an extension

of the lab notebook database itself. This seems to require that the notion of a physical map be con-

cretely defined in terms of the local experimental data. We decided that rather than trying to build a

7

perfect “object-oriented” definition of a physical map, intimately tied to the biology involved, we

would instead opt for a ‘%elation-oriented” view of all data that could potentially be represented in a

physical map.

Our approach to the storage of map integration data has been to automate the extraction of all salient

experimental data into a small set of basic relations (orientation, distance, length, overlap, e&.) on a

single abstract class of generic “map objects”. We note that this approach frees us from any pre-con-

ceived limitations in the database of what a physical map should look like. It has also allowed us

during this year to incorporate data from several new types of objects (BAWAC/PI) without any

perturbation to the map integration code. We use a separate database for these generic map objects

and their relations, since our lab notebook lacks a unique, stable identifier for all objects. Periodical-

ly we rebuild the map object database from the current state of the lab notebook tables. We will com-

ment later on how we plan to improve this situation in the near future.

An unexpected benefit of this generic mapping approach was our realization that this method could

also be of value in producing consensus maps from a variety of independent sources. All that would

be needed is the use of the same name for identical objects across all input maps. All objects could be

converted into generic map objects, and all salient relationships from the input maps could then be

translated into the basic set of relationships on these pooled generic objects. Our automated map in-

tegration algorithm described below would then be run on this merged set of relations and a consen-

sus of ordering would emerge (and likely conflicting data as well.)

Why we mjected Object-Oriented Databases

Our goal for data retrieval is to help our users manipulate their data easily and give them maximum

freedom to access stored data in any way that makes sense to them. We note that the lack of an ad-hoc

query language in current object-oriented databases makes them completely unacceptable to us at

this time. We also feel that these are not really databases in a strict sense, but merely persistent stor-

age mechanisms for C++ or SmallTalk objects. As such, some features needed for large-scale, mul-

ti-user operation are sti l l lacking or immature. Finally, we do not see that there is any particular ad-

vantage for end users of using object-oriented databases in a domain where the underlying objects

are subject to such constant flux, nor are claims of reusability especially compelling under such cir-

8

cumstances. We expect that our objections will be removed as object-oriented databases mature and

as 00 concepts are incorporated into relational databases.

Tools that our Database supports

- Cosmid Flngerprint Analysls and Overlap Calculation

Earlier we mentioned that LLNL has "fingerprinted" over 15,000 cosmid clones and analyzed them

for overlap. Cosmid clone fingerprints are merely the lists of DNA fragment lengths that one obtains

when the 4OK base-pair clones are digested (cut) with one or more enzymes, each of which cuts the

DNA anywhere a certain short (typically 4-6 base) sequence is found. These enzymes have been

carefully chosen to generate, on average, at least 50 fragments in the range of 30-460 base-pairs for

each cosmid clone. Data is generated on a gel electrophoresis system that typically runs 32 or more

data samples in parallel during a 10-hom run. Each peak indicates the presence of a DNA fragment

of a specific length in base-pairs. The order of these component fragments is completely unknown

(Carrano, 1989).

Extracting fragment lengths (Le., peaks) from gel electrophoresis signals turns out to be non-trivial

due to the combination of a number of factors: edge effects, non-linearity in the electric field

strength, irregular heating of the gel, gel inconsistencies, tumbling DNA fragments overlapping

lanes, non-linear DNA mobility and high variation in the underlying DNA chemistry. Another com-

plication is the fact that about 10% of the time peaks either vanish or appear, even when repeatedly

processing the same DNA under stringent conditions. Finally, up to four different fluorescent dye

colors are tagged to different DNA samples in the same lane to increase throughput (one is a size

standard, to help overcome some of the variations mentioned earlier.) These dyes have a large

mount of spectral overlap and great effort must be taken to suppress the spurious peaks in one color

that arise only from the presence of a large peak in another color.

