Will a Dominant Standard for Object-Oriented System Development Emerge ?

Jos Van Hillegersberg and Kuldeep Kumar

Department of Decision- and Information Science, Faculteit Bedrijfskunde, Erasmus University
G1-40, PO Box 1738, 3000 DR Rotterdam, The Netherlands,
Email: {j.hillegersberg, k.kumar}@staf.fbk.eur.nl, Phone: 31-10-4082624

Abstract

The lack of a dominant Object-Oriented (0O0)
standard has been a hindrance to the OO paradigm’s
successful adoption on a large scale. Currently, within
different versions of OO methodologies, various OO
concepls can exist under different names and
interpretations. While recently there have been some
attempts to standardise OO systems development, until
now, no standard has emerged as the dominant standard
in practice. The objective of this paper is to assess
benefits of a dominant standard, and to investigate
strengths and weaknesses of the current approaches
towards standardisation. Based on this investigation, we
outline how these different standardisation approaches
can contribute toward the emergence of a dominant
standard. We conclude that a metamodelling approach,
combined with argumentation and ontology when
necessary, has the best chances to achieve the goal that,
to quote Snyder [1], “those applying OO technology will
one day speak the same language”.

1. Introduction
1.1 The lack of a standard

Several authors have expressed their concern about the
chaotic proliferation of object-oriented (OO) systems
development concepts and have suggested that OO
system development lacks well defined semantics.
Constantine [2] observes that “although everybody talks
about it, little consensus exists as to exactly what is meant
by object orientation”. This view is shared by Snyder [1]
who notes that; “..the groups involved with object
technology lack a shared understanding of the basic
concepts and a common vocabulary for discussing them.
Even within the language community, multiple terms are
often used for the same concept, and the same term is
sometimes used with different meanings”. Discussing
inheritance, Winkler [3] notes that this “...key-concept of
OO programming is interpreted quite differently by

different groups of the software community”. Within the
OO database community, Ling and Teo [4] also recognise
the lack of standards as one of the main inadequacies in
OO data models. Finally, even within the relatively
familiar area of OO analysis and design, a well defined,
complete model of OO is lacking [S].

An empirical analysis of recent directions in OO
systems development research, from 1992-1994, show that
theoretical foundations of OO development are still under
development, and no consensus has been reached upon
precise OO concepts [6]. The authors also found that most
attempts to order and compare the variety of OO concepts
typically have been based upon argumentation.

1.2 Potential benefits of a dominant standard

Several standard methods for OO systems development
have been suggested in academia, organisations and
industry consortia. Until now, none of these standards have
emerged as a dominant standard. Adapting the general
definition of a dominant standard given by Lee et al.[7], a
set of standard methods for OO development can be called
dominant if they form a:

“distinctive way of developing OO systems that has
achieved and maintained the highest level of market
acceptance for a significant amount of time”.

The emergence of a dominant standard in a market is a
key event in the evolution of an innovation. “It represents
the end of the technical variation and selection cycle, and
initiates an era of more incremental technological
development” [7]. Lee et al. describe several type of
impacts the emergence of a dominant standard can have on
both the supply- and demand side. We will apply their
ideas to assess, ex-ante, the possible effects of the
emergence of a dominant set of methods for OO
development:

First, OO product class confusion is reduced and
producers will be enabled to explore greater scale
economies through learning by doing effects. Once a
dominant set of development methods emerges, the

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

systems development industry will be able to reuse parts,
developed in earlier projects. This reuse can be both at the
design- and code level, since a dominant OO design
method would exist.

Second, switching costs associated with choosing
between competing sets of OO methods would be reduced
for both producers and consumers. For producers,
switching to new methods includes retraining personnel,
redefining standards and buying new CASE-tools.
Reusable parts that were developed using old methods
have to be converted or will loose their value. For
consumers, the largest risk is to end-up owning and using
systems built with methods that are no longer supported
by the industry and therefore not easy to maintain. Also,
system integration problems can occur when integrating
existing systems with those build according to a newer
method. Consumers therefore often decide to rebuild
existing systems using a new set of methods, that is
believed to become dominant. This results in considerable
loss of capital.

Third, a dominant set of OO methods has direct
competitive effects. The emergence of a dominant set of
methods to develop OO systems will influence the nature
of competition in the industry. For example, price
competition will increase in the consultancy- and CASE-
tool market. As an example, in the current market a
competitive factor of a CASE-tool can be the variety of
design methods it supports. Once a dominant design
method emerges, many different CASE-tool vendors will
support this method, which will lead to high competition
and lower prices.

Fourth, research and development in OO will focus
more on process quality improvement than on product
innovation. Currently, much research effort is dedicated
to developing new OO methods. As a dominant set of
methods emerges, research and development can focus
more on measuring and improving OO systems
development. OO quality metrics can be developed for
the dominant methods. Empirical studies can be
conducted to test and improve the dominant methods. The
emergence of dominant methods for OO is also likely to
increase the adoption of OO as a whole. As reported by
Yourdon [8], several producers as well as consumers now
stick to conventional development methods because of
the confusing state of the OO market.

1.3 OO systems development

In order to investigate possible causes and solutions
for the lack of an OO standard, a definition of OO
systems development is needed. We have adopted the
general definitions given by Welke [9] and Olle et al. [10]
to specifically describe OO systems development (see
Figure 1).

