
A Study of the E�ects of Compiler-Controlled Speculation on

Instruction and Data Caches

Roger A. Bringmann � Scott A. Mahlke y Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana, IL 61801

Abstract

Compiler-controlled speculation has been shown to be e�ec-
tive in increasing instruction level parallelism (ILP) found

in non-numeric programs. However, it is not clear the ex-

tent to which speculatively scheduled code may a�ect the in-
struction and data caches. In particular, the amount of time

spent resolving cache misses may be signi�cant enough to

prevent the more aggressive speculation models from attain-
ing their best potential performance results. The objective of

this paper is to quantify these e�ects using aggressive spec-

ulation models.

Index terms - instruction cache e�ects, data cache e�ects,
compiler-controlled speculation, safe speculation, VLIW,
superscalar

1 Introduction

Instruction scheduling is the process used by the compiler
to re-order instructions in an e�ort to minimize program
execution time. Since instruction scheduling is NP-Hard,
heuristics are used to approximate the best schedule. One
common approach to scheduling is to perform list schedul-
ing using greedy heuristics to approximate a globally opti-
mal schedule [1]. Regardless of the scheduling heuristics,
instructions are ordered based upon some priority mecha-
nism. At each cycle, the instructions with the highest pri-
ority that have resolved all dependences and meet the issue
requirements of the processor are scheduled.

The implementation of a scheduler is straightforward if
list scheduling is applied only within basic blocks. Unfor-
tunately, there is insu�cient instruction level parallelism
(ILP) available within basic blocks of non-numeric bench-
marks to fully utilize the functional units of wide issue su-
perscalar and VLIW architectures [2, 3, 4]. Therefore global
scheduling techniques such as trace scheduling [5] and su-

perblock scheduling [6] have been proposed to permit greater
scheduling and optimization freedom beyond basic block
boundaries. Using these techniques, the program is divided

�Roger Bringmann is now with QMS, Inc.
yScott Mahlke is now with HP Labs

into a set of traces or superblocks that represent frequently
executed paths. These traces or superblocks contain multi-
ple basic blocks and as a result can contain multiple condi-
tional branches. When building a dependence graph for a
trace or superblock, control dependence arcs are added from
conditional branches to subsequent instructions. In order to
gain additional scheduling freedom beyond the natural basic
block boundaries found within these traces or superblocks,
the compiler must remove some of these control dependence
arcs. This permits speculation of instructions past condi-
tional branches, thus the term compiler-controlled specula-
tion.

When an instruction is speculated above a branch, it is
executed regardless of the direction taken by the branch. As
such, the speculated instruction could introduce instruction
cache (Icache) and data cache (Dcache) e�ects that may not
have been present in the original unscheduled program. If
these e�ects are signi�cant, much of the performance po-
tential of aggressive speculation may be lost. This makes
it critical that the processor and computer system design-
ers understand the requirements of the speculation models
being used by the compiler if they are to balance the po-
tential performance of the compiled code with the cache
implementation.

The next section brie
y describes the static speculation
models used in the experiments. Section 3 discusses the ex-
pected cache e�ects. Section 4 presents experimental results
showing how these speculation models a�ect various con�g-
urations of instruction and data caches. Finally, concluding
remarks are given in Section 5.

2 Scheduling Models

In order to gain greater scheduling freedom, instructions
must be allowed to speculate above conditional branches
found within a trace or superblock. In some cases, specu-
lation of these instructions can introduce a scheduling error
that can cause unexpected program termination. An exam-
ple of such a scheduling error would be scheduling a divide
before a branch that was implicitly preventing a divide-by-
zero. The decision on what to do if the highest priority
instruction could potentially introduce a scheduling error is



1. Avoid Errors - do not permit an instruction to
speculate if it could cause a scheduling error [2].

2. Ignore Errors - assumes that the likelihood of a
scheduling error is small and will therefore specu-
late a non-excepting form of the instruction. As a
result, any scheduling errors are hidden. This model
requires non-excepting forms of each potentially ex-
cepting instruction that is speculated [2].

3. Resolve Errors - speculates instructions that
could cause a scheduling error but assumes that the
processor has some mechanism to resolve the error.
Three examples of speculation models that fall into
this category are boosting [7], sentinel scheduling [8]
and write-back suppression [9].

Figure 1: Classi�cations of compiler-controlled speculation
models.

based upon the speculation model and the processor sup-
port. As shown in Figure 1, the existing speculation models
can be categorized into three classes based upon these de-
cisions.

Each of the speculation models used for experimentation
contain certain characteristics that permit di�erent degrees
of scheduling freedom. As such, they are expected to intro-
duce varying Icache and Dcache e�ects. In order to evaluate
the speculation models fairly, all benchmarks are aggres-
sively optimized with superblock techniques [6]. Each of
the speculation models are used to schedule the optimized
code. This paper does not cover any of the resolve error

speculation models since their recovery processes are not
directly comparable to the other models.

2.1 No Speculation Model

This model provides a baseline for the typical Icache and
Dcache e�ects that occur without code speculation. As a
result, this model provides the best scheduling results that
are attainable with no additional Icache and Dcache e�ects
introduced from compile-time scheduling.