Analyzing restriction fingerprints presents several difficulties not normally encountered in signals

generated, for example, by DNA sequencing reactions. The signals acquired are highly non-station-

ary, consisting of features of varying sizes and shapes superimposed on a noisy, slowly varying back-

ground. In addition, the features in the data are not at all well-separated, but rather consist of a ran-

dom number of overlapping peaks of varying shapes. For these reasons most of the model-based

9

approaches to peak fitting that we tried, such as numerical deconvolution, failed to give consistent,

reproducible results. We abandoned our efforts to find models that fit the idiosyncratic nature of the

peaks in our signals, and instead turned to modeling the noise. We could then simply clean the noise

from the signal and declare anything left over to be “real.” We fit a first-order autoregressive model

provided by Splus (Statistical Sciences, Inc., 1990) to our data and used it as a description of the

noise. We then fed this model to a smoother-cleaner, which identified all those data points which

were indistinguishable from noise at a certain error level. After subtracting those points from the

signal, we were left with a clean signal on which we could apply simple bump-hunting methods to

determine peak locations. Input to this process is from our “raw”database; all peak location output is

written directly to the ch19 production database.

We construct contigs based on data describing which pairs of cosmids are likely to overlap. That is,

for each pair of cosmid clones, we use a statistical method to compute a number which represents

how likely it is that the cosmids overlap. The larger the number, the more likely the overlap. This

method, outlined in (Branscomb, 1990), uses data on how well two fingerprints match to compute

the logarithm (base 10) of a “lxkelihood ratio”. The ratio whose logarithm we compute is the ratio of

two probabilities: the probability of seeing a given pattern of matching (and mismatching) bands in a

pair of fingerprints when the two cosmids overlap, divided by the Probability of seeing that pattern

when the two cosmids do not overlap. The more the two fingerprints match, the more positive is the

log of the ratio between these two probabilities. Conversely, the more two fingerprints do not match,

the more negative is the log of the ratio between the two probabilities. It is this log likelihood ratio

between any pair of clones that is the input to our subsequent reconstruction algorithm.

The probabilities that make up the likelihood ratio are rather complex to compute (Branscomb et al.

give some details). The probabilities we compute are based on the actual distribution of fragment

sizes in our data. This means that we can easily adapt our algorithm to regions of the genome where

the probability of seeing fragments of certain sizes is unusual in some respect. For instance, in areas

containing many similar genes, certain patterns of fragment sizes may be much more common than

usual. In these areas we can adapt our algorithm to discount matches among fragments of those sizes,

and concentrate instead on the matches that are more informative in nature.

When we implemented our overlap algorithm we quickly discovered that we would need access to a

sigruficant amount of computing power in order to be able to process all overlap calculations in a

reasonable amount of time. Given 15,000 clones we must compute about 112,500,000 likelihood

ratios, each requiring up to loOK floating point operations. We split our overlap job to run in parallel

over all our workstations, using Unix socket inter-process communication calls (Comer, 1988) to

establish a single “serve?’ process which handed out work to do to the parallel “client” processes.

Each pair-wise comparison is totally independent of all others, so the order of completion was im-

material. The sewer hands out rows of pair-wise comparisons to be done and writes results into the

database. The mechanism is robust against the loss of any client process (Slezak, 1989).

At present we have access to over 40 workstations with a combined potential throughput of over 100

Mflops. We can completely re-calculate the -112 million pair-wise overlaps from 15,000 cosmid

clone fingerprints in about 2 days using this network.

- Cosmid Conflg Assembly

Once the pair-wise overlaps have been calculated, we are stdl faced with the daunting problem of

reassembly of the entire original chromosome. We noted that the population distribution curve of the

overlap likelihood function gave us a clue to a simpler approach (Branscomb, 1990). The great body

of potential overlaps clearly show absolutely no chance of true overlap. A small number of overlap

scores indicate dead-certain overlap, and there remains only a small, steep region where there is any

uncertainty. This suggested that we try a fully-automatic simple greedy approach, ordering the pair-

wise overlap Likelihood values and beginning assembly with the most confident overlaps first, con-

tinuing down to some threshold where we lost confidence in the veracity of the overlap. Such an

approach is embodied in OUT humpty re-assembly program.