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

AralysisDesignStage | Programming Stage
OOAD Method | OODB or _ OOP method]
Metg- || Represertational | Modelling [Modelling| | Translation | | Representational | Modelling [Modlling
Modkl Form, Framework, | Process,, | | Process,; Form, Framework;| Process, ;

Instancd of Instancelof
Tramslated Translat

Model

World

Figure 1: OO Systems Development

A rich variety of analysis and design- (OOAD),
programming- (OOP) and database- (OODB) methods'
currently exists. Although mostly discussed separately,
these methods share the property of containing a number of
representational forms, modelling frameworks and
modelling processes. Representational forms define
notations to create models of the system under
development. These can be graphical (such as boxes, lines
and arrows used in object interaction diagrams), non-
graphical (e.g. matrices, tables or text) or symbolic (e.g. an
OO computer program). Although usually implicitly
presented, an OO method also offers a modelling
Jramework, which provides constructs to help the
developer to perceive some aspect of the system under
development. For example, a modelling framework of an
OOAD-method can define the semantics of the object and
class constructs. Using a modelling framework and a
representational form the developer creates a model. This
model can be used to communicate views of the system or
can be executed by a computer. To aid in this modelling
activity, a method describes some modelling processes.
These processes describe activities the developers have to
perform to create the model. A separate set of translation
processes is needed to aid developers in engineering
OOAD models into executable models or the reverse.
These are commonly not included in existing methods, and
therefore separately defined in Figure 1. The solid lines in
Figure 1 indicate relationships among the different
elements of the definition (the names of the relationships
should be read in upward direction) .

As an example, using the Booch [11] OOAD method, a
developer can create a class model of a system. The
representational form used defines the representation to be
used (cloud-shaped classes, arrows between these clouds
indicate inheritance etc.). The modelling framework is
informally defined in the method and contains descriptions

' Often, a number of complementary methods is integraied inio a
“methodology”.

YF]',F.

COMPUTER
SOCIETY

of the semantics of classes, objects, inheritance etc. The
Booch method also includes informal modelling
processes which guide the recognition of classes and class
structures. Although not explicitly present in the method,
a translation process could be described to guide the
translation of a class model into a C++ (executable)
model.

1.4 Approaches towards standardisation

As outlined in section 1.2, achieving a dominant
standard for OO systems development can have several
benefits. However, the modelling frameworks of current
methods are usually implicitly defined and not based on
any common standard. This lack of a common framework
hinders the rise of a dominant standard.

In this research recent standardisation efforts are
investigated based on the approach followed to create the
standard. Three main approaches can be distinguished:
argumentation, ontology and metamodelling. The
foundations of these three approaches are described and
examples are given of their use (section 2-4). Next,
advantages and drawbacks of the different approaches are
evaluated (section 5). The discussion addresses a possible
strategy towards a dominant standard (section 6), using
the integrative definition of OO given in this introduction.
This section also presents future research.

2. The argumentation approach
2.1 Argumentation and OO standardisation

In the argumentation approach to OO standardisation
the opinions and experiences of authors, organisations or
consortiums play a decisive role in selection and
description of a set of standard OO concepts. In some
cases, the authors may have first organised existing
surveys of OO concepts and terminology. Usually, these
surveys take one of an OOAD, an OOP, or OODB point
of view. Using some classification scheme, the variety of
concepts encountered are ordered and described.
Sometimes, based upon this set of OO concepts, a
standard is explicitly proposed. In other cases, concepts
are surveyed and explained, without presenting an
explicit standard, thus contributing somewhat indirectly
towards a standard.

2.2 Examples of the argumentation approach

Several authors have compiled extensive surveys of
existing OO terminology. Well known examples of such
surveys are the Henderson-Sellers book of OO knowledge
[12], Firesmith's dictionary of object terminology [13],
Nierstrasz’s survey of OO concepts [14] and Wegner’s

overview of OOP concepts [15]. In these surveys, while the
semantics of OO concepts are addressed and can serve as a
basis for standardisation, no explicit attempt is made
towards standardisation.

An argumentation approach towards standardisation of
the concept of inheritance can be found in Winkler [3]. In
this study, the author recognises a dichotomy between the
concept oriented view and the programming oriented view
of inheritance. Often, during implementation, dramatic
changes are necessary to inheritance hierarchies developed
in OOAD. Winkler advocates to adapt the program
oriented view of inheritance and thus standardise the
associated terminology.

Van de Weg and Engmann [16] construct a “unifying”
modelling framework for OOAD that is “theoretically
sound and complete”. The framework orders OO concepts
based on their role in modelling object statics, object
dynamics and object structure. The framework is populated
by selecting different concepts from the areas of databases
and programming (see Table 1). The authors illustrate how
the elements of the framework can be formally described
using a grammar and include a graphical representational
form and informal descriptions of modelling processes.

Table 1: Van de Weg et al. ‘s framework [16]

Statics Dynamics
Inter- Relationships Common Actions
object classification: classification:
structure - association - synchronous
- generalisation - asynchronous
- roles - consecutive
- aggregation
- grouping
Intra- Attributes Actions
object abstraction: abstraction:
structure | - states - state transitions
classification: ordering:
- identifiers - life history
- properties
- variables
- states

The Object Management Group (OMG), an industry
consortium of over 500 companies, has put forward the
Object Management Architecture (OMA) [17]. Part of
OMA is a definition of core OO concepts. The definitions
are given in structured English and have been established
through voting by the members of the consortium.

