CONF- G40/ Bl 5
UCRLIC 117564:

UCRL-JC-
PREPRINT

A database system for constructing, integrating, and displaying
maps of chromosome 19

T. Slezak, M. Wagner, M. Yeh, L. Ashworth, D. Nelson, D. Ow, E. Branscomb, and A. Carrano

This paper was prepared for submittal to the 28th Annual International Conference on System Sciences
Maui, Hawaii, January 3-6, 1994

June 1994

e 075 S rEr iy vir

sy r70 740
i S i i i i i il
A I L I I i i L i 1
WS s

sy

4 ”,
SIS IPIITISILIISIIE SIS LTINS I ETIEIIISIIS IS IIS ISP I IS
Y0 1/’&':’1‘0’:::1v:aao:l',;la AT I 1L I IIIIEIS I I PP I PP

This is a preprint of a paper intended for publication in a joumnal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

A database system for constructing, integrating, and

displaying physical maps of chromosome 19

Tom Slezak*, Mark Wagner, Mimi Yeh, Linda Ashworth, David Nelson,
David Ow, Elbert Branscomb, and Anthony Carrano

Human Genome Center
Biology and Biotechnology Research Program, L-452
Lawrence Livermore National Laboratory,
7000 East Avenue
Livermore, CA 94550
US.A

*To whom all correspondence should be sent: slezak@1lnl.gov, (510) 422-5746,
FAX (510) 423-3608

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED)

mailto:slezak@llnl.gov

Abstract

Efforts are underway at numerous sites around the world to construct physical maps of all human
chromosomes. These maps will enable researchers to locate, characterize, and eventually under-
stand the genes that control human structure and function. Accomplishing this goal will require a
staggering amount of innovation and advancement of biological technology. The volume and com-
plexity of the data already generated requires a sophisticated array of computational support to col-
lect, store, analyze, integrate, and display it in biologically meaningful ways. The Human Genome
Center at Livermore has spent the last 6 years constructing a database system to support its physical
mapping efforts on human chromosome 19. Our computational support team is composed of experi-
enced computer professionals who share a common pragmatic primary goal of rapidly supplying
tools that meet the ever-changing needs of the biologists. Most papers describing computational
support of genome research concentrate on mathematical details of key algorithms. However, in this
paper we would like to concentrate on the design issues, tradeoffs, and consequences from the point
of view of building a complex database system to support leading—edge genomic research. We intro-
duce the topic of physical mapping, discuss the key design issues involved in our databases, and dis-
cuss the use of this data by our major tools (DNA fingerprint analysis and overlap computation, con-
tig assembly, map integration, and database browsing.) Given the advantage of hindsight, we discuss
what worked, what didn’t, and how we will evolve from here. As early pioneers in this field we hope
that our experience may prove useful to others who are now beginning to design and construct simi-
lar systems. This work was performed under the auspices of the U.S. Department of Energy by Law-
rence Livermore National Laboratory under Contract No. W-7405-ENG-48.

('

Introduction to Physical Mapping

The Human Genome Project (HGP) is an ambitious multidisciplinary, international effort to locate,
characterize, and understand the estimated 100,000 genes that determine the organization and func-
tions of humans. Genes are regions of DNA which describe proteins. Each protein is composed of a
sequence of smaller units called amino acids, each of whichis in tum coded in the DN A by a triplet of
nucleotides. Genes typically range from a few hundred to tens of thousands of nucleotide “base-
pairs” in length, often split into several “coding regions” separated by “non-coding regions” (filler.
of uncertain purpose.) Over 90% of the total 3 billion base—pairs of the human genome are thought to
be non-coding regions. Defects in genes (insertion, deletion, substitution, or rearrangement of nu-

cleotides) may lead to trouble; there are an estimated 5,000 diseases of genetic origin.

Physical mapping is the use of various biological techniques to isolate the location of genes and other
markers to specific portions of the 24 chromosomes that comprise the total human genome. The
crudest techniques may place a gene only on a specific chromosome, or perhaps on a particular arm
or “band” on a chromosome. These regions are still far too large for pracﬁcal use, since a single band
may span several million base—pairs. More sensitive mapping techniques can further refine the loca-
tion of a gene to pieces of a chromosome of clonable size, such as Yeast Artificial Chromosome
clones (YACs, from 100,000 to over 1,500,000 base—pairs in length) or cosmid clones (about 40,000
base-pairs long.) A collection of clones specific to a region of interest is called a library. Unfortu-
nately, the process of making these clonable objects results in a complete loss of order, thus requiring

the use of additional mapping techniques to order the objects on which the genes are eventually
mapped.

Ataneven lower level, individual clones can be split into restriction digest fragments that range from
500 to 15,000 base-pairs in length, and genes can then be mapped onto one or more of these frag-
ments. Current DNA sequencing technology can only reliably determine 400-500 base—pairs at a
time, so the restriction fragment(s) containing the gene are split still further and sequenced in multi-
ple small pieces, which again require a re-assembly process to restore order. Sequencing is a rela-
tively expensive and time-consuming process, so it is generally highly desirable to sequence only

regions of interest.

43

I

For some traits or diseases biological “probes” exist that allow the associated gene(s) to be mapped
to the various objects described above. These probes often come from genetic studies of families that
possess the hereditable disease or trait. The great bulk of the estimated 100,000 human genes have no
probes at this time and must be detected via other methods. Establishing a physical map of overlap-
ping clones of various sizes that spans all the linear DNA of each human chromosome will ensure the

rapid mapping of any new genetic diseases or traits whenever probes are generated.

It should be noted that there are numerous possible different approaches to constructing a physical
map, depending on the exact characteristics of the particular type(s) of clones used and the exper-
imental techniques used to order them and map genes upon them. Approaches which rely on the larg-
er YAC clones as their primary objects are often referred to as “top down” approaches, whereas the
use of smaller cosmid clones is a “bottom up” method. Techniques employing new BAC and PAC
clones which range from 50-300Kbp (kilo base-pairs) are now being evaluated as potentially more
efficient schemes. The HGP is currently employing variations on several strategies as the various

biological and computational techniques are being developed and evaluated.