Input to humpty consists of triplets (cosmidl, cosmid2, overlap-score) extracted from the ch19 data-

base sortedin descending order on overlap-score. Run time program options allow the user to speci-

fy which overlap score is the lowest one we are completely confident of (sure-match), which score

is the lowest one we wil l examine for reconstruction (sure-miss), and which score is the lowest one

we will consider potentially significant in special circumstances (min-sig). Of course, sure-match

>= sure-miss >= min-sig.

11

On real data subject to the errors mentioned earlier, false joins occur which are later detected via

other methods. Given our 112 million overlaps and an assembly cutoff of 6 logs (real data requires a

higher cutoff than errorless simulated data), we expect over 100 errors from the statistics alone. In

most cases, a single false positive overlap greater than our threshold incorrectly joins 2 otherwise

internally-valid contigs. In the remaining cases, tandem repeat gene families or similar repetitive

regions cause scrambling that was cleared up either by Eco restriction mapping or by re-running the

overlap calculation tuned to the peculiar peak frequencies of those regions. Methods described be-

low detect and assist in repairing errors in cosmid contig assembly.

- Partial Order Tree Generation

We derive order data from genetic, FISH, and restriction mapping methods. Several resolutions of

FISH data provide us with distance estimates as well (Brandnff, 1994). We chose to store all order

data in terms of pairs (i.e., clone A is P-terminal of clone B) and automatically derive the backbone

partial-order tree that will be used as the core of our map integration.

Our partial ordering algorithm uses pair-wise order data extracted from the ch19 database. It con-

structs adjacency and maximal path length matrices and uses these to generate compacted partial

order trees. The algorithm also detects and reports cycles, so that errors or inconsistencies in the un-

derlying data can be examined and corrected. Output from this algorithm is written directly to the

database and can be viewed in our browser (Figure 3). It has been used to help resolve the ordering of

a large set of markers on chromosome 19.

- Automated Physical Map Integration

The integration of the cosmid contig maps with other mapping information covering the same do-

mains is a complex but important problem. The LLNL chromosome 19 physical mapping effortin-

volva more distinct experimental sources of data than most other mapping projects. We have cos-

mid contig data, four types of FISH data, Eco restriction maps (Figure 4), YAC/STS data, and many

types of hybridization data (cosmid-xosmid, plus bidirectional cosmid<->YAC, cos-

mid<->BAC, and cosmid<->PAC/Pl). In addition, we have order data derived from genetic map-

ping markers which are linked to cosmid clones via unique probes. This wealth of diverse data has

14

The heart of the hump@ algorithm is the logic that controls the merging of two existing contigs and

the dynamic determination of a minimal spanning path. Preventing false joins is of the utmost impor-

tance in contig assembly, so stringent sanity tests must be passed before a purported merge is al-

lowed, (The cosrnid clone in the purported merge is projected onto its appropriate minimal spanning

path position if not already present. If it does not project to a path end, all path members between it

By ordering the sets of triplets on descending overlap-score, we ensure that the algorithm makes the

most confident reconstructions first. This allows us to rely on contextual evidence to support or deny

any purported further reconstructions at lower levels of confidence. A pseudo-code form of the al-

gorithm follows:

100p: set Cl, C2 from the triplet on top of the list. stop if overlap-score c sure-miss

if Cl and C2 are both not in contigs, make a new contig.

else if C l and C2 are already in the same contig, do nothing.

else if only one of C1, C2 is already in some contig,

if overlap > sure-match,
add the new cosmid to that contig.

update minimal spanning path

else check all contigs for best fit based on total system ‘energy“
i) add new a m i d to that existing contig

else Cl and C2 are already in different contigs

choose best options based on total system ‘energy”
i) do nothing
ii) attempt to merge contigs

iii) remove one cosmid and place in other contig

remove top triple from the list,

if the list is not empty, go to loop

The overlap likelihood has been shown to have the additive property of an information statistic

(Branscomb, 1990) and hence we can compute the total “energy” of the solution at any time to make

informed decisions about placing clones in contigs or moving them to different contigs.