2.2 Restricted Speculation Model

Restricted speculation (formally called restricted code per-
colation [2]) assumes that correct program execution is al-
ways required as de�ned by the avoid errors class. Using
this model, the compiler can only speculate instructions
that will never cause an exception. The conservative de�ni-
tion of potentially excepting instructions used by this model
assumes that if there is any way that an instruction could
cause an exception, it will be classi�ed as potentially ex-
cepting and may not be speculated. As such, this de�nition
ignores the cases where the context in which the instruc-
tion is used can sometimes indicate if the instruction may
or may not cause an exception. This conservative model
prevents speculation of any memory instructions, integer

divide and remainder, and all 
oating point instructions.
This model functions as a low-end for the speculation mod-
els. The advantage of this model is that it does not in-
troduce any Dcache e�ects as a result of speculating mem-
ory instructions. The only Dcache e�ects introduced above
those introduced by the no speculation model are a direct
result of the increased register pressure created by the more
aggressively speculated code.

2.3 Safe Speculation Model

Safe speculation expands the scheduling freedom of re-
stricted speculation by using program analysis to iden-
tify potentially excepting instructions that can never cause
scheduling errors or will introduce no new scheduling er-
rors. An example of such a potentially excepting instruc-
tion would be a load from an array. If the potential values
that the array may access can be proven to be within the
declared array bounds, then the load is a safe load. This
model also falls under the avoid errors classi�cation. The
advantage of this speculation model is that it requires no
special hardware support in the processor as required for
the resolve errors class and the ignore errors class and does
not have the inherent risks associated with the ignore errors
class. The safe speculation model results reported in this
paper are based on inter-procedural and intra-procedural
analysis algorithms reported in [10].

2.4 General Speculation Model

General speculation (formally called general code percola-
tion) falls under the ignore errors classi�cation. It requires a
non-excepting form of every potentially excepting instruc-
tion that is desirable to speculate [2]. Thus, if a poten-
tially excepting instruction is to be speculated, it will be
replaced by its non-excepting form. Potentially excepting
instructions are typically load instructions, integer divide
and remainder, and all 
oating point instructions. The re-
sults on general speculation reported in this paper are based
upon a full model where every potential exception causing
instruction has a non-excepting counter part in the instruc-
tion set. The following architectures are examples that have
implemented subsets of this model in an e�ort to increase
instruction level parallelism.

1. Multi
ow - non-excepting 
oating point instructions
[11]

2. Cydra 5 - non-excepting 
oating point instructions,
ability to disable exceptions for memory and arithmetic
operations [12].

3. HP Precision Architecture - non-excepting 
oating
point instructions, non-excepting dereferenced null
pointer [13].

3 Expected Cache E�ects

This section will provide a qualitative analysis of the ex-
pected instruction and data cache e�ects resulting from



Opcode Description

add 32-bit integer add
beq conditional branch on equal
bgt conditional branch on greather than
bne conditional branch on not equal
jump unconditional branch
ld c2 load signed 16-bit value
ld i load signed 32-bit value
ld uc load unsigned 8-bit value
ld uc2 load unsigned 16-bit value
lsl 32-bit logical shift left
mov move 32-bit value

st c store 8-bit value
sub 32-bit integer subtract
xor 32-bit exclusive or

Table 1: Instruction opcodes and descriptions.

Cycle Instruction - (instruction id, opcode)

1 45, ld uc 48, mov 49, add 50, add

2

3 46, st c 47, lsl 51, bgt 52, mov

4 53, bgt 54, add 57, mov
5 55, add 58, add

6 56, ld i

7

8 59, beq 60, mov

9 61, add

10 62, bne 66, ld uc 63, lsl

11 64, add

12 68, lsl 67, st c 65, mov 69, bgt 70, mov

13 71, bgt 72, add 75, mov

14 73, add 76, add

15 74, ld i

16

17 77, beq 78, mov

18 79, add
19 80, bne 81, lsl 83, add 84, add 85, add

20 82, add 86, jump

Figure 2: The most important loop in cccp scheduled using
no speculation model.

compiler-controlled speculation. To accomplish this goal,
scheduled code examples from two benchmarks are pre-
sented. These code examples were chosen because they show
extreme cache e�ects due to speculation. The instruction
opcodes and their descriptions for the examples are given
in Table 1. The examples were scheduled with the no spec-
ulation and general speculation models using an eight-issue
superscalar processor that has uniform functional units and
instruction latencies of the HP-PA 7100 (see Table 5). The
Icache and Dcache block sizes were 64 bytes each.

Icache E�ects

Speculating instructions above branches moves them
from less frequently executed paths to more frequently ex-
ecuted paths. As such, the instruction working set is in-
creased which should result in more Icache requests and
subsequently more Icache misses. The �rst example bench-
mark, cccp, is used to show the expected Icache e�ects. To
accomplish this, the most frequently executed loop within
cccp (found in the rescan function) was used. Based upon
pro�le information, the IMPACT superscalar optimizer de-
cided to unroll this loop three times. Tables 2 and 3 respec-
tively show the scheduled code for the no speculation and
general speculation models. As these tables show, none of
the branches from Table 2 have been delayed in Table 3. In
addition, the schedule was reduced from 20 cycles for the

no speculation model to 8 cycles for the general speculation
model. It should also be noted that scheduling with the no
speculation model provide insu�cient freedom to schedule
more than 5 instructions in any cycle for the 8-issue proces-
sor.