3. The ontological approach
3.1 Ontology and OO standardisation

The proponents of the ontological approach claim that

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

primitives used in representational forms can be studied,
understood and integrated by providing an ontological
level characterisation. It is claimed that using ontology,
the semantics of OO can be precisely defined on a
conceptual level [18].

Within philosophy, ontology is the branch of
metaphysics that deals with the nature of being [19]. The
ontological approach makes use of theories developed by
linguists and philosophers to describe the real world. An
ontology offers an explicit way to conceptualise the
world. It provides a set of primitives to organise three
different types of abstract knowledge; ontological
primitives, structural knowledge and dynamic knowledge
[20]. Within ontology, several theories exist differing in
the aspects of the real world they aim to describe and in
level of formality and detail. For example, to describe
dynamic knowledge, an ontology based on events an
actions can be used.

Since different types of ontologies exist, the
application of ontology to standardise OO requires a
choice of ontological primitives [20]. This choice is
determined by several considerations, such as the required
focus, level of formality and detail.

3.2 Examples of the ontological Approach

Bonfatti and Pazzi [20] apply ontology to create a
foundation for the concepts of object state and identity.
The authors use ontological principles to justify the
necessity of unique object identity. Leibniz’ ontology
says that in nature no ambiguity exist among individuals,
but only the full knowledge of all properties assures that
they can be distinguished. In order to uniquely recognise
objects in a system representation, where objects only
have a limited set of properties, unique identity is
necessary. This object identity is constant, e.g.
independent of dynamic changes in the object state. Using
the ontological definitions of object state and identity,
Bonfatti and Pazzi also attempt to settle the debates on the
assumption that; “everything can be viewed as an object”
, including values (this is the case in Smalltalk based
systems, see [21]). They propose to view values as fixed
state objects, which have their state bound to their
identity.

Taivalsaari [22] addresses similar conceptual issues
using ontology. He applies the classical Aristotelian view
of the world, where the real world is viewed
fundamentally composed of objects and their properties.
He argues that ontology recognises two different kind of
abstractions; Eternal abstractions are typically known as
values. They cannot be copied, instantiated or changed.
Tangible abstractions have a natural beginning and
ending. The tangible abstractions are objects. Objects can
be created, destroyed and can be changed during their

lifetime. The author list numerous other differences
between values and objects, and concludes that based on
ontology, it is not desirable to consider values and objects
identical.

Artale et al. [23] use ontology to more precisely define
the structural abstractions in the object model, focusing on
part-of relationships among objects. The authors state that
“the part-whole relation cannot simply be considered as an
ordinary attribute: its specific ontological nature requires to
be understood and integrated within data modelling
formalisms and methodologies”. It is concluded that OO
representations use a simple view of the theory parts and
wholes, failing to use the extensive theory developed in
ontological studies.

Takagaki and Wand [24] use ontology to develop an
formal object model based on Bunge’s ontology. The
authors emphasise the distinction between real world
objects and models of these objects. Consequently, the real
world objects have properties but the model objects have
attributes, which are selected by the designer. The model
recognises different types of object compositions.
Dynamics are captured by describing events and change
functions that cause these events to happen. Laws are
introduced to limit the possible values of state variables. If
an event causes a state variable to break a law, actions will
be taken to correct this.

4. The metamodelling approach
4.1 Metamodelling and OO standardisation

Metamodelling has been applied for a variety of
purposes. For example, metamodels have been used to
develop flexible CASE-tools [9,25-27], to build automated
support for translation between different system models
[28-31] and to analyse-, and compare- [10,32] and more
recently, build systems development methodologies
[33,34].

A metamodel can be defined as “a conceptual model of
a modelling technique” [35]. Two types of metamodels can
be distinguished. Meta-data models which describe models
of systems development representations, and meta-process
models which describe systems development processes
[27,35]. Since standardisation efforts have mainly focused
on standardising static aspects of methods, we will focus
on meta-data models.

Meta-data models capture the more static aspect of a
method and are constructed using techniques similar to
those used in constructing regular system models.
Depending on the required level of detail the choice of the
most appropriate modelling method can vary [27]. Often,
variants of Entity Relationship (ER) modelling are used.
Other applications might need a more -elaborate
metamodelling method such as OPRR [27], or a formal

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

modelling method such as Z [36].

Several ways in which metamodels can be applied to
aid in the standardisation of OO have been proposed.
Existing OOAD and OOP modelling frameworks and
processes can be described by creating their metamodels.
Based on these resulting metamodels, core- and extended
OO concepts can be distinguished. Core concepts are
widely used and accepted, and result from an intersection
of the individual metamodels. Extended concepts are
recently developed, usually method specific and become
visible by creating joins of the individual metamodels.
Such metamodels, describing core- and extended OO
concepts, can serve as a basis for a standardisation
discussion. As is observed in [37}: “..many
methodologists have agreed that metamodelling may
providle a way forward to both underpinning the
methodologies themselves by something a little more
rigorous than the current informality and also to creating
a potentially agreeable core meta-object model for all
methodologies to adhere to”.