Overview of the LLNL Mapping System

Livermore’s currentrole in the HGP is to provide a physical map of human chromosome 19, which at
an estimated length of 60 million base-pairs is one of the smaller chromosomes. Surprisingly, it is
also considered to be “gene rich”, containing an estimated 2,000 genes. As of this writing, probes are
available for ~300 of those genes, most of which have been mapped to cosmid clones in our library.
Included in this set of known genes are ones that cause a form of muscular dystrophy, cause a rare
form of skin cancer, and control the sense of smell. Livermore focused onchromosome 19 because of
prior work on a set of DNA repair genes that exist on chromosome 19. These genés are capable of
locating and correcting certain mutations that are due to the effects of ionizing radiation (Weber,
1988). It is anticipated that the remaining estimated 1,000+ genes on chromosome 19 control many
other important functions and may lead to significant advancement in human health knowledge,

diagnosis, and treatment.

Inthe past 6 years we have constructed a system to facilitate the acquisition, storage, analysis, query-

ing, and presentation of all our physical mapping data for chromosome 19. The processing of cosmid

e

clone overlap data comprised the bulk of our work in the early phases. We have now “fingerprinted”
over 15,000 cosmid clones, analyzed them for overlap, and reassembled 10,424 of them into 802
contigs that are spanned by 3,536 clones (Figure 1). (Some clones were rejected due to data quality
problems related to the complexity of the undeflying biological techniques. Other clones are “or-
phans” due to inability toreliably detect overlaps of less than 30%. Many clones in contigs are redun-
dant to the near-minimal subset required to span all the linear DNA represented in the contig). Our
efforts now have switched to utilize Fluorescence Insitu Hybridization (FISH) mapping, YAC/BAC/
PAC hybridization, EcoRI restriction mapping, and other techniques to both reduce the number of

gaps and to order the cosmid clone contigs.

Building a Lab Notebook and Physical Mapping Database

Since starting our human genome database in 1989 we have accumulated nearly two hundred tables
containing over 215MB of data and indices. In addition, a separate database contains 1.5GB of raw
cosmid clone fingerprint data (Figure 2). We have several SUN workstations with access to the ge-
nome databases via our custom browser serving 40 local and several remote end users. Our database
has live links to other major genome repository databases (GDB at Johns Hopkins and Genbank at
various sites). Our database is implemented using Sybase, a commercial server/client relational da-
tabase, on a Sun Sparc 2 workstation. Al our custom programming uses C, AWK, or PERL on the

Unix operating system.

Physical mapping was in its infancy when we started designing our database. New cloning systems,
experimental methods, and mapping concepts have been constantly developed over the life of this
project. There still is no consensus about what is the necessary degree of resolution needed for physi-
cal maps or what level of confidence to place on maps constructed by varying methods. Groups that
attempted to apply classical software engineering methodologies appropriate for static problem do-
mains tended to have fared poorly supporting genome physical mapping. We adopted strategies for
survival in this chaotic environment, providing useful tools in a timely fashion and measuring our

success by that of the biologists we were supporting.

We decided quite early to separate our laboratory notebook database from that needed to produce
final, integrated physical maps. This was primarily due to the fact that nobody could define what

i

those final maps should be, and if we didn’t solve the immediate experimental data problems we
would never have survived to the end. Over 3 years elapsed before matters stabilized to the point

where it was possible and necessary to worry about physical map integration.

Laboratory Notebook Database Design

Genome laboratory notebook database development at LLNL is done in an iterative fashion that is
dictated by the rapidly—changing needs of the end users, rather than formal design theory. The major
steps in the development cycle include defining biological requirements for data tables, table design,
conducting client walkthroughs to confirm the design, table implementation, automating data con-
version, designing and implementing customized user interfaces, and user training. Automated data

conversion is often required because the users don’t tell us about new types of data until they are

“certain that the experiments are working and data has piled up in random files or spreadsheets. We

require the users to specify a query usage for every data field that they propose; data that they can’t
usefully query remains in paper notebooks. We did not attempt to achieve a paperless lab nor did we
do explicit formal data or process modeling. Our database schema diagrams (Yeh, 1994) and data
dictionary (Ashworth, 1994) are available via anonymous ftp.

Our design effort involves a close collaboration of the scientists who produce and use the data, and
the database specialists. The biologists are an integral part of the design of “their” tables, including
any iteration steps that may be required. Since they “own” the data and will be responsible for all
input of their data, they are highly motivated to get the tables designed properly. A useful side-effect
1s that our biologists now have acquired a working knowledge of relational databases and can often
provide us with good initial designs. We conduct design walkthroughs with all the people affected by
the related group of tables, updating our database schema and data dictionary at the same time. When
initial consensus is reached, we implement the tables, rules, triggers, indices, and input scripts. If
data already exists in files we write a conversion script. In most cases we implement the new tables
within a day or two and await user feedback. Often two or three iterations are needed to bring the new
tables to equilibrium, until the next change in techniques occur.

Database table design for the cutting edge of human genome research is much different from design-

ing a database for a well-defined business or control system. The end users are constantly creating

new objects and techniques. Sometimes they can not predict how future experiments will impact the
relations among data presently stored in the database. We have found that our users generally need
time to use and understand the data to arrive at the best design. We have evolved techniques and built

systems which anticipate frequent change and attempt to minimize its cost.

Although we utilize all the available techniques to ensure database integrity and security (i.e., sepa-
rate user accounts, field rules, triggers, read—only views, etc.) we found that it is sometimes neces-
sary to break or bend some of the rules of good database design in order to satisfy practical concerns.
We are not dogmatic about normalization; it is more important to us that our end users understand
how their data is stored and accessed and that they are motivated to use the system. We also have
found it necessary for performance reasons to construct some de-normalized tables to prevent cer-

tain multi-table joins from cauéing unacceptably slow response.

