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Abstract 

Our mobile robot, Spinoza, embodies a sophisticated 
real-time vision system for  control of a mobile robot 
in a dynamic environment. The complexity of our 
robot architecture arises f rom the wide variety of tasks 
that need to be performed and the resulting chal- 
lenge of coordinating multiple distributed, concurrent 
processes on  a diverse range of processor architec- 
tures including Transputers, digital signal processors, 
and a workstation host. The  system handles sens- 
ing, reasoning, and action components of a robot dis- 
tributed over these architectures, and responds to  un- 
predictable events in an  unknown dynamic environ- 
ment.  Spinoza relies heavily on  its capability to per- 
f o r m  real-time vision processing in order to perform 
task such as mapping, navigation, exploration, track- 
ing, and simple manipulation. 

1 Introduction 
Our mobile robot, Spinoza, embodies a sophisti- 

cated real-time vision system for control of a respon- 
sive mobile robot. Balancing the real-time constraints 
of a robot in a dynamic environment challenges the 
limits of both technology and our scientific under- 
standing of embedded systems. Dynamic environ- 
ments are unpredictable, asynchronous, and require a 
low latency in response, while visual information pro- 
cessing require high data-rate communications and 
significant computation. 

*This research was supported by the Natural Sciences and 
Engineering Research Council of Canada and the Networks of 
Centres of Excellence Institute for Robotics and Intelligent Sys- 
tems, Project IS-6. 

Figure 1: Spinoza: the visually guided mobile robot 

Spinoza, as seen in Figure 1, is a self-contained 
robot, with host support. It consists of a Real World 
Interface (RWI) B-12 base with an RGB (colour) 
camera, mounted on a Directed Perception pan-tilt 
platform, on top, and trinocular monochrome stereo 
cameras in the body. 

To provide a context for the design issues involved 
in this system, we begin by describing previous work 
in our lab on developing vision-based robotics systems 
that are antecedents of Spinoza. Also we present our 
research goals and a description the tasks Spinoza is 
to perform. Section 2 describes how the functional 
requirements of Spinoza and the development envi- 
ronment shapes the the choice of computational ar- 
chitecture and communication protocols. Section 3 
describes the robot hardware. Section 4 describes in 
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detail the workings of all the components of the robot 
from the hardware to the software. We finally present 
the experimental results and conclude with a discus- 
sion about the future of mobile robotics. 

1.1 

Spinoza is being built as part of a long-term project 
intended to  develop a new approach to the specifica- 
tion, design and implementation of robotic systems. 
We will describe the elements of the system architec- 
ture that appeared in several of these robotic systems. 

The UBC Vision Engine[l3] is a general-purpose 
vision system that consists of multiple architectures: 
pipelined (a Datacube MaxVideo200) image proces- 
sor and a MIMD multicomputer (20 T800 2MB 
Transputers, connected via a crossbar). These are 
connected by a bidirectional video-rate interface. The 
Vision Engine has been used in a range of visually- 
guide robots, such as an eye-head system: a pair of 
cameras on a pointable platform[l5]. The eye-head 
follows a moving object, with no knowledge of its 
target, using dense optical flow input computed on 
the MaxVideo200. The Transputer system processes 
the flow data and controls the eye-head platform for 
vergence, pan and tilt. 

History of the Dynamo project 

Figure 2: Dynamites: soccer playing robots 

Another predecessor to Spinoza was the Dyna- 
mite testbed, shown in Figure 2. The Dynamite 
testbed is a collection of independently controlled 
mobile robot vehicles that play soccer 13, 161. It 
has been used to  explore novel reactive strategies for 
control[l9] as well as for ideas on control, specifica- 
tion, and reasoning about real-time systems[20]. The 
system demonstrates offboard vision processing and 
distributed computation. The vision component was 
originally prototyped on the MaxVideoQOO in the Vi- 
sion Engine with the control programs running on 
the Transputers. Currently the system is realized as 
simple custom hardware to process RGB signals, fol- 
lowed by run-length encoding and centroid calcula- 
tion on Transputers. A single ofhoard camera sen- 
sor communicates its signals to the centralized sensor 

processor. The sensor processor provides positional 
information to the control processes for each compet- 
ing soccer player at 60Hz (once per image field) with 
a lag of at most 5 ms after the end of field. The struc- 
ture of the full system is shown in Fig. 3. Four robots 
can be controlled concurrently. 
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Figure 3: Dynamite Architecture 