12

and one end must confirm overlap to the other contig.) Similarly, presenting areliable near-minimal

spanning path for eachcontig has at least two impacts: it limits how many clones need to be stored to

cover the DNA contained in each contig, and it guides high-resolution Eco restriction mapping.

Spanning paths are easily computed on the fly as the descending list of overlap probabilities brings

new clones intocontigs, one at a time. The new clone’s overlap with all existing spanning path mem-

bers is checked and the new clone either 1) extends one end of the path, 2) replaces one or more exist-

ing contiguous path members, or 3) has no effect on the path. Similar logic handles contig merges.

All contig membenhip data is written directly to the ch19 database.

It took one workstation 15 minutes toreassemble 8,OOO simulated errorless chromosome 19 cosrnid

clones into 482 spanned contigs. Examination of the resulting contig gaps shows that they either are

due to the lack of suitable cutting sites in that region or the inability to reliably detect overlap at that

location (ie, overlap < -30%). There were 2 false joins at alog-likelihood cutoff level of min-sig = 4

Logs, out of 3.2 x lo7 total potential overlaps. No other clones were placed incorrectly into contigs.

A recursive routine was written to exhaustively check the accuracy of ourspanning paths by generat-

ing all possible valid spanning paths to find the shortest. Using several workstations we were able to

verify 476 of the 482 spanning paths over the course of a week. The largest contig we were able to

confirm contained 62 total members, with 19 on the spanning path. It took 1.2 biZZion recursive calls

(and several days) to venfy that there was no shorter spanning path for this single contig. Only 83

spanning paths (17.4%) were not true minimal paths, 72 of these being 1 member too long and 11

being 2 members too conservative. Another way of stating this is that we required 24 11 cosmids to

span the DNA in 476 contigs, instead of the true minimum of 23 17. All near-minimal spanning paths

were true spanning paths (ie., covered all the DNArepresented in the contig), with the exception of 8

path ends that were called incorrectly. In each case these were nearly complete overlaps with the

“true” end element (i.e., the chosen end was a subset of the “true” end), yet based on overlap data

alone the algorithm had made the proper choice. Based on these tests we conclude that our dynamic

spanning path assembly algorithm provides both high speed and accuracy that reflects the quality of

13

the input data, giving us a reliable base for completing the physical map via other methods.

challenged us to develop automated methods to integrate the over 500,000 relations that we track

among 180,000 potentially-mappable objects.

Our primary design goal for integrating physical map data is to use fully automated map assembly

techniques as far as proves feasible. We find that it is useful to distinguish between “maps for map

builders” and “maps for map readers.” While the later is the end-goal, our tremendous diversity of

data dictated that we first build an intermediate map which integrates all data democratically and

thereby makes visually obvious all the “interesting areas” of the map. This includes errors of many

sorts (using the wrong clone, data entry error, database error, analysis software error, etc.) and also

unusual biology (“unique” probes that are not unique, repeat elements, deletions, chimerism, etc.)

Having stored all integrated mapping data as a set of relations on a single class of generic map ob-

jects, we noticed that if we ignored distance and lengthdata we could greatly simpfify the problem of

map integration. Our data can then be considered to be “generic hybridization” data (including all

true hybridizations plus contig membership and restriction map membership since they similarly

imply overlap of DNA). We decided to ignore distance and length data in our initial integrated map-

ping approach and concentrate solely on the order of cosmid clone probes. We refer to this first-level

integrated physical map as our “partial order” map, as distinguished from the “metric” map that is

following (Wagner, 1994). Having made the X-axis of our integrated map unitless, we now saw that

map integration could be reduced to an optimization problem where ‘‘probes” (e.g., cosmid clones,

some of which might be associated with STS markers or loci) intersected larger “objects” (e.g., cos-

mid clone contigs, restriction fragment maps, YACs, BAG, PACs).