We use several different ways to enter human chromosome 19 data into database tables. Many of our
analysis programs input directly to the database. We wrote our own Sybase/C interface library
(Wagner, 1990) on top of the one provided by Sybase to ease the task of accessing the database from
programs and to insulate us from various peculiarities. The most common way for our users to enter
experimental data is to use Unix shell command script programs. These programs are easy to write,
require no compilation and are especially suited for frequent modifications. Using minimal key
strokes, the users canenter their data in a logical and efficient manner, with defaults or repetitive data
automatically supplied. All custom data entry programs we have built offer both input error checking
as well as the ability to hide all details of table linkage from the users. Most of our data entry pro-
grams are complicated, generally involving over 10 related data tables and more than 2000 lines of
script code. We tried using the Sybase 4GL tool to create screen forms for data input, but our end
users objected to the excessive amount of mouse movement that was required and the inability to

feed it bulk data.

Physical Mapping Database Design

Other genome labs have taken the approach that genomic cartography should be seen as an extension
of the lab notebook database itself. This seems to require that the notion of a physical map be con-
cretely defined in terms of the local experimental data. We decided that rather than trying to build a

perfect “object-oriented” defimtion of a physical map, intimately tied to the biology involved, we
would instead opt for a “relation—oriented” view of all data that could potentially be represented ina

physical map.

Our approach to the storage of map integration data has been to automate the extraction of all salient
experimental data into a small set of basic relations (orientation, distance, length, overlap, etc.) ona
single abstract class of generic “map objects”. We note that this approach frees us from any pre-con-
ceived limitations in the database of what a physical map should look like. It has also allowed us
during this year to incorporate data from several new types of objects (BAC/PAC/P1) without any
perturbation to the map integration code. We use a separate database for these generic map objects
and their relations, since our lab notebook lacks a unique, stable identifier for all objects. Periodical-
ly we rebuild the map object database from the current state of the lab notebook tables. We will com-

ment later on how we plan to improve this situation in the near future.

An unexpected benefit of this generic mapping approach was our realization that this method could
also be of value in producing consensus maps from a variety of independent sources. All that would
be needed 1s the use of the same name for identical objects across all input maps. All objects could be
converted into generic map objects, and all salient relationships from the input maps could then be
translated into the basic set of relationships on these pooled generic objects. Our automated map in-
tegration algorithm described below would then be run on this merged set of relations and a consen-
sus of ordering would emerge (and likely conflicting data as well.)

Why we rejected Object-Oriented Databases

Our goal for data retrieval is to help our users manipulate their data easily and give them maximum
freedom to access stored datain any way that makes sense to them. We note that the lack of an ad-hoc
query language in current object-oriented databases makes them completely unacceptable to us at
this time. We also feel that these are not really databases in a strict sense, but merely persistent stor-
age mechanisms for C++ or SmallTalk objects. As such, some features needed for large-scale, mul-
ti-user operation are still lacking or immature. Finally, we do not see that there is any particular ad-
vantage for end users of using object-oriented databases in a domain where the underlying objects

are subject to such constant flux, nor are claims of reusability especially compelling under such cir-

cumstances. We expect that our objections will be removed as object—oriented databases mature and

as OO concepts are incorporated into relational databases.

Tools that our Database supports

- Cosmid Fingerprint Analysis and Overlap Calculation

Earlier we mentioned that LLNL has “fingerprinted” over 15,000 cosmid clones and analyzed them
for overlap. Cosmid clone fingerprints are merely the lists of DNA fragment lengths that one obtains
when the 40K base-pair clones are digested (cut) with one or more enzymes, each of which cuts the
DNA anywhere a certain short (typically 4-6 base) sequence is found. These enzymes have been
carefully chosen to generate, on average, at least 50 fragments in the range of 30-460 base—pairs for
each cosmid clone. Data is generated on a gel electrophoresis system that typically runs 32 or more
data samples in parallel during a 10-hour run. Each peak indicates the presence of a DNA fragment
of a specific length in base-pairs. The order of these component fragments is completely unknown

(Carrano, 1989).

Extracting fragment lengths (i.e., peaks) from gel electrophoresis signals turns out to be non-trivial
due to the combination of a number of factors: edge effects, non-linearity in the electric field
strength, irregular heating of the gel, gel inconsistencies, tumbling DNA fragments overlapping
lanes, non-linear DNA mobility and high variation in the underlying DNA chemistry. Another com-
plication is the fact that about 10% of the time peaks either vanish or appear, even when repeatedly
processing the same DNA under stringent conditions. Finally, up to four different fluorescent dye
colors are tagged to different DNA samples in the same lane to increase throughput (one is a size
standard, to help overcome some of the variations mentioned earlier.) These dyes have a large
amount of spectral overlap and great effort must be taken to suppress the spurious peaks in one color

that arise only from the presence of a large peak in another color.

Analyzing restriction fingerprints presents several difficulties not normally encountered in signals
generated, for example, by DNA sequencing reactions. The signals acquired are highly non-station-
ary, consisting of features of varying sizes and shapes superimposed on a noisy, slowly varying back-
ground. In addition, the features in the data are not at all well-separated, but rather consist of a ran-

dom number of overlapping peaks of varying shapes. For these reasons most of the model-based

approaches to peak fitting that we tried, such as numerical deconvolution, failed to give consistent,
reproducible results. We abandoned our efforts to find models that fit the idiosyncratic nature of the
peaks in our signals, and instead turned to modeling the noise. We could then simply clean the noise
from the signal and declare anything left over to be “real.” We fit a first-order autoregressive model
provided by Splus (Statistical Sciences, Inc., 1990) to our data and used it as a description of the
noise. We then fed this model to a smoother—cleaner, which identified all those data points which
were indistinguishable from noise at a certain error level. After subtracting those points from the
signal, we were left with a clean signal on which we could apply simple bump-hunting methods to
determine peak locations. Input to this process is from our “raw” database; all peak location output is

written directly to the ch19 production database.