While none of the branches in the general speculation
schedule were issued later than in the no speculation sched-
ule, the location of the branches within the Icache blocks did
change as shown by Tables 4 and 5. The most notable dif-
ference is that branch instruction 59 is located in block 2 of
the no speculation Icache layout while it is located in block
3 of the general speculation Icache layout. As a result, there
is one additional Icache block before the branch. If branch
59 is infrequently taken, this may not increase Icache misses
since both no speculation and general speculation loops are
contained within only 4 Icache blocks. However, as Table 2
shows this branch is taken 6192 times. This means that
there is an additional Icache block in the working set of the
taken path of branch 59 in the general speculation schedule
than in the no speculation schedule. The increased working
set of this taken branch increases the chance of mapping
con
icts with other important Icache blocks. As such, the
advantages of the more aggressive schedule have resulted in
greater risk of Icache misses.

Dcache E�ects

Speculating load instructions above branches moves
them from less frequently executed paths to more frequently
executed paths. This will not only have e�ects on the
Icache, but will also increase the frequency that the load
requests are made. As such, the data working set is in-
creased which should result in more Dcache requests and
subsequently more Dcache misses. The second benchmark,
compress, is used to show the expected Dcache e�ects. To
accomplish this, the most frequently executed loop within
compress (found in the compress function) was used. Based
upon pro�le information, the IMPACT superscalar opti-
mizer decided to unroll this loop three times. Tables 6 and 7
respectively show the scheduled code for the no speculation
and general speculation models. As the tables show, the no
speculation model used 37 cycles while the general specula-
tion model required only 18 cycles. It should also be noted
that scheduling with the no speculation model provide in-
su�cient freedom to schedule more than 6 instructions in
any cycle for the 8-issue processor.

Table 3 shows the increased execution frequency of the
six speculated loads from the general speculation sched-
ule of this loop. By speculating a load above a particular
branch, the memory reference patterns of the control 
ow
paths reached from that branch have been altered. Depend-
ing upon the cache con�guration, this could introduce more
Dcache con
icts. For example, by speculating load instruc-
tion 163 above branch 159 in Table 7, the memory refer-
ence pattern of the paths reached by the taken path of this
branch have been altered. Based upon the increased execu-
tion frequency of load number 163, and the resultant change
in memory reference patterns, Dcache miss rates caused by
this load could increase. Due to speculation of other loads
and the change in their memory reference patterns, the to-



Cycle Instruction - (instruction id, opcode[* = speculative])

1 45, ld uc 54, add* 57, mov* 60, mov* 52, mov* 72, add* 48, mov 49, add

2 55, add* 58, add* 61, add* 50, add 73, add* 63, lsl* 75, mov* 70, mov*

3 47, lsl 46, st c 66, ld uc* 51, bgt 53, bgt 64, add* 76, add* 78, mov*

4 56, ld i 79, add* 81, lsl*

5 68, lsl*

6 59, beq 62, bne 67, st c 74, ld i* 65, mov 69, bgt 71, bgt

7

8 77, beq 80, bne 82, add 83, add 84, add 85, add 86, jump

Figure 3: The most important loop in cccp scheduled using general speculation model.

cccp loop compress loop

Branch Times Branch Times
Instruction ID Taken Instruction ID Taken

51 0 159 46234

53 20 164 11

59 6192 166 0

62 1753 179 39594

69 0 184 8

71 5 186 0
77 2272 199 25981

80 130 204 1

86 9182 210 26824

214 0

Total 19554 Total 138653

Table 2: Branch taken frequencies. (Total corresponds to the total entrance frequency of the loop.)

Icache Instruction - (instruction id, opcode)
Block

1

45, ld c

2 48, mov 49, add 50, add 46, st c 47, lsl 51, bgt 52, mov 53, bgt

54, add 57, mov 55, add 58, add 56, ld i 59, beq 60, mov 61, add

3 62, bne 66, ld c 63, lsl 64, add 68, lsl 67, st c 65, mov 69, bgt

70, mov 71, bgt 72, add 75, mov 73, add 76, add 74, ld i 77, beq

4 78, mov 79, add 80, bne 81, lsl 83, add 84, add 85, add 82, add

86, jump

Figure 4: Icache layout for cccp loop after no speculation model (16 instruction block).

Icache Instruction - (instruction id, opcode[* = speculative])

Block

1 45, ld uc

54, add* 57, mov* 60, mov* 52, mov* 72, add* 48, mov 49, add 55, add*

2 58, add* 61, add* 50, add 73, add* 63, lsl* 75, mov* 70, mov* 47, lsl
46, st c 66, ld uc* 51, bgt 53, bgt 64, add* 76, add* 78, mov* 56, ld i

3 79, add* 81, lsl* 68, lsl* 59, beq 62, bne 67, st c 74, ld i* 65, mov

69, bgt 71, bgt 77, beq 80, bne 82, add 83, add 84, add 85, add

4 86, jump

Figure 5: Icache layout for cccp loop after general speculation model (16 instruction block).