4.2 Examples of the metamodelling approach

Hong et al. [32] use metamodelling to compare six
OOAD methods. In this research, metamodels are created
of the OOAD methods and merged into a “super-method”
metamodel. The individual metamodels are now
compared against the super-method. Although the goal of
this research is not directly standardisation, the results
objectively identify the main differences that have to be
resolved to reach a standard method.

A recent attempt to organise concepts from a OOAD
point of view and create a standard OOAD method is
undertaken by Booch and Rumbaugh jointly with
Jacobson [38]. In their “Unified Method” an attempt is
made to “represent the unification of the Booch and OMT
methods as well as the best ideas from a number of other
methodologists. By unifying these two leading OOAD
methods, the unified method provides the basis for a de-
Jacto standard in the domain of OOAD founded on a wide
base of user experience”. Booch and Rumbaugh define
the Unified Method by constructing a meta-data model, to
provide a “reasonably formal” description of the
modelling concepts, semantics and the corresponding
notation. The Unified Method metamodel has facilitated a
rich discussion among OO users on the Internet
concerning standard OOAD concepts and especially, the
method’s notation.

Snyder [1] describes the standardisation efforts of a
Hewlett-Packard task force that developed a set of core
concepts in object technology. The approach followed
can be described as a metamodelling approach using
informal modelling techniques. The concepts were
elicited from a group of OOPL’s, OODB’s and OO

operating systems. Snyder proposes a set of terms as
representative for the core OO concepts, which are further
refined into an abstract object model (see Table 2).

Table 2: Examples of Snyder’s standard naming [1].

Proposed Term Related Terms

object instance, class instance, surrogate,
entity

object reference handle, object identifier, object name

request message, method invocation, function
invocation

interface inheritance, specification hierarchy,

hierarchy type hierarchy, class hierarchy,

subtyping, conformance

The American National Standards Institute (ANSI)
X3H7 committee concentrates on standardising OO models
[39]. In order to identify essential differences and
commonalties, the committee selected to include OOPL’s,
OODB and OOAD methods as well as specific standards
such as OMG Core Object Model. This information was
then structured by building an Object Model Features
Matrix. In this approach the metamodel is the object
features matrix, which can be viewed as a model of the
specific methods. Rows in the matrix denote specific OO
methods. Columns denote specified features of the OO
method’s modelling framework. Some examples of
columns are; state, lifetime, identity, operations, types and
classes, dynamic extensibility etc. The cells in the matrix
contain descriptions of the presence of the feature. These
descriptions have not yet been validated by the original
developers of the methods.

To achieve a standard CASE data interchange format,
the CDIF/OOAD working group also has followed a
metamodelling approach [40]. First, metamodels were
created of a number of leading OOAD methods, including
Martin-Odell, OMT, Shlaer-Mellor etc. Only the OOAD
concepts were included and programming language
specific constructs were left out. Second, the common
concepts of the individual models were integrated into a
common metamodel. To create the metamodel, extended
ER-modelling has been used. The metamodel attempts to
capture the semantics of the different OOAD modelling
constructs. Since the main goal of CDIF’s metamodel is to
exchange data, the metamodel does not attempt to enforce
standard naming conventions.

Recently, the Centre for Object Technology
Applications and Research (COTAR) of the University of
Sydney has initiated the COMMA (Common Object-
Oriented Methodology Metamodel Architecture) project
[41]. The goal of this project is to build metamodels of a
large number of popular OOAD methods, which will be
validated by the authors of the original methods. Next, the

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

metamodels will be integrated into a core metamodel, and ad-hoc process used to develop the standard. Choices made
form the basis of a de-facto industry standard. The by the designers are often not documented. In the field of
COMMA initial focus will be on standardisation of OOAD, the creation of several methods appears to based

syntax and semantics, but will possibly also address upon an arbitrary selection of OO primitives and notations.
notation, modelling techniques and high level processes. Several methodologies do not emphasise on completeness
The ACOMP (Agreement on Core Object Methodology or semantics of the introduced representational forms and
Principles) initiative aims to use the COMMA- modelling processes. The underlying modelling framework
metamodels to invite several leading OO methodologists usually receives little attention and is only informally
to agree upon basic concepts which will be grouped into described.

“coherent and flexible object development frameworks”

[37]. 5.3 Assessment of the ontological approach

The most obvious remark concerning the ontological
approach is that, like in OO modelling, several ontological
frameworks exist within ontology. The choice of constructs
to use from an ontology is arbitrary [18]. For example,
Takagaki and Wand [24] choose to apply Bunge’s

None of the attempts towards a standard described ontology, but acknowledge that “another set of ontological

have, as yet, produced a dominant standard in the OO assumptions could have led to a different information
field, ’ system model”. This could lead to the use of ontology to

prove conflicting statements. As an example, while
Taivalsaari [22] uses ontology to argue that things have a
natural ‘beginning and ‘ending’, Takagaki and Wand [24],

5. Assessment of the standardisation
approaches

5.1 Properties of standardisation approaches

Table 3: Properties of reviewed approaches

if‘lg,:::zztation Formality Scope Viewd PD note that “ontologically things- do not disappear. Rather
OMA [17] inf. OOAD + o+ they persist until they c.hange into other th‘ings”. It seems
Van deWegetal. [16] form. OOAD o+ that first an ag}‘eement is needed as to which ontology to
Winkler [3] inf. inheritance + + use to standardise OO concepts.