We construct contigs based on data describing which pairs of cosmids are likely to overlap. That is,
for each pair of cosmid clones, we use a statistical method to compute a number which represents
how likely it is that the cosmids overlap. The larger the number, the more likely the overlap. This
method, outlined in (Branscomb, 1990), uses data on how well two fingerprints match to compute
the logarithm (base 10) of a “likelihood ratio”. The ratio whose logarithm we compute is the ratio of
two probabilities: the probability of seeing a given pattern of matching (and mismatching) bandsina
pair of fingerprints when the two cosmids overlap, divided by the probability of seeing that pattern
when the two cosmids do not overlap. The more the two fingerprints match, the more positive is the
log of the ratio between these two probabilities. Conversely, the more two fingerprints do not match,
the more negative is the log of the ratio between the two probabilities. It is this log likelihood ratio

between any pair of clones that is the input to our subsequent reconstruction algoﬁthm.

The probabilities that make up the likelihood ratio are rather complex to compute (Branscomb et al.
give some details). The probabilities we compute are based on the actual distribution of fragment
sizes in our data. This means that we can easily adapt our algorithm to regions of the genome where
the probability of seeing fragments of certain sizes is unusual in some respect. For instance, in areas
containing many similar genes, certain patterns of fragment sizes may be much more common than

usual. In these areas we can adapt our algorithm to discount matches among fragments of those sizes,

and concentrate instead on the matches that are more informative in nature.

When we implemented our overlap algorithm we quickly discovered that we would need access toa
significant amount of computing power in order to be able to process all overlap calculations in a
reasonable amount of time. Given 15,000 clones we must compute about 112,500,000 likelihood
ratios, each requiring up to 100K floating point operations. We split our overlap job torunin parallel
over all our workstations, using Unix socket inter-process communication calls (Comer, 1988) to
establish a single “server” process which handed out work to do to the parallel “client” processes.
Each pair-wise comparison is totally independent of all others, so the order of completion was im-
material. The server hands out rows of pair-wise comparisons to be done and writes results into the

database. The mechanism is robust against the loss of any client process (Slezak, 1989).

At present we have access to over 40 workstations with a combined potential throughput of over 100
Mflops. We can completely re—calculate the ~112 million pair-wise overlaps from 15,000 cosmid

clone fingerprints in about 2 days using this network.

- Cosmid Contig Assembly

Once the pair-wise overlaps have been calculated, we are still faced with the daunting problem of
reassembly of the entire original chromosome. We noted that the population distribution curve of the
overlap likelihood function gave us a clue to a simpler approach (Branscomb, 1990). The great body
of potential overlaps clearly show absolutely no chance of true overlap. A small number of overlap
scores indicate dead—certain overlap, and there remains only a small, steep region where there is any
uncertainty. This suggested that we try a fully-automatic simple greedy approach, ordering the pair-
wise overlap likelihood values and beginning assembly with the most confident overlaps first, con-
tinuing down to some threshold where we lost confidence in the veracity of the overlap. Such an

approach is embodied in our humpty re-assembly program.

Input to humpty consists of triplets (cosmid1l, cosmid2, overlap_score) extracted from the ch19 data-
base sorted in descending order on overlap_score. Run time program options allow the user to speci-
fy which overlap score is the lowest one we are completely confident of (sure_match), which score
1s the lowest one we will examine for reconstruction (sure_miss), and which score is the lowest one

we will consider potentially significant in special circumstances (min_sig). Of course, sure_match

>= sure_miss >= min_sig.

On real data subject to the errors mentioned earlier, false joins occur which are later detected via
other methods. Given our 112 million overlaps and an assembly cutoff of 6 logs (real data requires a
higher cutoff than errorless simulated data), we expect over 100 errors from the statistics alone. In
most cases, a single false positive overlap greater than our threshold incorrectly joins 2 otherwise
internally-valid contigs. In the remaining cases, tandem repeat gene families or similar repetitive
regions cause scrambling that was cleared up either by Ecorestriction mapping or by re-running the
overlap calculation tuned to the peculiar peak frequencies of those regions. Methods described be-

low detect and assist in repairing errors in cosmid contig assembly.

— Partial Order Tree Generation

We derive order data from genetic, FISH, and restriction mapping methods. Several resolutions of
FISH data provide us with distance estimates as well (Brandriff, 1994). We chose to store all order
data in terms of pairs (i.e., clone A is P-terminal of clone B) and automatically derive the backbone

partial-order tree that will be used as the core of our map integration.

Our partial ordering algorithm uses pair-wise order data extracted from the ch19 database. It con-
structs adjacency and maximal path length matrices and uses these to generate compacted partial
order trees. The algorithm also detects and reports cycles, so that errors or inconsistencies in the un-
derlying data can be examined and corrected. Output from this algorithm is written directly to the
database and can be viewed in our browser (Figure 3). It has been used to help resolve the ordering of

a large set of markers on chromosome 19.

- Automated Physical Map Integration

The ntegration of the cosmid contig maps with other mapping information covering the same do-
mains is a complex but important problem. The LLNL chromosome 19 physical mapping effort in-
volves more distinct experimental sources of data than most other mapping projects. We have cos-
mid contig data, four types of FISH data, Eco restriction maps (Figure 4), YAC/STS data, and many
types of hybridization data (cosmid->cosmid, plus bi-directional cosmid<->YAC, cos-
mid<->BAC, and cosmid<->PAC/P1). In addition, we have order data derived from genetic map-
ping markers which are linked to cosmid clones via unique probes. This wealth of diverse data has

14

]

By ordering the sets of triplets on descending overlap_score, we ensure that the algorithm makes the
most confidentreconstructions first. This allows us torely on contextual evidence to support or deny
any purported further reconstructions at lower levels of confidence. A pseudo-code form of the al-
gorithm follows:

loop: set C1, C2 from the triplet on top of the list. stop if overlap_score < sure_miss

if C1 and G2 are both not in contigs, make a new contig.
else if C1 and C2 are already in the same contig, do nothing.

else if only one of C1, C2 is already in some contig,
if overlap > sure_match,
add the new cosmid to that contig.
update minimal spanning path
else check all contigs for best fit based on total system “energy”
i) add new cosmid to that existing contig

else C1 and C2 are already in different contigs
choose best options based on total system “energy”
i) do nothing
ii) attempt to merge contigs
iii) remove one cosmid and place in other contig

remove top triple from the list,

if the list is not empty, go to loop

The overlap likelihood has been shown to have the additive property of an information statistic
(Branscomb, 1990) and hence we can compute the total “energy” of the solution at any time to make
informed decisions about placing clones in contigs or moving them to different contigs.