Cycle Instruction - (instruction id, opcode)

1 147, sub 151, sub 156, add

2 148, mov 157, add

3 149, lsl 152, mov

4 153, lsl 150, add

5 154, xor

6 155, lsl

7 158, ld i

8

9 159, bne 161, add 160, lsl

10 162, add

11 163, ld uc2 164, bgt 165, ld c2

12

13 166, beq 167, sub 171, sub 176, add

14 168, mov 177, add

15 169, lsl 172, mov

16 173, lsl 170, add

17 174, xor

18 175, lsl

19 178, ld i

20

21 179, bne 181, add 180, lsl

22 182, add

23 183, ld c2 184, bgt 185, ld c2
24

25 186, beq 187, sub 191, sub 196, add

26 188, mov 197, add

27 189, lsl 192, mov

28 193, lsl 190, add

29 194, xor

30 195, lsl
31 198, ld i

32

33 199, bne 201, add 200, lsl

34 202, add

35 203, ld c2 204, bgt 205, ld uc 209, add 208, add 207, add

36

37 206, mov 210, bne 211, mov 212, add 213, mov 214, jump

Figure 6: The most important loop in compress scheduled using no speculation model.

Branches Increase in
Load Speculated Execution

Instruction ID Above Frequency

163 159 46234

165 159, 164 46245

183 179 39594

185 159, 164, 166, 85847
179, 184

203 199 25981
205 159, 164, 166, 111829

179, 184, 186,
199, 204

Table 3: Increase in execution frequency of speculated loads
in the compress loop after scheduling with the general spec-
ulation model.

tal increase in Dcache misses for instruction 163 could be
greater than the increase in its execution frequency.

4 Experimental Evaluation

This section will quantify the e�ects that increasing lev-
els of scheduling freedom can have on instruction and data
caches. The speculation models used in the experiments
from least aggressive to most aggressive are no speculation,
restricted speculation, safe speculation and general specula-
tion. Section 4.1 discusses the experimental approach used
to generate the cache e�ects. Section 4.2 discusses the ex-
perimental results.

Benchmark Benchmark Description

008.espresso truth table minimization
022.li lisp interpreter
023.eqntott boolean equation minimization
026.compress compress �les
072.sc spreadsheet
cccp GNU C preprocessor
cmp compare �les
eqn format math formulas for tro�
grep string search
lex lexical analyzer generator
qsort quick sort
tbl format tables for tro�
wc word count
yacc parser generator

Table 4: Benchmarks.

4.1 Methodology

Compiler support for each of the speculation models has
been implemented in the IMPACT-I C compiler. The
IMPACT-I compiler is a prototype optimizing compiler de-
signed to generate e�cient code for VLIW and superscalar
processors [2]. The benchmarks used in this study are the 14
non-numeric programs shown in Table 4. The benchmarks
consist of 5 non-numeric programs from the SPECint92
suite and 9 other commonly used non-numeric programs.
Each of the benchmarks were aggressively optimized with
superblock techniques [6] and scheduled using the four spec-
ulation models varying the processor issue width from 1 to
8 instructions per cycle.

The processor model used in this study is an in-order



Cycle Instruction - (instruction id, opcode[* = speculative])

1 147, sub 151, sub 161, add* 181, add* 165, ld uc* 167, sub* 171, sub* 156, add

2 148, mov 162, add* 182, add* 157, add 196, add* 176, add* 185, ld uc* 187, sub*

3 149, lsl 152, mov 197, add* 177, add* 201, add* 191, sub* 205, ld uc*

4 153, lsl 168, mov* 150, add 202, add*

5 154, xor 169, lsl* 172, mov*

6 160, lsl* 155, lsl 173, lsl* 188, mov*

7 163, ld uc2* 158, ld i 189, lsl* 192, mov*

8 193, lsl*

9 174, xor* 159, bne 170, add* 164, bgt 166, beq 206, mov*

10 175, lsl 180, lsl*

11 183, ld uc2* 178, ld i

12

13 194, xor* 179, bne 190, add* 184, bgt 186, beq

14 195, lsl 200, lsl*

15 198, ld i 203, ld uc2*

16

17 199, bne 204, bgt 207, add 209, add 208, add 210, bne

18 211, mov 212, add 213, mov 214, jump

Figure 7: The most important loop in compress scheduled using general speculation model.

Function Latency Function Latency

Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide(single-precision) 8
branch 1 / 1 slot FP divide(double-precision) 15

Table 5: Instruction latencies.