We solved this optimization problem via simulated annealing running on 40+ machines in parallel

(S led , 1994). Current maps of 2,900 cosmid clone probes intersecting 750 larger objects (Figures 5

and 6) take about 5 hours to construct on this network and are Written to the integrated map database.

These maps are being used to efficiently guide further work towards map closure.

Browsing the Map

The implementation of our database browser (an X/Motif graphical tool for viewing and navigating

our database) has been an ongoing effort for over five years, with 40 research using it daily. No

prior workexisted when we started and there was noconsensus locally about what it shouldlook like.

15

The browser was therefore designed to be’a flexible framework, capable of adding new data types

and display methods as they were requested. We currently have 2 modes for examining cosmid con-

tigs, a viewer for raw cosmid fingerprint data, a mode for examining orphan cosmid clones, modes

for examining restriction fragment maps and sequencing data, a general multi-database query mode,

and 3 modes for viewing various integrated maps. Each mode in our browser can be thought of as an

independent “display object.” These objects are self-contained, possessing both the data and the ap-

propriate display functions needed to draw them in an independent window. Since many of the map

modes are closely interrelated (i.e., a cosmid clone in a contig display may also appear in a restriction

map display and also in several integrated map displays) we have provided a feature that always

tracks the currently selected object of focus, reporting in the global selection menu which other

modes have data pertinent to that focused object. This allows a user to track through a wide range of

maps for the right level of detail.

One of the most important features of the browser is our query menu interface (Figure 7). We needed

to satisfy a range of users, from total computer novices to experts, with an interface that would nei-

ther be intimidating nor frustrating. We also wanted to avoid limiting the types of queries that could

be made. We accomplished this with a generic user interface with which users can select from a list of

“canned” queries which do the most common tasks. They can also type in direct SQL through an

editing feature or use a canned query as a template, and then edit that query to suit their particular

needs. Canned query templates are stored in the database, as are all other data that customize the

query menu for a particular usage. The query menu code knows nothing about biology or SQL and

therefore could be used as a general database interface. It only knows several methods of allowing

the user to construct and expand queries, which are then passed to the SQL server. Return values are

assumed to be database keys of a type that is valid for the current display mode.

Besides canned queries that take user-supplied values at run time, our interface also allows user

queries tobereadfrom andstoredtofiles.NotalldesiredfunctionscanbedonewithSQLalone (e.g.,

recursive queries) so we had to allow for arbitrary external processes (or pipelines of processes) to be

run and their output to be a stream of database keys that could feed directly as a “hit list” to the query

16

menu interface. An unexpected benefit of this interface is that most of our biologist users have

l e d enough SQL from the canned queries that they can satisfy most query needs on their own.

Summary and Future Directions

We would like to stress that our system should be viewed not as a particularly elegant or optimal

solution, but rather as a case study of the types of problems faced by those designing systems to meet

the needs of researchers in arapidly-changing field. In such environments we feel that the ability to

cope with the tradeoffs and compromises required to quickly produce working tools is more impor-

tant than rigid adherence to any particular set of formal design rules or tools. End-users were in-

volved heavily in design and for feedback during rapid prototyping and were not “protected” from

database realities.

In hindsight, many of the problems our database system now has are a direct result of the barnacle-

like growth of the project as the discipline of physical mapping was born. Viewpoints changed, some
tables atrophied, and techniques mutated and overlapped over time. Our use of a separate database

for generic physical map objects is a prime example of such a barnacle. When we began the lab note-

book database we had no idea what our physical mapping needs would be. Four years later when we

designed the generic map object database we weren’t sure that it would suffice, so it was done sepa-

rately. For the last 2 years as we raced towards map closure we have not had the time or resources to

stop and “do things right”. Now that our techniques are beginning to stabilize we will take the oppor-

tunity to learn from our experience.