The heart of the humpty algorithm is the logic that controls the merging of two existing contigs and
the dynamic determination of a minimal spanning path. Preventing false joins is of the utmost impor-
tance in contig assembly, so stringent sanity tests must be passed before a purported merge is al-
lowed. (The cosmid clone in the purported merge is projected onto its appropriate minimal spanning
path position if not already present. If it does not project to a path end, all path members between it

12

and one end must confirm overlap to the other contig.) Similarly, presenting areliable near-minimal
spanning path for each contig has at least two impacts: it limits how many clones need to be stored to
cover the DNA contained in each contig, and it guides high-resolution Eco restriction mapping.
Spanning paths are easily computed on the fly as the descending list of overlap probabilities brings
new clones into contigs, one at a time. The new clone’s overlap with all existing spanning path mem-
bers is checked and the new clone either 1) extends one end of the path, 2) replaces one or more exist-
ing contiguous path members, or 3) has no effect on the path. Similar logic handles contig merges.

All contig membership data is written directly to the ch19 database.

It took one workstation 15 minutes to reassemble 8,000 simulated errorless chromosome 19 cosmid
clones into 482 spanned contigs. Examination of the resulting contig gaps shows that they either are
due to the lack of suitable cutting sites in that region or the inability to reliably detect overlap at that
location (ie, overlap < ~30%). There were 2 false joins at a log-likelihood cutoff level of min_sig=4
Logs, out of 3.2 x 107 total potential overlaps. No other clones were placed incorrectly into contigs.
A recursive routine was written to exhaustively check the accuracy of our spanning paths by generat-
ing all possible valid spanning paths to find the shortest. Using several workstations we were able to
verify 476 of the 482 spanning paths over the course of a week. The largest contig we were able to
confirm contained 62 total members, with 19 on the spanning path. It took 1.2 billion recursive calls
(and several days) to verify that there was no shorter spanning path for this single contig. Only 83
spanning paths (17.4%) were not true minimal paths, 72 of these being 1 member too long and 11
being 2 members too conservative. Another way of stating this is that we required 2411 cosmids to
span the DNA in 476 contigs, instead of the true minimum of 2317, All near-minimal spanning paths
were true spanning paths (i.e., covered all the DN A represented in the contig), with the exception of 8
path ends that were called incorrectly. In each case these were nearly complete overlaps with the
“true” end element (i.e., the chosen end was a subset of the “true” end), yet based on overlap data
alone the algorithm had made the pfoper choice. Based on these tests we conclude that our dynamic
spanning path assembly algorithm provides both high speed and accuracy thatreflects the quality of
the input data, giving us a reliable base for completing the physical map via other methods.

13

challenged us to develop automated methods to integrate the over 500,000 relations that we track

among 180,000 potentially-mappable objects.

Our primary design goal for integrating physical map data is to use fully automated map assembly
techniques as far as proves feasible. We find that it is useful to distinguish between “maps for map
builders” and “maps for map readers.” While the later is the end-goal, our tremendous diversity of
data dictated that we first build an intermediate map which integrates all data democratically and
thereby makes visually obvious all the “interesting areas” of the map. This includes errors of many
sorts (using the wrong clone, data entry error, database error, analysis software error, etc.) and also

unusual biology (“unique” probes that are not unique, repeat elements, deletions, chimerism, etc.)

Having stored all integrated mapping data as a set of relations on a single class of generic map ob-
jects, we noticed tﬁat if we ignored distance and length data we could greatly simplify the problem of
map integration. Our data can then be considered to be “generic hybridization™ data (including all
true hybridizations plus contig membership and restriction map membership since they similarly
imply overlap of DNA). We decided toignore distance and length data in our initial integrated map-
ping approach and concentrate solely on the order of cosmid clone probes. We refer to this first-level
integrated physical map as our “partial order”” map, as distinguished from the “metric” map that is
following (Wagner, 1994). Having made the X-axis of oﬁr integrated map unitless, we now saw that
map integration could be reduced to an optimization problem where “probes” (e.g., cosmid clones,
some of which might be associated with STS markers or loci) intersected larger “objects” (e.g., cos-

mid clone contigs, restriction fragment maps, YACs, BACs, PACs).

We solved this optimization problem via simulated annealing running on 40+ machines in parallel
(Slezak, 1994). Current maps of 2,900 cosmid clone probes intersecting 750 larger objects (Figures 5
and 6) take about 5 hours to construct on this network and are written to the integrated map database.

These maps are being used to efficiently guide further work towards map closure.

Browsing the Map
The implementation of our database browser (an X/Motif graphical tool for viewing and navigating
our database) has been an ongoing effort for over five years, with 40 researchers using it daily. No

prior work existed when we started and there was no consensus locally about what it should look like.