The “remote brain” idea, offboard visual process- 
ing, was used for soccer players because of sizelweight 
limitations, and for our initial work with Spinoza: 
ROLL, (Real-time Onboard Localization with Land- 
marks) identifies its position in real-time, using pas- 
sive visual localization of a single landmark[l4]. 
ROLL used a set of TI C40 DSPs and transmitters 
to support offboard visual processing. 

1.2 Project Goals 
The scientific goals of the project include determining 
the power of vision as  a sensing mode for a robot, how 
to integrate ongoing sensing, and how much knowl- 
edge and reasoning is needed for planning actions. In 
general, we seek to delve into the interaction between 
processing, perception, and action in a dynamic en- 
vironment. 

Other goals include learning about capabilities of 
situatedlembedded vision, integration of technology, 
and exploration of dynamic environments. We wish 
to  develop a flexible computing environment that can 
handle multiple visual tasks, processing modes, and 
cameras to support a visually guided robot that can 
operate outdoors. 

1.3 Robot Tasks 
At the highest level, we would like to build a robot 
that can, either under program control, or full or lim- 
ited teleoperation, to act as a remote physical agent, 
to perform a range of tasks, including finding lab 
members, identifying whether equipment is busy, to 
check the status of the lab, to guide tours, to find 
things. More concretely, the robot’s functions that 
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have been completed to date include mapping, nav- 
igation, exploration, tracking, and simple manipula- 
tion. The requirements include fast vision processing, 
flexible controllers, high bandwidth communication, 
and support for high-level processes.The types of vi- 
sual tasks required are as follows: 
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blob detection-isolation of coloured objects for 
recognition and tracking 
stereo-passive distance estimation 
pointable camera-for tracking 
optical flow-computing perceived motion for 
segmentation, recognition, and obstacle detec- 
tion 
tracking-visual servoing 
integration of multiple modes-cooperation 
among sensing systems (cameras) and vision pro- 
cesses 

Models 
In our research we are interested in developing for- 
mal theories that can provide systematic design and 
analysis methodology for perceptual robotic systems. 

2.1 Robot Models 

We need practical and formal design methods for 
building integrated perceptual robots. A robot is, 
typically, a hybrid intelligent system, consisting of a 
controller coupled to  its plant. The controller and the 
plant each consist of discrete-time, continuous-time or 
event-driven components operating over discrete or 
continuous domains. The controller has perceptual 
subsystems that can (partially) observe the state of 
the environment and the state of the plant. Vision as 
a passive sensing system is cheap, reliable and biolog- 
ically validated, so we are pushing the use of vision 
for mobile robots as far as we can. 

The structure of the robot follows standard models 
[l, 221 that decompose the robot into sensing, rea- 
soning, and action subsystems, each realized at a hi- 
erarchy of scales. The finest scale handles control 
loops with a 100 Hz rate and a lOms time horizon, 
and operates synchronously. Each coarser scale re- 
duces the rate by a factor of 10 and increases the 
time horizon by a factor of 10. At the highest level, 
the time horizon is on the order of 10s of seconds, and 
the system operates asynchronously. In practice the 
data flows up and down the time and space hierar- 
chy are implemented a s  streams of messages passing 
asynchronously through the system. 

~ 
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Robots are a typical class of hybrid systems. One of 
the most important challenges facing us is to develop 
theoretical and practical tools for designing hybrid 
embedded intelligent systems. 

The hierarchical spatial and temporal structure of 
the levels in the standard robotic (such as Albus’s 
NASREM architecture) map onto a set of software 
levels. The reasoning component dominates at the 
highest asynchronous level, while the lower levels, 
with control loops, are concerned with sensing (vision 
and robot base) and action (actuation and movement 
of the robot base. 