Ontology Next, a complete ontology does not necessary lead to a
Taivalsaari [22] inf. object . complete OO method. Ontology !)y itself does not cover all
Artale et al. [23] form. part-whole + + + aspects qf conceptual ‘modelhng. [18]. For example,
Bonfatti et al. [20] form. objectstate + + ontology. is concerped with modelling frameworks, not so
Takagaki et al. [24] form. OOAD " much with modelling processes. T_he process aspect of a
Metamodelling methpd therefore QOes not benefit dlrectl.y from optolf)gy.
Snyder [1] inf. 00 i Finally, there is the issue of practical :elppllcatlon of
ANSI-X3H7 [39] semi- OO -+ + ontology to systems Qevelopment. Ontological construcfs
Hong et al. [32] semi- OOAD + may be very well applicable in OOAI?, but not so much in
Booch et al. [38] semi- OOAD + QOP. In some cases, on'tologlca.l constructs, if
COMMA [41] semi- OOAD + ¥mplen.1ente.d in their pure form in an object model, lead tq
CDIF [40] semi- OOAD + inefficient implementation [22]. As an example, Bonfatti

and Pazzi [20] choose not to follow Leibniz’ ontology by
adding constant object identity to their model for

Apart from the approach followed, a standardisation “economic and natural” reasons.

effort can also vary in the viewpoint chosen (OOAD,

OOP or OODB) and in the level of formality and scope of 5.4 Assessment of the metamodelling approach
the resulting standard (see Table 3). In this section we

survey strength and weaknesses of the different Perhaps the most interesting criticism on the
approaches and assess these differences. metamodelling approach is that metamodelling is itself a

modelling activity which can only be successful if an
5.2 Assessment of the argumentation approach unambiguous and well defined metamodelling method

exists. Even more than traditional modelling,
metamodelling is a complicated and creative activity. If the
used metamodelling method is incomplete, the constructed

2 These abbrevations indicate an Analysis and design, Programming metamode] might miss important aspects of the modelled
and Database viewpoint respectively. domain, that is, the OO method. Currently, extended ER-

The key criticism of the argumentation approach is the

YF]',F.

Proceedings of The Thirtieth Annual Hawwaii International Conference COMPUTER
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE SOCIETY

modelling seems to be a popular technique for creating
metamodels. However, even in extended ER modelling,
no clear defined modelling processes are known on
eliciting entities from methods. Moreover, extended ER-
modelling does not include any process modelling, and
thus does not capture the process aspect of methods.
Booch and Rumbaugh [38] find this process aspect less
important: “At some future time, we will describe a
unified process, although this is far less urgent, since a
common notation is amenable to many different
development processes, depending upon the nature of the
system being developed and the business factors and
culture that shape the development organisation itself”.

The metamodelling approach followed is often not
traceable and usually semi-formal. Since no clear
modelling process exist, the metamodels are created
iteratively and should be subsequently validated. Several
standardisation efforts are indeed created by subsequent
revisions and sometimes by public review. Both the ANSI
and the Unified Method metamodel were created in this
way. A different process to ensure the quality of the
metamodel was adopted in the COMMA project, where
metamodels are circulated to the original method
developers for their ratification or correction.

Another critical step in the metamodelling approach is
to integrate the different metamodels. The same
metamodel notation and a comparable level of detail
should be used to allow integration. Since several similar
methods modelled, the metamodels very likely have
many common components. Problems that occur when
integrating such different metamodels are similar to those
found in database view integration [42]. Problems of
synonymy and homonymy have to be resolved to find
true semantic equivalencies [43]. In current metamodel
approaches, this research step is often not documented.
For example, Booch and Rumbaugh [38] present the
Unified Method metamodel in much detail, but the
process of constructing this model from the OMT and
Booch method is not documented and probably informal.
The intraceability of this “unification process” makes it
unrepeatable and difficult to criticise.

Finally, selecting which individual methods to
metamodel to create a good ‘core’ metamodel is also non-
trivial. For this reason, the OMG chooses not to follow
the metamodelling approach. OMG feels an intersection
of metamodels might be too minimal to be of use, while
the unification of metamodels might have too many
concepts to be comprehensible. Different strategies are
chosen to attack this issue. In the COMMA project a very
large number of methods are metamodelled. The ANSI
X3H7 committee chooses to model a wide variety of
methods and OOPL’s, not necessary the most popular, to
be sure to capture all interesting OO concepts.

5.5 Assessment of the level of formality

Formally defining the primitives of representational
forms and modelling processes has several advantages. It
facilitates unambiguous communication among developers
and communications with the customer. Using first order
logic customer requirements can be stated in precise terms
and can be checked on validity and measured on quality.
Also, formally defined representations are a sound basis for
developing formal processes that perform translations
between analysis, design and implementation models. For
these reasons, ANSI’s X3H7 committee also sees formal
specification of object concepts and behaviour as its
ultimate goal [39].