15

|

The browser was therefore designed to be a flexible framework, capable of adding new data types -
and display methods as they were requested. We currently have 2 modes for examining cosmid con-
tigs, a viewer for raw cosmid fingerprint data, a mode for examining orphan cosmid clones, modes
for examining restriction fragment maps and sequencing data, a general multi-database query mode,
and 3 modes for viewing various integrated maps. Each mode in our browser can be thought of as an
independent “display object.” These objects are self-contained, possessing both the data and the ap-
propriate display functions needed to draw them in an independent window. Since many of the map
modes are closely interrelated (i.e., a cosmid clone ina contig display may also appear inarestriction
map display and also in several integrated map displays) we have provided a feature that always
tracks the currently selected object of focus, reporting in the global selection menu which other
modes have data pertinent to that focused object. This allows a user to track through a wide range of

maps for the right level of detail.

One of the most important features of the browser is our query menu interface (Figure 7). We needed
to satisfy a range of users, from total computer novices to experts, with an interface that would nei-
ther be intimidating nor frustrating. We also wanted to avoid limiting the types of queries that could
be made. We accomplished this with a generic user interface with which users canselect from a list of
“canned” queries which do the most common tasks. They can also type in direct SQL through an
editing feature or use a canned query as a template, and then edit that query to suit their particular
needs. Canned query templates are stored in the database, as are all other data that customize the
query menu for a particular usage. The query menu code knows nothing about biology or SQL and
therefore could be used as a general database interfaée. It only knows several methods of allowing
the user to construct and expand queries, which are then passed to the SQL server. Return values are
assumed to be database keys of a type that is valid for the current display mode.

Besides canned queries that take user-supplied values at run time, our interface also allows user

queries to beread from and stored to files. Not all desired functions can be done with SQL alone (e.g.,
recursive queries) so we had to allow for arbitrary external processes (or pipelines of processes) to be

run and their output to be a stream of database keys that could feed directly as a “hit list” to the query

16

menu interface. An unexpected benefit of this interface is that most of our biologist users have

learned enough SQL from the canned queries that they can satisfy most query needs on their own.

Summary and Future Directions

We would like to stress that our system should be viewed not as a particularly elegant or optimal
solution, but rather as a case study of the types of problems faced by those designing systems to meet
the needs of researchers in a rapidly—changing field. In such environments we feel that the ability to
cope with the tradeoffs and compromises required to quickly produce working tools is more impor-
tant than rigid adherence to any particular set of formal design rules or tools. End-users were in-
volved heavily in design and for feedback during rapid prototyping and were not “protected” from

database realities.

In hindsight, many of the problems our database system now has are a direct result of the barnacle-
like growth of the project as the discipline of physical mapping was born. Viewpoints changed, some
tables atrophied, and techniques mutated and overlapped over time. Our use of a separate database
for generic physical map objects is a prime example of such a barnacle. When we began the lab note-
book database we had no idea what our physical mapping needs would be. Four years later when we
designed the generic map object database we weren’t sure that it would suffice, so it was done sepa-
rately. For the last 2 years as we raced towards map closure we have not had the time or resources to
stop and “do things right”. Now that our techniques are beginning to stabilize we will take the oppor-
tunity to learn from our experience.

The LLNL Human Genome Center is preparing to do mapping on other human, animal, plant, and
microbial chromosomes. Much of this data will be cross-referenced (i.e., homologous genes found
on many species). This will require a complete re-design of our database, which was consciously
designed to only handle human chromosome 19. Some required changes are:

- Stable, unique identifiers for all objects in the database. This will allow us to not have to keep sepa-

rate lab notebook and generic mappable object databases. Aliases can supply familiar names.

— Higher level of data abstraction. We need only one clone table, capable of holding YACs, BACs,
PACs, Pls, cosmids, and any other cloning vehicle used for any genome we study. This table will act
as a “base class”, with other tables as necessary holding specific details unique to each clone type.

17

This will greatly reduce the number of database tables and query complexity, and views can provide
the illusion of single chromosome or species databases.

— Higher level of relationship abstraction. Our current database had separate tables for array, pool,
and southern hybridization to track the experimental techniques closely. Just as a single clone table
can handle all generic “clones”, we need a single generic hybridization table (to handle all hybridiza-
tions from all types of clones.)

- Generic concepts of clonai overlap. A single table can handle all pertinent information from a mul-
titude of hybridization techniques, again as a base class with detail tables as needed.

- Generic concept of probes. Our current lab notebook database now tracks about 20 different types
of probes, with too many important details (like the probe name) buried_ in the 20 detail tables. This
makes the SQL to extract such data quite messy. Again, we need a single “base class” probe table that
contains all data generic to all probes, with lab notebook details confined to tables that are not vital to
the central task of map creation.

- Generic concepts of attributes and ownership. The presence of stable, unique identifiers will allow
us to have a single table to tie attributes to objects. It will also allow us to link each data entry to an
OWner.

~ Generic concept of privacy. Some data is not publicly releasable for a variety of reasons. We need to
be able to control this information on a per—fact basis so that safe public access can be offered with-

out violating any of our 200+ collaborative agreements.

Work on this new database has recently commenced.

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract No. W-7405-ENG-48.

18

References

Ashworth, L., (1994). Data Dictionary for the LLNL Human Genome Center chromosome 19 data-
base. Available via anonymous ftp at humpty.llnl.gov in /pub/datadictionary.ps.Z

Brandriff, B., et. al., (1994). Human chromosome 19p: A Fluorescence in situ hybridization map
with genomic distance estimates for 79 intervals spanning 20Mb, Genomics (In Press).
Branscomb, E., etal. (1990) Optimizing Restriction Fragment Fingerprinting Methods for Order-
ing Large Genomic Libraries. Genomics 8, 351-366.

Carrano, A.V,, Lamerdin, J., et al. (1989). A high-resolution fluorescence-based semi-automated
method for DNA fingerprinting. Genomics 4, 129-136.

Comer, D. (1988) Internetworking with TCP/IP: Principles, Protocols, and Architecture. Prentice
Hall.