The LLNL Human Genome Center is preparing to do mapping on other human, animal, plant, and

microbial chromosomes. Much of this data will be cross-referenced &e., homologous genes found

on many species). This will require a complete re-design of our database, which was consciously

designed to only handle human chromosome 19. Some required changes are:

- Stable, unique identifiers for all objects in the database. This will allow us to not have to keep sepa-

rate lab notebook and generic mappable object databases. Aliases can supply familiar names.

- Higher level of data abstraction. We need only one clone table, capable of holding YACs, BAG,

PACs, Pls, cosmids, and any other cloning vehicle used for any genome we study. This table will act

as a “base class”, with other tables as necessary holding specific details unique to each clone type.

17

This wil l greatly reduce the number of database tables and query complexity, and views can provide

the illusion of single chromosome or species databases.

- Higher level of relationship abstraction. Our current database had separate tables for array, pool,

and southem hybridization to track the experimental techniques closely. Just as a single clone table

can handle all generic “clones”, we need a single generic hybridization table (to handle all hybridiza-

tions from all types of clones.)

- Generic concepts of clonal overlap. A single table can handle all pertinent information from a mul-

titude of hybridization techniques, again as a base class with detail tables as needed.

- Generic concept of probes. Our current lab notebook database now tracks about 20 different types

of probes, with too many important details (like the probe name) buried in the 20 detail tables. This

makes the SQL to extract such data quite messy. Again, we need a single “base c1ass”probe table that

contains all data generic to all probes, with lab notebook details confined to tables that are not vital to

the central task of map creation.

- Generic concepts of attributes and ownership. The presence of stable, unique idenidiers wdl allow

us to have a single table to tie attributes to objects. It will also allow us to link each data entry to an

owner.

- Generic concept of privacy. Some data is not publicly releasable for avariety of reasons. We need to

be able to control this infarmation on a per-fact basis so that safe public access can be offered with-

out violating any of om 2oot. collaborative agreements.

Work on this new database has recently commenced.

Acknowledgment

This work was perfarmed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na-

tional Laboratory under Contract No. W-7405-ENG-48.

18

References

Ashworth, L., (1994). Data Dictionary for the LLSL Human Genome Center chromosome 19 data-

base. Available via anonymous ftp at humpty.llnl.gov in lpubldatadictionary.ps.2

Bran-, B., et. al., (1994). Human chromosome 19p: A Fluorescence in situ hybridization map

with genomic distance estimates for 79 intervals spanning 20Mb, Genomics (In Press).

Branscomb, E., et al. (1990) Optimizing Restriction Fragment Fingerprinting Methods for Order-

ing Large Genomic Libraries. Genomics 8,351-366.

Carrano, A.V., Lamerdin, J., et al. (1989). A high-resolution fluorescence-based semi-automated

method for DNA fingerprinting. Genomics 4, 129-136.

Comer, D. (1988) Internetworking with TCP/IP: Wnciples, Protocols, and Architecture. Prentice

Hall.

Slezak, T. (1989) Quick and Dxty Parallel Processing on a Network of Workstations, Tentacle

(LLNLIntemal publication) X6-7 16-28. Copy availablevia ftp from humpty.llnl.gov in/pub/ten-

tacle

Slezak, T. (1994). Automated Integration of Genomic Physical Mapping Data Via Parallel Simulated

Annealing, in Proceedings of 3rd International Conference on Bioinformatics and Genome Re-

search (in press). Available via ftp from humpty.llnl.gov in /pub/supercomp94.text.ps.Z

Statistical Sciences, Inc (1990). Splus Users Manual. Seattle, Washington.