Cache Sizes: 4K - 256K, perfect

Cache Associativity: direct-mapped, two-set associative

Cache Block Size: 64 bytes with 12 cycle miss latency

Dcache Type: blocking cache

Dcache Write Policy: write-through, no write-allocate

Table 6: Cache con�gurations used in experiments.

issue superscalar processor with register interlocking. The
processor is assumed to have uniform functional units, 1
branch delay slot, and the instruction set of the HP PA-
RISC processor. The instruction latencies assumed are
those of the HP PA-RISC 7100 (see Table 5). For each
machine con�guration, the program execution times are de-
rived from execution driven simulations of the benchmarks
in Table 4. During the simulations, the issue widths were
varied from 1 to 8 based upon the processor model that the
code was scheduled for. Dynamic branch prediction was
assumed using a 1024 entry direct mapped BTB with a 2
bit counter and a 2 cycle misprediction penalty. A perfect
Dcache was used when measuring the Icache e�ects and a
perfect Icache was used when measuring the Dcache e�ects.
The cache con�gurations used for the experiments are given
in Table 6.

4.2 Results

The shear volumes of data produced from the simulations
made it impossible to present the individual benchmark re-
sults in this paper. In an e�ort to be more concise, the
results presented in the subsequent �gures are generated
by computing the arithmetic mean of speedups for each
speculation model, cache size and issue rate. Speedup was

Icache Results (1-way set assoc with 64 byte blocks and perfect Dcache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 8: Icache e�ects for no speculation and general spec-
ulation models.

computed by dividing the execution time of the respective
benchmark using the no speculation model at issue 1 with
a 4K direct mapped Icache and Dcache by the execution
time of the same benchmark using the speci�ed speculation
model at the speci�ed cache size and issue rate.

Icache Performance Results

Figure 8 shows the performance results for direct mapped
caches for the extreme speculation models - no speculation
and general speculation. The �rst thing to observe from this
�gure is that the curves for the no speculation model show
very little change regardless of the issue rate. In particular,
there was an increase of only .35 IPC (16.9%) at issue 8
from a 4K to a 64K Icache. In contrast, the curves for the
general speculation model showed a noticeable increase from
the lower issue rates to the higher issue rates. In particular,
their is an increase of .36 IPC (20.9%) at issue 2, .77 IPC
(29.3%) at issue 4, and 1.05 IPC (31.5%) at issue 8. Thus,
the bene�ts from larger cache sizes are more pronounced
as the issue rate increases. Finally, the performance for all
speculation models stabilized with a 64K Icache.

Figure 9 shows the performance results for 2-way set as-
sociative caches for no speculation and general speculation
models. By comparing this �gure to Figure 8, it is clear that
there is little advantage in higher associativities with Icaches



Icache Results (2-way set assoc with 64 byte blocks and perfect Dcache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 9: Icache e�ects for no speculation and general spec-
ulation models.

larger than 8K regardless of the issue rate or speculation
model. Even at the lowest cache sizes, general speculation
was only able to show a 6 percent speedup at 8-issue using
2-way set associative Icaches over direct mapped Icaches.

Figure 10 shows the comparative Icache results for all
of the scheduling models at issue-1 and issue-8. As the
�gure shows, there is no signi�cant performance advantage
in using any of the aggressive speculation models for a single
issue processor. Since only one instruction can be issued
per cycle, the only potential slots that can be �lled in the
schedules of the integer benchmarks are branch and load
delay slots. Therefore, there is very little opportunity to
improve the performance of the benchmarks through more
aggressive speculation. As a result of little speculation, only
minor Icache e�ects are observed.

In contrast to the single issue performance, there is a
clear advantage in using more aggressive speculation models
at 8-issue. The no speculation model shows a 13.1 percent
improvement between 4K and 64K Icaches. The restricted
speculation model shows an 18.0 percent improvement, the
safe speculation model shows 21.4 percent improvement and
the general speculation model shows a 24.5 percent improve-
ment over the same cache con�gurations. Thus, while the
cache size was only a minor impediment to performance
with lower issue rates, it is clearly a larger impediment
to performance with higher issue rates for more aggressive
speculation models. However, this set of benchmarks were
not able to bene�t from Icaches larger than 64K.

One additional point should be noted from the 8-issue re-
sults shown in Figures 10. The most aggressive speculation
model's performance ranged from only 8.9 to 11.8 percent
higher than safe speculation. Thus, safe speculation has
great potential since it requires no special processor sup-
port that could potentially lead to slower clock rates. Also,
it introduces none of the risks that result from ignoring
scheduling errors like general speculation.

Analysis of Icache Results

To more fully understand the performance results, the
Icache behavior is broken down in Tables 7 and 8. Ta-
ble 7 contains the absolute number of read requests and
read misses as well as the miss rate for each of the bench-

Comparative Icache Results (2-way set assoc with 64 byte blocks and perfect Dcache)

Issue 1 No Spec

Issue 8 No Spec

Issue 1 Res

Issue 8 Res

Issue 1 Safe

Issue 8 Safe

Issue 1 Gen

Issue 8 Gen4k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 10: Icache e�ects for all speculation models at issue
1 and issue 8.