Slezak, T. (1989) Quick and Dirty Parallel Processing on a Network of Workstations, Tentacle
(LLNL Internal publication) IX:6-7 16-28. Copy available via ftp from humpty.linl.gov in/pub/ten-
tacle

Slezak, T. (1994). Automated Integration of Genomic Physical Mapping Data via Parallel Simulated
Annealing, in Proceedings of 3rd International Conference on Bioinformatics and Genome Re-
search (in press). Available via ftp from humpty.llnl.gov in /pub/supercomp94.text.ps.Z
Statistical Sciences, Inc (1990). Splus Users Manual. Seattle, Washington.

Wagner, M., (1990). Sybase C interface library. Available via ftp from humpty.llnl.gov in /pub/geno-
mestuff/mdi.tar.Z

Wagner, M., (1994). Automated Construction of Physical Maps. Master’s Thesis, University of
California, Davis.

Weber, C.A., Salazar, E.P, etal. (1988). Molecular cloning and biological chafacterization of a hu-
man gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UVS5 cells. Mol. Cell.

Biol. 8, 1137-1146.

Yeh, M., (1994). Database schema diagrams for the LLNL Human Genome Center chromosome 19
database. Available via anonymous ftp at humpty.llnl.gov in /pub/databaseschema.ps.Z

19

http://humpty.llnl.gov
http://humpty.llnl.gov
http://humpty.llnl.gov
http://humpty.llnl.gov
http://humpty.llnl.gov

Figure Legends

NOTE: Most of the figures are color screen dumps from our database browser and probably will not be visible

here with full fidelity. Contact the author for access to copies via ftp or WWW.

Figure 1 - A view of one of our 800 cosmid clone contigs, as seen from our browser. Each number in the lower
left side is the database key of a 40Kbp cosmid clone. The 9 clones at the bottom are the near-minimal span-
ning path of the contig; all other clones are redundant and stacked over their strongest overlap to the minimal
path. A database query for a gene-specific probe got us into this contig; the 4 clones positive for that probe
are enclosed in boxes. We are currently focused on clone 16922 and all attributes for this clone are shown
in the scroll-able window at top right. Buttons on the bottom right allow over 20 specialized functions to be
performed. The rectangular window labeled “Browser” is the main menu. The 12 viewing modes in the top
half are available for independent launching. The bottom half of the window indicates what other viewing

modes contain data pertinent to the object currently in focus (cosmid clone 16922 in this instance.)

Figure 2 - An overall view of the major databases in our system. The raw database stores over 1.5Gbytes of
restriction fingerprinting data. The ch19 database stores all derived cosmid contig data plus all other exper-
imental data used in mapping. The integrated mapping database expresses all data in terms of basic relation-
ships on a single class of generic mappable objects, allowing for fully automated integration of data from

many sources.

Figure 3 - This display presents one way of examining the relationships between a large variety of data ob-
jects. Near the top, a diagram shows the chromosome and the band(s) associated with the current object of
focus. Below the diagram are controls for scrolling and manipulating the map object stack, as well as controls
for the query hit list (if any). Below that are the indicators to control the display of up to 4 of the available
map object types at any time (17 types are shown in this image, which does not show the use of color to indi-
cate object selection.) We have chosen to display YACs, contigs, clones, and loci. An information window
at top right shows that object 44049, which is clone id 16922, has been selected for focus (the red color used
is Jost in this rendering.) This clone is in a partial-order tree in the cosmid clone display, and has links to 2
YACs, acontig, and 2 loci. We can see from the object selection boxes that there is data for this clone in linked

to 6 other map object types that we could choose to show, by turning off one or more of the current views.

20

Figure 4 - This is a portion of one of our many EcoRI restriction fragment maps. Each horizontal row repre-
sents one 40Kbp cosmid clone, with the clone name on the left and contig number on the right. The fragments
are drawn to scale and alignment is easily checked visually. With a click of a button, the display changes to
show the numeric sizes of the fragments (which range from 0.5Kbp to about 20Kbp.) Although not shown,

these fragments can be linked to sequence-related attributes such as genes, loci, etc.

Figure 5 - A full-chromosome view of our integrated map, containing 2,941 probes (columns) intersecting
760 larger objects (contigs, restriction maps, YAC/BAC/PAC clones on the rows), with clones partially or-
dered via FISH or genetic mapping shown in green. Note that off-diagonal elements indicate data that needs
to be examined closely. The region enclosed in the red box is enlarged in Figure 6.

Figure 6 — A tiny region of our chromosome 19 integrated map has been shown in detail, to demonstrate how
our map builders are using this tool to guide closure. The long object composed of black crosses is a PAC
clone; a BAC clone (black diamonds) is located in 3 pieces 4 rows above. Note that the BAC and PAC clones
are deduced to overlap each other, since 11 cosmid clones have been found to hybridize to both of them, Fur-
thermore, the BAC and PAC clones. show evidence of overlapping 4 cosmid clone contigs (in blue). Also note
that this region is anchored on one side by a clone (shown in green) which has been FISH ordered. The four
contigs have been restriction mapped (blue crosses) based on the hybridization evidence and were found to

overlap using this higher-resolution mapping method.

Figure 7 - Browser query menu interface. This is our generic database interface. The information lines near
the top describe which mode of the database browser we are in and what type of database keys must be re-
turned by all queries. A scroll-able list of canned queries is on the left, with a mouse-click the user can get
a description of the query or pull up the SQL template in the workspace on the right. The attribute locator
query has been selected. Note the embedded marker C@11@”) inthe SQL indicating that the user must inter-
actively supply the value of the particular attribute desired, by clicking the “Expand Next” button. Once the
query is fully expanded, the red “Run Query” button is hit (invisible in this B/W picture, it is to the right of
the “Expand Next” button.) Other buttons allow an editor window to appear, with the workspace contents
pre-loaded, and for external queries to be run using either the workspace contents or specified external files.
Queries can be saved or loaded from files. This interface is used in all browser modes except the raw data

viewer.