Wagner, M., (1990). Sybase C interface library. Available via ftp h m humpty.llnl.gov in/pub/geno-

mestuffirmdi.tar.2

Wagner, M., (1994). Automated Construction of Physical Maps. Master's Thesis, University of

California, Davis.

Weber, C.A., Sdazar, E.P., et al. (1988). Molecular cloning and biological characterization of a hu-

man gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol. Cell.

Biol. 8,1137- 1146.

Yeh, M., (1994). Database schema diagrams for the LLNL Human Genome Center chromosome 19

database. Available via anonymous ftp at humpty.llnl.gov in /pub/databaseschema.ps.Z

19

http://humpty.llnl.gov
http://humpty.llnl.gov
http://humpty.llnl.gov
http://humpty.llnl.gov
http://humpty.llnl.gov

Figure Legends

NOTE: Most of the figures are color screen dumps from our database browser and probably will not be visible

here with full fidelity. Contact the author for access to copies via ftp or WWW.

Figure 1 - A view of one of our 800 cosmid clone contigs, as seen from our browser. Each number in the lower

left side is the database key of a 4OKbp cosmid clone. The 9 clones at the bottom are the near-minimal span-

ning path of the contig; all other clones are redundant and stacked over their strongest overlap to the minimal

path. A database query for a gene-specific probe got us into this contig; the 4 clones positive for &at probe

are enclosed in boxes. We are currently focused on clone 16922 and aU attributes for this clone are shown

in the scroll-able window at top right. Buttons on the bottom right allow over 20 specialized functions to be

performed. The rectangular window labeled “Browser” is the main menu. The 12 viewing modes in the top

half are available for independent launching. The bottom half of the window indicates what other viewing

modes contain data pertinent to the object currently in focus (cosmid clone 16922 in this instance.)

Figure 2 - An overall view of the major databases in our system. The raw database stores over 1.5Gbytes of

restriction fingerprinting data. The ch19 database stores all derived cosmid contig data plus all other exper-

imental data used in mapping. The integrated mapping database expresses all data in terms of basic relation-

ships on a single class of generic mappable objects, allowing for fully automated integration of data from

many sollr%es.

Figure 3 - This display presents one way of examining the relationships between a large variety of data ob-

jects. Near the top, a diagram shows the chromosome and the band($ associated with the current object of

focus. Below the diagram are controls for scrolling and manipulating the map object stack, as well as controls

for the query hit list (if any). Below that are the indicators to control the display of up to 4 of the available

map object types at any time (17 types are shown in this image, which does not show the use of color to indi-

cate object selection.) We have chosen to display YACs, contigs, clones, and loci. An infomation window

at top right shows that object 46049, which is clone id 16922, has been selected for focus (the red color used

is lost in this rendering.) This clone is in a partial-order tree in the cosmid clone display, and has links to 2

YACs, a contig, and 2 loci. We can see from the object selection boxes that there is -for this clone in linked

to 6 other map object types that we could choose to show, by turning off one or more of the current views.

20

Figure4 - This is a portion of one of our many EcoRI restriction fragment maps. Each horizontal row repre-

sents one MKbp cosmid clone, with the clone name on the left and cmtig number on & right The fragments

are drawn to scale and alignment is easily checked visually. With a click of a button, the display changes to

show the mmeric sizes of the fragments (which range from 0.5Kbp to about 2OKbp.) Although not shown,

these fragments can be linked to sequence-related attributes such as genes, loci, e&.

Figure 5 - A full-chromosome view of our integrated map, containing 2,941 probes (columns) intersecting

760 larger objects (contigs, restriction maps, YAC/BAC/PAC clones on the rows), with clones partially or-

dered via FISH or genetic mapping shown in green. Note that off-diagonal elements indicate data that needs

to be examined closely. The region enclosed in the red box is enlarged in Figure 6.