Read Read Miss
Benchmark Requests Misses Rate

008.espresso 412641852 1501759 0.36
022.li 35649513 943031 2.64
023.eqntott 1027576863 761471 0.07
026.compress 78221684 1716563 2.19
072.sc 72122569 1132815 1.57
cccp 3094004 37823 1.22
cmp 2198695 35 0.01
eqn 32813682 1508122 4.60
grep 1580207 2078 0.13
lex 46035584 208868 0.45
qsort 70546739 4041 0.01

tbl 2603306 45092 1.73
wc 1630199 35 0.01
yacc 43309632 350120 0.83

Average 130716038 586561 1.13

Table 7: Icache Access and Miss Rates at Issue 1 (direct
mapped cache).

marks in the base case. The numbers from Table 8 represent
the read requests and read misses as a percentage of the to-
tals presented in the �nal row of Table 7. As Table 8 shows,
the more aggressive speculation models tend to reduce the
number of Icache read requests. This can be justi�ed by
understanding how the simulator's fetch model works. The
fetch model �lls bu�ers equivalent to twice the issue rate of
the processor in an e�ort to provide the processor with the
issue-width number of instructions at each cycle. Thus, each
cycle, the fetch unit fetches a block of instructions to �ll the
fetch bu�er. Any instructions that cannot be placed into
the fetch bu�er will be discarded and potentially fetched
again the next cycle. Since the more aggressive speculation
models have more independent instructions each cycle to
choose from, the compiler is better able to group indepen-
dent instructions together and reduce interlock. As such,
more instructions can be issued each cycle, which reduces
the need to re-fetch the same cache block repeatedly.

As Table 8 shows, even though the number of read re-
quests decreased, the absolute miss rates increased for both
4K and 64K from the least aggressive speculation models to
the most aggressive speculation models. In particular, there
was a 1 percent increase in the miss rate from no speculation
to general speculation. There was practically no change in
the Icache miss rates with 64K Icaches since the Icache was
su�ciently large to hold the working set for all speculation



4K Caches 64K Caches

Speculation Read Read Miss Read Read Miss
Model Req Misses Rate Req Misses Rate

None 0.426 0.779 0.82 0.456 0.172 0.17
Restricted 0.379 0.848 1.00 0.401 0.176 0.20
Safe 0.286 0.841 1.32 0.300 0.173 0.26
General 0.255 1.068 1.88 0.265 0.176 0.30

Table 8: Average Icache Access and Miss Rates at Issue 8
(2-way set associative cache).

General General

Icache No Speculation Percolation Percolation - Percent
Block Misses Misses No Speculation Change

1 2003 1980 -23 -0.01
2 3408 2486 -922 -27.05
3 2323 6952 4629 199.27
4 3227 1334 -1893 -58.66

Total 10961 12752 1791 16.34

Table 9: Icache Misses for the no speculation and general
speculation models of the cccp loop example at Issue 8 (2-
way set associative, 4K Icache).

models. While the miss rates for general speculation at 8-
issue with a 64K cache is only 1.5 percent lower then the
miss rate with a 4K cache, the performance was 24.5 per-
cent higher. Thus, even a small increase in the miss rate
can signi�cantly impact the performance for the more ag-
gressive speculation models. The impact on performance
would be even more pronounced if the cache miss latency
was greater than the simulated 12 cycles.

The cccp loop example shown in Tables 4 and 5 can be
used to illustrate the reasons for the increase in the miss
rate with the 4K Icache. Table 9 shows the Icache misses
caused by the �rst instructions in each Icache blocks. The
misses caused by the instruction at the start of the loop are
represented with Icache block 1. There was only a negligible
di�erence in the miss rates for the two speculation models
in this block. Icache blocks 2 and 4 decreased their cache
misses from the no speculation model to the general spec-
ulation model. Icache block 3 showed a signi�cant increase
in Icaches misses. Most of these misses can be attributed
to migration of the misses from Icache blocks 2 and 4 to
Icache block 3 due to the small 4K Icache. However, even
after considering the migration of misses, there was an over-
all increase in misses for the loop by 16.34 percent which is
attributable to the additional Icache block before the fre-
quently taken branch number 59 in the Icache layout for the
general speculation model.

Dcache Performance Results

Figure 11 shows the performance results for direct
mapped Dcaches for the extreme speculation models. The
�rst thing to observe from this �gure is that the curves
for the no speculation model show a much smaller increase
in performance than general speculation at the same issue
rates. In particular, there was an increase of only .51 IPC
(27.5%) at issue 8 from a 4K to a 64K Dcache while the gen-
eral speculation model showed an increase of 1.32 IPC (45.4
%). In contrast to the Icache results, the performance for
general speculation model still demonstrates a noticeable

Dcache Results (1-way set assoc with 64 byte blocks and perfect Icache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 11: Dcache e�ects for no speculation and general
speculation models.

Dcache Results (2-way set assoc with 64 byte blocks and perfect Icache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 12: Dcache e�ects for no speculation and general
speculation models.

improvement with Dcache sizes larger than 64K.

Figure 12 shows the performance results for 2-way set
associative Dcaches for no speculation and general specu-
lation models. By comparing this �gure to Figure 11, it
is clear that higher associativity signi�cantly bene�ts the
smaller Dcaches. In particular, general speculation showed
a 19 percent improvement in performance at 8-issue for a
2-way set associative 4K Dcache over a direct mapped 4K
Dcache. The no speculation model showed a 14 percent
improvement in performance at the same cache con�gura-
tions. Both speculation models showed some performance
improvement with higher associativity when using Dcaches
as large as 128K. Thus, higher associativity can be better
used to o�set the limitations of smaller Dcaches than the
smaller Icaches.