Argumentation and ontological approaches frequently
use formal notations. The level of formality used in
metamodelling approaches usually is semi-formal, which
makes the resulting “core” metamodels not directly suitable
for definition of standards. It may be needed to add a more
formal definition of the semantics of the ‘core’ metamodel
later.

Taivalsaari [22], however questions the suitability of
mathematical formalisms to standardise OO systems
development. He argues that: “in fact, there is a logical
reason why no commonly accepted theory of OOP exists.
Theories and formalisms should be based on a sound
mathematical basis. Mathematical formalisms are
essentially value based. Concepts that are central to OOP
such as state, updating and sharing do not naturally fit very
well to such formalisms”.

Furthermore, a complete formal definition of the variety
of OO concepts will be very complex, and difficult to
build. Also, since empirical studies have shown that
developers often have difficulties understanding
mathematical formal notations [44], such a standard is
likely to cause interpretation problems for most developers.

5.6 The chosen viewpoint and scope

Eventually, only an OO standard that takes OOAD,
OOP as well as OODB viewpoints into account is capable
to integrate the entire OO field. However, defining
standards having a wide scope consequently leads to a low
level of detail. Such standards can impossibly address
complex object structuring mechanisms, such as
composition or inheritance, in much detail.

For example, Takagaki and Wand [24] emphasise on
object compositions and dynamics, but do not present other
mechanisms such as inheritance or object identity.

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

6. Discussion standardised, but this is not necessary since the underlying
standard modelling framework ensures easy translation

6.1 A standard modelling framework among different notations. Newly introduced “extended
OO constructs” should, if proven beneficial to OO systems
In the last decade, OO research in the methodology-, development, be added to the standard modelling
programming- and database research communities has framework, enabling future methods to make use of these
focused on developing various representational forms. concepts.
Although representation differences can be eliminated,
differences in the associated modelling framework create 6.2 Properties of a successful approach
more severe problems. Usually, constructs of modelling
frameworks such as class, object or inheritance are From the overview of recent standardisation approaches
informally described. Furthermore, during OO systems given earlier, typical differences among the approaches are
development, methods are used that use different summarised in Table 4. Standards resulting from
modelling frameworks that are inconsistent in their use argumentation approaches are usually informal, may
and interpretation of OO concepts. Clearly, a standard contain an arbitrary selection of concepts and often
modelling framework will have several important concentrate on either OOAD or OOP. The ontological
benefits. Unfortunately, the standardisation approaches approach draws from a solid base of well defined concepts,
reviewed in this paper have not yet resulted in a dominant usually to concentrate on single OOAD concept in much
standard. In this discussion, we argue a standardisation detail. Metamodelling usually results in semi-formal
approach must possess certain properties in order to be standards with a wide scope. Currently, the use of
successful. metamodelling is limited to OOAD.
A standardisation approach should be aimed at the
creation of a standard OO modelling framework, which Table 4: Typical Properties of different approaches.
can be used in all development stages. The role of this Approach Formality Scope View:A" P D
modelling framework is illustrated by Figure 2. The view Argumentation inf. wide + o+
of OO system development presented in this figure is Ontology inf. or form. narrow +
similar to Figure 1, but an extra layer is added containing Metamodelling semi- wide +
the standard modelling framework. The modelling Complete at least semi- wide + + +
frameworks of individual methods are a specific view of
this standard modelling framework. Which view is Table 4 also lists the desired properties of a “complete”
chosen, depends on the specific goal of the method. For standardisation approach. The “complete” approach has to
example, a design method focusing on system dynamics incorporate concepts of OOAD-, OODB- and OOP
during design, would use a view on the standard methods. The differences in interpretation of concepts
framework that includes a description of the object- and within analysis, design- and programming are one of the
message constructs. important problems a standard modelling framework has to
address. Furthermore, the standardisation process should
Analysis/Design Stage Programming Stage make use of the huge body of available knowledge on OO
development and must not attempt to introduce a new
Standar. Standard OO Modelling standard from scratch. The appropriate level of formality to
disation| Framework be used is not easily decided. However, a complete formal
Viewof Viewof definition of the variety of OO concepts will be very
complex, difficult to understand and build. Therefore, the
OOAD Method | OODB or™~QOPmethod ___| « v .. . s
Nita- Represanaﬁanl|l\'hdellmg 'mng TPM;; R ; FM mﬂg comp}f:te stz}n.dardlsatlon approach will produge a seml,:
Model Form, _[Framevory| Process, il orm, s|Pess| formal” definition of the OO concepts. The “complete
stanchof Istancelof approach should be based upon a documented and
Trsicted Translct repeatable standardisation process. Preferably, the products
Model G0AD by by of the process must be freely accessible and be subject to
model,, Trgineared o validation by others.
Real 6.3 Future research
World

Although argumentation and ontological approaches can
be useful to introduce and define OO concepts, we argue a
metamodelling approach towards a dominant standard for

Figure 2: OO Systems Development Standardisation

Ideally, representational forms available are also

YF]',F.

Proceedings of The Thirtieth Annual Hawwaii International Conference COMPUTER
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE SOCIETY

OO systems development holds the most promise. Several
strengths of the metamodelling approach contribute
towards this belief:

First, concepts invented in countless methodologies
and languages are captured and integrated rather than
reinvented. Second, metamodelling seems to be able to
capture and combine concepts from OOAD, OOP and
OODB. Although applications of metamodelling have
been mainly limited to OOAD, some attempts to apply
metamodelling to describe OOP concepts have been
undertaken [45]. Third, the semi-formal notations used in
metamodelling have proven to facilitate discussion among
OO system developers. These notations are
understandable and more rigorous than ‘“natural
language” but yet less complex than mathematical
formalisms.