Figure 6 - A tiny region of our chromosome 19 integrated map has been shown in detail, to demonstrate how

our map builders are using this tool to guide closure. The long object composed of black crosses is a PAC

clone; a BAC clone (black diamonds) is located in 3 pieces 4 rows above. Note that the BAC and PAC clones

are deduced to overlap each other, since 11 cosmid clones have been found to hybridize to both of them. Fur-

thermore, the BAC and PAC clones show evidence of overlapping 4 cosmid clone contigs (in blue). Also note

that this region is anchored on one si& by a clone (shown in green) which has been FISH ordered. The four

contigs have been restriction mapped (blue crosses) based on the hybridization evi&nce and were found to

overlap using this higher-resoiution mapping method.

Figure 7 - Browser query menu interface. This is our generic database interface. The information lines near

the top &scribe which mode of the database browser we are in and what type of database keys must be re-

turned by all queries. A scroll-able list of canned queries is on the left, with a mouse-click the user can get

a description of the query or pull up the SQL template in the workspace on the right. The attribute locator

queryhasbeense1ected.Notetheembeddedrnarker (“@Il@”) intheSQLindicatingthattheusermustinter-

actively supply the value of the particular attribute desired, by clicking the “FZxpand Next” button. Once the

query is fully expanded, the red “Run Query” button is hit (invisible in this B/W picture, it is to the right of

the “Expand Next” button.) Other buttons allow an editor window to appear, with the workspace contents

pre-loaded, and for external queries to be run using either the workspace contents or specified external files.

Queries can be saved or loaded &om files. This interface is used in all browser modes except the raw data

viewer.

Cormidr T-

31263

5962
30260 lmv
31263
21226 6003

33561 5997 13801 8999 32840
7459 30914 34441 10753 14468 28333 17972
23946 23946 33677 6011 9390 28264 15823

11160 1523 11012 28282

;.-i73 34714 5016 28312 28846

Browser

I I m m
I

A s k i i
Restrictton Fragment Hap

Relation ststus:

None

Cosrrid Cantigt by Cantig-id

RF Nap by Fragnmt ID
sequence

J

bun-id = 14997
Contig rmmber = 847
Ctttributss:
Yc400177
YC274372
RnllP83
ww
POTREE
LYLl

INSITU

Overall System Data
Flow

Fingerprinting data

signal processing

3

color-correction
peak detection

DNA re-assembly

Non-fingerprinting data

YAC clones
hybridization
restriction mapping

Map Integration

generic map objects
partial ordering trees
automated integration

parallel overlap processing
automated reassembly

..

u

Database Browser

raw wavefonns
contigs
integrated maps
SQL to Internet databases
etc.

mgs to tree id: 0
No orientation

LEFT RIW

21437i
400177

LEFT RIGHT

847

LEFT RIGHT

Reset left right up down WPE rn FISH:Y ~ N E : Y RF:Y

UP DOWN

UP DOWN

Reset

Reset

left

left

right 4, dwn TYPE ID FISH:Y cENE:Y RF:Y N ~ : Y Cosmid Conttgs Level

right up dawn TYFE ID F1SH:Y GENE:Y RF:Y N ~ : Y Conid Clones Lwel Left: 53 Right: 259

11547 -12909

27072
27085
27851

--223c16---10190 ----17111 19785 -13576 -24541-20492 -15423 7 5074 , 4 5 9 2 9 y l l 0 1 2 723890 -13498 - 27752 - 8052
\328 -30169 17910 16922

23946

LEFT RIGHT up DOWN Reset left right up

15
53

d

a B

x

e
3
U

u f

P
P

i

a .

Zooa Step Expand Shrink Reset Insert Info Load H Grid Off V Grid Off Pegged ON C m s ON Hisses OW I

-.-is '

4

-v .. ",*::::::::: ::::::::::::::=:::::":::::E::::::::::

b I

- 'xk-L % -
4 *-

' : A

I'

contigs by crun-id

select distinct oontig.crun,fd from contig, attrib where contig,mid =
attrib,crun-id d attrib,nane = " Q I l @ " and recon-id = 17470