Figure 13 shows the comparative Dcache results for all
of the scheduling models at issue 1 and issue 8. As the �g-
ure shows, there is no signi�cant performance advantage in
using any of the aggressive speculation models for a single
issue processor. However, at issue 8, there is a clear ad-
vantage in using the more aggressive speculation models.
An increase in the Dcache size from 4K to 64K using the no
speculation model resulted in a performance improvement of
13.8 percent while the restricted speculation model showed
an increase of 16.3 percent. Safe speculation increased per-



Comparative Dcache Results (2-way set assoc with 64 byte blocks and perfect Icache)

Issue 1 No Spec

Issue 8 No Spec

Issue 1 Res

Issue 8 Res

Issue 1 Safe

Issue 8 Safe

Issue 1 Gen

Issue 8 Gen4k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 13: Dcache e�ects for all speculation models at issue
1 and issue 8.

Read Read Miss
Benchmark Requests Misses Rate

008.espresso 81609167 8517176 10.44
022.li 8059907 732281 9.09
023.eqntott 193278137 14396275 7.45
026.compress 9626725 3520353 36.57
072.sc 14788900 2094508 14.16
cccp 422760 21996 5.20
cmp 436248 163749 37.54
eqn 4343317 769148 17.48
grep 239327 2885 1.21
lex 7862729 314967 4.01
qsort 12206746 734301 6.02
tbl 548733 33554 6.11
wc 141527 2635 1.86
yacc 7488032 677821 9.05

Average 24382304 2284404 11.87

Table 10: Dcache Access and Miss Rates at Issue 1 (direct
mapped cache).

formance by 20.6 percent and general speculation increased
performance by 24.6 percent over the same region. While
there was no performance advantage from increasing the
Icache beyond 64K, this was not the case with the Dcache.
The no speculation model improved its performance to 21.5
percent higher than 4K with perfect Dcaches. Restricted
speculation improved to 26.2 percent higher than 4K. Safe
speculation improved to 30.1 percent higher and general
speculation improved to 35.9 percent higher. Thus, small
Dcaches have been shown to be a signi�cant impediment
to the potential performance of more aggressive speculation
models at higher issue rates.

Analysis of Dcache Results

To more fully understand the performance results, the
Dcache behavior is broken down in Tables 10 and 11. Ta-
ble 10 contains the absolute number of read requests and
read misses as well as the miss rate for each of the bench-
marks in the base case. The numbers from Table 11 repre-
sent the read requests and read misses as a percentage of
the totals presented in the �nal row of Table 10. Table 11
shows that the Dcache accesses increase with the more ag-
gressive speculation models. This is caused by an increase in
the working set size resulting from speculation of additional
load instructions.

The decrease in the miss rate from the less aggressive to
the more aggressive speculation models is miss-leading since

4K Caches 64K Caches

Speculation Read Read Miss Read Read Miss
Model Req Misses Rate Req Misses Rate

None 1.008 0.694 6.45 1.009 0.171 1.59
Restricted 1.017 0.712 6.56 1.019 0.181 1.66
Safe 1.143 0.725 5.94 1.145 0.173 1.41
General 1.313 0.776 5.54 1.315 0.193 1.38

Table 11: Average Dcache Accesses and Miss Rates at Issue
8 (2-way set associative cache).

Load No Spec. General Spec. General Spec. Percent
Instr Misses Misses - No Spec. Change

158 124951 133596 8645 6.92
163 82058 132654 50596 61.65
165 1641 2444 803 48.93
178 84617 92107 7490 8.85
183 47746 91250 43504 91.11
185 890 1685 795 89.33
198 47566 50379 2813 5.91
203 23380 49579 26199 112.06
205 501 2346 1845 368.26

Table 12: Dcache Misses for the no speculation and general
speculation models of the compress loop example at Issue 8
(2-way set associative, 4K Dcache).

the read requests have signi�cantly increased. The Dcache
misses actually increase from the less aggressive to the more
aggressive speculation models. In particular, there was an
11.8 percent increase in the Dcache misses from the no spec-
ulation model to the general speculation model with a 4K
Dcache and a 12.9 percent increase with a 64K Dcache. The
4.16 percent lower miss rate for general speculation with a
64K Dcache versus a 4K Dcache corresponds to a perfor-
mance increase of 24.6 percent. Thus, the Dcache size can
signi�cantly a�ect the potential performance of aggressive
speculation models.

The compress loop example shown in Tables 6 and 7 can
be used to illustrate the reasons for the increases in Dcache
misses. Table 12 shows the Dcache misses generated by the
load instructions in the no speculation and general spec-
ulation codes based upon a 4K Dcache. It can be seen
from this data that there were moderate to signi�cant in-
creases in Dcache misses from the no speculation case to
the general speculation case. By comparing the increased
Dcache miss rates for load instructions 163, 183 and 203
with their respective increases in execution frequency given
in Table 3, it is apparent that the increase in miss rates for
these loads was not constrained by the their increase in ex-
ecution frequency. Other speculative loads actually caused
further Dcache misses for these loads. In addition, the non-
speculated load instructions 158, 178 and 198 also showed
an increase in Dcache misses that is attributable to other
speculated loads.