Although metamodelling is chosen as the “closest” to
the “complete” approach, ontology and argumentation
can be used in addition to metamodelling: Using theory
from ontology, particular constructs, such as composition
and identity can be investigated further and expanded.
Since none of these approaches are deterministic,
argumentation will decide the final shape of the
framework.

The authors are currently involved in a research
project which follows this approach and is aimed at
developing a modelling framework based on a number of
leading OOP and OOAD methods.

7. References

[11 A. Snyder, The essence of objects: Concepts and Terms,
IEEE Software, vol. no. January, 1993, pp. 31-42.

[2] L. L. Constantine, Object-oriented and function oriented
software structure. A revised form of 'objects, functions
and extensibility’, Computer Language, vol. 7 (Jan), 1990,
pp- 34-56.

[3] I.F.H. Winkler, Objectivism: "Class" considered harmful,
Comm. ACM, vol. 35, no. 8, 1992, pp. 128-130.

[4] T. W. Ling and P. K. Teo, Toward resolving inadequacies
in object-oriented data models, Information & Sofiware
Technology, vol. 35, no. 5, 1993, pp. 267-276.

[5] D. E. Monarchi and G. L. Puhr, A research typology for
Object-Oriented Analysis and Design, Comm. ACM, vol.
35,n0. 9, 1992, pp. 35-47.

[6] J. van Hillegersberg, K. Kumar, and R. J. Welke.
Directions in Object-Oriented Systems Development
Research. In: Proc. of the 4th ECIS: European Conference
on Information Systems, eds. J. Dias Coelho, T. Jelassi, W.
Konig, H. Krcmar, R. O'Callagham, and M. Sadksjérvi.
Lisbon: 1996, pp. 633-646.

[71 1. R. Lee, D. E. O'Neal, M. W. Pruett, and H. Thomas,
Planning for dominance: a strategic perspective on the

emergence of a dominant design, R&D Management, vol.
25, no. 1, 1995, pp. 3-15.

[8] E. Yourdon. Object-Oriented Systems Design. An Integrated
Approach, Englewood Cliffs, NJ: Prentice Hall, 1994.

[91 R. J. Welke. IS/DSS: A DBMS support system for
information systems development. In: Database
Management: Theory and Applications, eds. C. W.
Holsapple and A. B. Whinston. Dordrecht: D. Reidel Pub.
Company, 1983, pp. 195-250.

[10] T. W. Olle, J. Hagelstein, I. G. Macdonald, C. Rolland, H.
G. Sol, F. J. M. v. Assche, and A. A. Verrijn-Stuart.
Information Systems Methodologies: A framework for
understanding, Workingham,England: Addison Wesley,
1991.

[11] G. Booch. Object-oriented analysis and design with
applications, Redwood city, California: Benjamin /
Cummings, 1993.

[12] B. Henderson-Sellers. The Object-Oriented Paradigm. In:
Book two of object-oriented knowledge, Englewoods Cliffs,
NJ: Prentice Hall, 1994, pp. 41-101.

[13] D. G. Firesmith and E. M. Eykholt. The Dictionary of
Object Technology, New York: SIGS Books, 1995.

[14] O. Nierstrasz. A survey of Object-Oriented Concepts. In:
Object-Oriented concepts, Databases and Applications, eds.
W. Kim and F. Lochovsky. Addison-Wesley, 1989, pp. 3-
21.

[15] P. Wegner, Concepts and paradigms of object-oriented
programming, OOPS Messenger, vol. 1, no. 1, 1990, pp. 7-
87.

[16] R. L. W. van de Weg and L. Engmann. A framework and
method for object-oriented information systems analysis and
design. In: Proceedings of the IFIP TC8/WG 8.1 Working
conference on Information system concepts: Improving the
understanding, eds. E. D. Falkenberg, C. Rolland, and E. N.
El-Sayed. North-Holland: Elsevier Science Pub. 1992, pp.
123-146.

[17] R. M. Soley and C. M. Stone. Object Management
Architecture Guide, New York: Wiley, 1995.

[18] Y. Wand, D. E. Monarchi, J. Parsons, and C. C. Woo,
Theoretical foundations for conceptual modelling in
information systems development, Decision Support
Systems, vol. 15, 1995, pp. 285-304.

[19] J. e. Sinclair and P. e. Hanks. Collins Cobuild -English
Language Dictionary, London: HarperCollins Pub. 1991.

[20] F. Bonfatti and L. Pazzi, Ontological foundations for state
and identity within the object-oriented paradigm,
International Journal of Human-Computer Studies, vol. 43,
no. 5/6, 1995, pp. 891-906.

[21] A. Goldberg and D. Robson. Smalltalk-80 - The language
and its implementation, Reading, MA: Addison-Wesley,
1983.

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

[22] A. Taivalsaari, On the notion of Object, Journal of
Systems Software, vol. 21, 1993, pp. 3-16.