We are working toward an implementation that will 
specify the controller for the robot using the termi- 
nology of Constraint Nets [21], but at present we use 
the layered approach to distribute the computation 
in a set of software modules that match the elements 
of the layers. 

Much of the complexity of our robot architecture 
arises from the nature of the tasks and the challenge 
of coordinating multiple distributed, concurrent pro- 
cesses on a wide range of architectures. A robot en- 
gages in multiple asynchronous activities. 

The finest level is also responsible for reaction to 
stimuli such as looming objects, our “knee-jerk” re- 
flex, which avoids approaching objects, in a dynamic 
environment, where transport of information to high 
levels would delay response unacceptably. 

2.2 Programming Models 

2.3 Development Environment 

Spinoza has evolved, with new communication, com- 
putation, and sensing capabilities added over time. 
We have pursued an incremental strategy, extending 
its abilities to handle new tasks. To limit the degree 
of low-level programming, as well as to reduce the 
impact of changing hardware, a stable software inter- 
face to robot services was required. The actual robot 
hardware is varied, and cannot easily be mastered, 
thus a certain level of abstraction from the actual 
implementation was necessary. 

The separation between abstraction and implemen- 
tation, argued for by these considerations, leads to a 
model where the robot is isolated from the program 
development system by an interface. Controllers can 
be designed and tested in isolation from the actual 
robot; for example the development of controllers for 
the robot soccer players was facilitated by realistic 
simulation of the soccer players and their environ- 
ment. This dovetails nicely with our desire to include 



teleoperation, the human intelligence and decision- 
making capability, in the robotic system. 

Hardware Task 
C40S Blob Detection 

Stereo Vision 
Transputers Robot Control 
Host Teleoperation 

Mapping 
Planning 

2.4 Model/Hardware map 

Comm. Scale 
synch > 10 Hz 
synch > 1 Hz 
synch > 10 Hz 
asynch < 1 Hz 
asynch < 2Hz 
asynch < 0.5 Hz 

Figure 4 illustrates how the hierarchy of robot tasks is 
mapped to actual hardware. Low-level synchronous 
high-speed control loops are run on specialized on- 
board hardware for performance. Higher level task 
such are reasoning and mapping are run on the host 
asynchronously in an event-based manner. 

3 Hardware Architecture 
How do we realize a system that meets our constraints 
and has the capabilities we need? One method of 
specifying robotic systems has been the “reactive” sit- 
uated approach that exploits regularities of the task 
and environment of the robot[9, 21. Typically these 
systems have simplified the sensing capabilities of the 
robot so as to  meet the physical and cost limitations, 
suited to  the task and environment. Horswill[lO] has 
implemented a more general, but inexpensive proces- 
sor, with limited capabilities. Others[6] move much 
of the signal and image processing offboard. 

We chose to  build a large amount of our comput- 
ing requirements onboard our mobile robot. Figure 6 
shows the computing system. A VME card cage, vis- 
ible in Figure 5, holds four INMOS Transputer pro- 
cessors plus two Texas Instruments TMS320C40 digi- 
tal signal processors. Our experience with the Vision 
Engine[l3] showed that Transputers are suitable for 
implementing real-time controllers because they have 
low-latency communication capabilities and built-in 
lightweight scheduling and context switching. How- 
ever, they lack the computational power and com- 
munication bandwidth for vision processing. For this 
reason we use C40 DSP processors, which support 25 
MFlops computation plus 20MB/s communications, 
for the image acquisition and processing functions on- 
board the robot. 