21

C

os mids

e |

Cosnid Contigs for Reconstruction 17470

31263
5962

30260
21263 @g}

27226 6003
3361 5997 13904 0998 32840
7459 30814 34441 [Z327] 10753 14468 20333 17972
23346 23345 33677 6011 [IFE77] 9390 28264 15623

11160 1523 11042 28282

WA WA WA WAN

34714 5016 28312 28845

xJ Browser

Refresh | Help |
Exit | open |

Cosmid Contigs by Contig. i
Cosmid Contigs by Crun_ 1d

‘ Cosmid by Crun_id

Viewer

Askii

Restriction Fragment Map

RF Hap by Clone ID

RF Map by Fragment ID
Sequence

Strip Map

Partial Order Map

Metric Map

Relation status:
None
Cosmid Contigs by Contig_id

Restriction Fragment Hap

RF Map by Fragnent 1D

Sequence

—Color Pic -m]-

Clone_id: 18922
Crun_id = 14397
Contig nusber = 847
fAttributes:
YC400177
YC274372
RHAPEZ
RHAP
POTREE
LyLL
LJSpool
INSITU
chr? 18
arm: p
band_start: 13.10

Hit: 1/4
Next | Prev JFirst Current

ATTR ANY Attr Info
Attr List fittr Prev
Attr Spec fntg Attr

A1l Cntg Setsf Current Set
Current Cntg§ Show Libr
SHOW CLONE 1D§Show Crun ID

Bond Info
Bond Check

Contig Info
Ends Info

== ==)
Clone ID ontig Bars

Flip Contig § Print Plen

Unset

Fingerprinting data

signal processing
color—-correction

peak detection

| Databases
DNA re-assembly / ~
ch19

parallel overlap processing

automated reassembly

Overall System Data

Flow
Non-fingerprinting data
YAC clones
hybridization
restriction mapping
etc.
nteg. ma . Map Integration

generic map objects
partial ordering trees

automated integration

Database Browser

raw waveforms

contigs

integrated maps
SQL to Internet databases
etc.

o Strip Map

Shell LTRSS Color Pic R Helo |
Hap object id: 44043
q] 1d: 16322
Type: Clone

9. OOUB

: : Belongs to tree id: 0
Pop Push Exch 1 Hit: 171 Next Prev First Current PAR SCUD No orientation
Y B P PL CT O DN R DM R R 8§ PR LC €D CGH o Tree

2) 0 0 1 1 5 1 1 6 1 ¢ 2 2 0] 0 Valid

LEFT RIGHT uwp DOUN Reset left right up down TYPE ID FISH:Y GENEZY RF:Y NontY YACS Level

27437
400177

LEFT RIGHT- P DOUN Resst left right up down TYPE ID FISH:Y GEME:Y RF:Y Non:Y Cosmid Contigs Level

847

LEFT RIGHT up DOMN Reset left right up down TYPE ID FISH:Y GEMESY RF:Y Non:y Cosmid Clones Level Left: 53 Right; 259

22306 10190 17111 19785 13576 24541 20491 "—15423? 5074 /15929 SHOR 723890 ——13488 —— 27752 — 8052 ? 14281 11547 —- 129

328 ——30169 17310 16922 16364 20210 ’
23346 27072
27085
27851

LEFT RIGHT up DOMN Reset left right up down TYPE ID FISH:Y GENE:Y RF:Y Non:Y Locus Level

15
53

v [et mrwrr mwrT ur T T WOran T IomrT TT T T I T L | e]
h 704 02l T ¥everd |
il
W TTITIIT S8 *
WO T e p
BT &
W TITTTT oved F,_
WOTTITT & I
ZOOTIMTITT 6aesd -
BT voosd I
WO veewe i
28 T 2eatd i
BOTITTIT] 86 [
20 TITT] M i
BRTTTT el
WITT T~ o2
T T 09524 -
WO e :
2T i e S 7Y i
T e T !
T T 65T |
T e I
DI Lovsa]
DITTT T R _
AT T &R
sy ewery T dog G :pr dey 97895 A o1e05 X SUITAURLINY T8dT ABMY XN .I 1088y
sy dey Wx3 ysng IS17 peoY 00°F %A 00T :X 3804 /T ST 2021 %08 %9
BN RS oty RS (1 dey R sdey Juewbeuy UOIIOTLISRY o35 O snieag yoeag N sstusiq NN \soJ4ey |

Partial Order Map y
| Stack Status Partial Order Mapper : :
. i Hap number: 750
p : q| Reeon tds d40
Date: Jun 10 1934 12:000H
0. 5ONE ~3%4B Dimensions: 760 rous, 2341 columns
Pop Push Exch 1 Hit: 1/4 Next. Prev First Current SCUD
Left: Info Center: Select Right!: Insert DN ALL UP: ALL Heta ON COLUMN left right up down
Zoom Step Expand Shrink Reset Insert Info Load H Grid Off V Grid OfF Pegged ON Cross ON Hisses DN
r Y
L 4

01

7

1

067 SJequnu dew] ‘06z fuWnT0) ‘g99 Moy
£ 39400g
2pPT 01 “Brauo] ledh)
ETETE (moJ) 2 308fqo dey
£9/72 Q1 ‘ouoly 39dA]
0BB6Y *{win[oo) T 399fqo dey

unop

ND $50.)

ISUL J9S9y IS puedx] deyg wooz
Jesul 1Bry 0e1e5 Suajue) ojuf 33397

QIS uesung 3sdr4

ysng dog

DL

Jeddey Jepup 113y

dejy J8pd0 je|)ed

pess ol smess e M s e]

cosmid contigs
N

All queries must return crun_id as type!

contigs by crun_id

insitu locator
attrib_fanily
attrib union '
clone_id list

select distinct contig.crun.id from contig, attrib where contig.crun_id =
alphoid finder attrib,crun_id and attrib,name = "2I18" and recon_id = 17470

arn locator

contig locator
ssprobes hits
named ssprobe hits

contig overlaps

all clons overlaps

all YRC hits locator

specific YAC hits

clones by contig_id
orphan hits