[23] A. Artale, E. Franconi, N. Guarino, and L. Pazzi, Part-
Whole relations in object-centered systems: an overview,
Data & Knowledge Engineering, vol. 16, no. 12, 1995.

[24] K. Takagaki and Y. Wand. An object-oriented information
systems model based on ontology. In: Proceedings of the
IFIP TC8/WG 8.1 Working conference on the object-
oriented approach in Information Systems, eds. F. Van
Assche, B. Moulin, and C. Rolland. North-Holland:
Elsevier Science Pub. 1991, pp. 275-296.

[25] D. Teichroew, P. Macasovic, E. A. Hershey, and Y.
Yamamototo. Application of the Entity-Relationship
approach to information systems modelling. In: The entity-

relationship approach to systems analysis and design, ed.
P. P. Chen. North-Holland: 1980.

[26] K. Smolander, K. Lyytinen, T. Veli-Pekka, and P.
Marttiin. Meta-Edit --- A flexible graphical environment
for Methodology Modelling. In: Advanced Information
Systems Engineering, Third International Conference
CAiSE'91: Proceedings, eds. R. Andersen, J. A. Bubenko
jr., and A. Solvberg. Berlin: Springer-Verlag, 1991, pp.
168-193.

[27] R. J. Welke. The CASE repository: More than another
Database Application. In: Challenges and strategies for
research in systems development, eds. W. W. Cotterman
and J. A. Senn. Chichester: John Wiley & Sons, 1992, pp.
181-214.

[28] M. D. Fraser, K. Kumar, and V. K. Vaishnavi, Informal
and Formal requirements specification languages;
Bridging the Gap, I[EEE transactions on SE, vol. 17, no. 5,
1991, pp. 454-466.

[29] P. Atzeni and R. Torlone, A metamodel approach for the
management of multiple models and translation of
schemes, Information Systems, vol. 18, no. 6, 1993, pp.
349-362.

[30] S. A. Demurjian and D. D. Hsiao, Towards a better
understanding of data models through multilingual data
systems, IEEE transactions on SE, vol. 14, no. 7, 1988,
pp- 946-958.

[31] M. Morgestern. A Unifying approach for conceptual
schema to support multiple data models. In: Entity-
Relationship approach to information modelling and
analysis. ed. P. P. Chen. North-Holland corp. 1983, pp.
279-297.

[32] S. Hong, G. v. Goor, and S. Brinkkemper. A formal
approach to the comparison of Object-Oriented analysis
and design methodologies. In: Proc. of HICSS-26, 1993,
pp. 689-698.

[33] K. Kumar and R. J. Welke. Methodology Engineering: A
proposal for situation specific methodology construction.
In: Challenges and strategies for reserach in systems
development, eds. W. W. Cotterman and J. A. Senn.
Chichester: John Wiley & Sons, 1992, pp. 257-266.

[34] F. Harmsen, S. Brinkkemper, and H. Oei. A language and
tool for the engineering of situational methods for
information systems development. In: Porc. of the ISD'94
conference, eds. J. Zupanic and S. Wrycza. Bled: 1994.

[35] S. Brinkkemper, Formalisation of Information systems
modelling pp. 1-209, 1990. Katholieke Universiteit
Nijmegen, The Netherlands. PhD-Thesis. Thesis Publishers.

[36] M. Saeki and K. Wenyin, Specifying Software
Specifications & Design Methods eds. G. Wijers, S.
Brinkkemper, and T. Wasserman. eds. G. Goos and J.
Hartmanis, pp. 353-366, 1994. Lecture Notes in Computer
Science 811. Springer-Verlag. Berlin.

[371 ACOMP, Agreement on Core Object Methodology
Principles (ACOMP), L'OBJET, vol. 1, no. 3, 1996, pp. 1-4.

[38] G. Booch and J. Rumbaugh, Unified Method : Metamodel
Description Version 0.8, pp. 1-45, 1995. Rational Software
Corporation. Available by Rational.

[39]1 X3H7 Technical Committee, ANSI X3H7 (Object
Information Management) Technical Report ed. F. Manola.
Interim Report, pp. 1-25, 1995.

[40] CDIF, Draft for the CDIF/OOAD Meta-model ed. J. Ernst.
CDIF-JE-N24-V1, pp. 1-24, 1995.

[41] B. Henderson-Sellers, COMMA: An architecture for method
interoperability, Report on Object Analysis and Design, vol.
1, no. 3, 1994, pp. 25-28.

[42] C. Batini, S. Ceri, and B. Navathe. Conceptual Database
design. An Entity-Relationship Approach, Redwood City,
CA: Benjamin/Cummings Pub. Comp. 1992.

[43] P. M. Steele and A. B. Zaslavsky. The role of meta models
in federating system modelling techniques. In: Lecture
Notes in Computer Science 823, Berlin: Springer Verlag,
1995, pp. 315-326.

[44] K. Finney, Correspondence: Mathematical Notation in
Formal Specification: Too difficult for the masses ? IEEE
transactions on SE, vol. 22, no. 2, 1996, pp. 158-159.

[45] J. van Hillegersberg and K. Kumar. Using Meta-modelling
in understanding object-oriented programming. In: ECOOP
1995 workshop on Education in OO, eds. S. Holland and H.
Sharp. Arhus, Denmark: 1995.

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