5 Conclusions

This paper has presented experimental results for four
compiler-controlled speculation models over a variety of is-
sue rates and cache con�gurations. The results indicate
that the more aggressive speculation models create larger



instruction and data working sets. As such, processor de-
signers need to ensure that cache con�gurations can tolerate
the increased working set if they expect to attain the best
performance from aggressive speculation models. These ex-
periments have shown that increasing the Icache and Dcache
from 4K to 64K resulted in a performance increase of ap-
proximately 26 percent for the general speculation model
at issue 8. Additionally, the results indicate that 2-way set
associativity bene�cially reduces misses for Dcaches up to
128K. In contrast, 2-way set associativity was only bene�-
cial for Icaches up to 8K.

While small Icaches and Dcaches can signi�cantly limit
the potential performance of more aggressive speculation
models, there is still an advantage in using the more ag-
gressive speculation models at higher issue rates even if the
cache con�guration is held constant. Even though some of
the potential advantages of the more aggressive speculation
models are negated by the higher miss rates, it was not suf-
�cient to o�set the performance advantages. In particular,
general speculation at issue 8 was 63.6 percent faster than
no speculation with the same 4K cache con�guration and
issue rate. Safe speculation was 50.2 percent faster and re-
stricted was 9.6 percent faster. When using a 64K cache,
general speculation was 80 percent faster than no specula-
tion. Safe speculation was 61.1 percent faster and restricted
speculation was 14.3 percent faster. The improvements in
performance were almost identical for the experiments that
used a perfect Icache and varied the Dcache as those that
used a perfect Dcache and varied the Icache. Thus, ag-
gressive speculation e�ects the Icache and the Dcache in a
similar fashion.

Acknowledgements

The authors would like to thank all members of the IM-
PACT research group for their comments and suggestions.
This research has been supported by the National Science
Foundation (NSF) under grant MIP-9308013, Joint Services
Engineering Programs (JSEP) under Contract N00014-90-
J-1270, Intel Corporation, the AMD 29K Advanced Pro-
cessor Development Division, Hewlett-Packard, SUN Mi-
crosystems, NCR and the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-613
in cooperation with the Illinois Computer laboratory for
Aerospace Systems and Software (ICLASS).

References

[1] T. Cormen, C. Leiserson, and R. Rivest, Introduction
to Algorithms. New York, NY: McGraw-Hill, 1991.

[2] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu, \IMPACT: An architectural frame-
work for multiple-instruction-issue processors," in Pro-
ceedings of the 18th International Symposium on Com-

puter Architecture, pp. 266{275, May 1991.

[3] E. M. Riseman and C. C. Foster, \The inhibition of po-
tential parallelism by conditional jumps," IEEE Trans-

actions on Computers, vol. c-21, pp. 1405{1411, De-
cember 1972.

[4] M. D. Smith, M. Johnson, and M. A. Horowitz, \Lim-
its on multiple instruction issue," in Proceedings of the
3rd International Conference on Architectural Support

for Programming Languages and Operating Systems,
pp. 290{302, April 1989.

[5] J. A. Fisher, \Trace scheduling: A technique for global
microcode compaction," IEEE Transactions on Com-

puters, vol. c-30, pp. 478{490, July 1981.

[6] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, \The Superblock: An e�ective technique for
VLIW and superscalar compilation," Journal of Su-

percomputing, vol. 7, pp. 229{248, January 1993.

[7] M. D. Smith, M. A. Horowitz, and M. S. Lam, \Ef-
�cient superscalar performance through boosting," in
Proceedings of the Fifth International Conference on
Architecture Support for Programming Languages and

Operating Systems (ASPLOS-V), pp. 248{259, Octo-
ber 1992.

[8] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E.
Hank, W. W. Hwu, B. R. Rau, and M. S. Schlansker,
\Sentinel scheduling: A model for compiler-controlled
speculative execution," Transactions on Computer

Systems, vol. 11, November 1993.

[9] R. A. Bringmann, S. A. Mahlke, R. E. Hank, J. C.
Gyllenhaal, and W. W. Hwu, \Speculative execution
exception recovery using write-back suppression," in
Proceedings of 26th Annual International Symposium
on Microarchitecture, December 1993.

[10] R. A. Bringmann, \Determining instructions that are
safe to speculate at compile-time," tech. rep., Center
for Reliable and High-Performance Computing, Uni-
versity of Illinois, Urbana, IL, May 1994.

[11] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Pa-
pworth, and P. K. Rodman, \A VLIW architecture
for a trace scheduling compiler," in Proceedings of the

2nd International Conference on Architectural Support

for Programming Languages and Operating Systems,
pp. 180{192, April 1987.

[12] J. C. Dehnert and R. A. Towle, \Compiling for the
cydra 5," Journal of Supercomputing, vol. 7, pp. 181{
227, January 1993.

[13] H. Packard, PA-RISC 1.1 Architecture and Instruction

Set Reference Manual. Cupertino, CA, 1990.