Figure 5: View of Spinoza’s Hardware 

Spinoza’s C40 vision system is composed of an 
RGB video frame grabber and a specialized image 
processing module. The frame grabber can simulta- 
neously grab from either the pan-tilt mounted colour 
camera or the three greyscale stereo cameras. The 
image processing module is a VIPTIM from Traquair 
Data Systems. The VIPTIM contains a cascaded pair 
of INMOS All0 convolvers that perform a 6x7 con- 
volution at 10 Mpixels per second. Since the bulk of 
our early vision computation is filtering and match- 
ing, the hardware convolver greatly accelerates the 
overall processing speed of the vision system. 
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Figure 6:  Spinoza Hardware 

The Transputers are the heart of Spinoza’s onboard 
computing system. They communicate with the C40 
vision system, the workstation host and, through a 
serial Transputer module, the B12 base and pan-tilt 
unit controllers. 

The host workstation is a Sun Ultra 1 connected to 
the robot through a Transputer link interface on its 
parallel port. The host can reset, boot and commu- 
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nicate with the robot at a speed of 20Mb/s bidirec- 
tionally. 

The original version of Spinoza was tethered: the 
limitations of battery capacity and the large power 
demands of the onboard computers meant that power 
had to be supplied via a cable during extended use 
(longer than half an hour). The goals of the robot, 
however, include activity throughout the research 
labs and the entire building, hence we needed un- 
tethered operation. We added an additional battery 
pack so the robot is now capable of over two hours of 
untethered operation. 

Untethered communication to the host workstation 
is through a spread spectrum radio modem with a 
bandwidth of 1.6 Mb/s. This raw bandwidth is re- 
duced by the necessary layers above the raw trans- 
mission layer that provide reliable handling of pack- 
ets. Currently the system gets 80KB/s across the 
radio modems. The transition to the wireless opera- 
tion required the down scaling of diagnostic report- 
ing, which often includes images. We are currently 
developing the ability to switch between tethered and 
radio modem operation “on-the-fly.” This will allow 
high-speed communication for system development. 

4 Software Architecture 
The robot software was implemented on a variety of 
hardware architectures described in the previous sec- 
tion. The design of the software was challenging due 
to constraints posed by robot tasks as well as hard- 
ware limitations. Issues such as amount of available 
computational power and the communication band- 
width were closely examined. 

Figure 7 presents the software architecture of the 
robot. The dashed line in the figure represents the 
physical separation between the robot and the host. 

Software implemented on the robot is in charge 
of sensing and robot controls. The software imple- 
mented on the host does data integration, reasoning, 
and interacts with a human operator. 

4.1 Vision Services 
There are four cameras on board Spinoza: a colour 
camera (“top”) on the pan-tilt unit (PTU) provides 
a pointable colour input useful for tracking; three 
monochrome cameras (“left”, “right” , and “upper”) 
in a static “L” configuration are used for stereo rang- 
ing. The first DSP, called the grabber, grabs colour 
(RGB) images and stereo camera information from 
the three monochrome cameras. The stereo informa- 
tion is passed on to the second DSP for processing 
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Figure 7: Spinoza Software Architecture 

while the color information is used to find coloured 
blobs. Timely delivery of blob information is as- 
sured by having the VIP TIM probe the Grabber for 
blob information during stereo computation, which 
takes much longer than blob detection. The inter- 
connections between these and the robot controller 
are shown in Figure 8. 

The grabber regularly switches between two three- 
input camera systems. In one the three inputs are the 
left, right, and upper cameras, the trinocular inputs. 
In the other, the top RGB camera sends three signals 
containing Red, Green, and Blue separations. 

Colour blob tracking is performed by first segment- 
ing a colour image to a binary map. The centroid of 
all “on” pixels is the centroid of the target; speed re- 
quirement necessitate this simplification. While the 
blob is being detected, the DSP concurrently passes 
on the stereo images to the VIP TIM which performs 
trinocular stereo. 

The reliability of stereo data is paramount in obsta- 
cle avoidance-stereo is computed in trinocular for- 
mat, requiring slightly more computing, but with a 
useful increase in reliability [SI. Dense stereo citeBul- 
LitPog89a,OkuKan93a permits obstacle avoidance 
without segmentation or interpretation a s  would be 
required by line-based stereo [18]. ?kinocular stereo 
compares image patches along a fixed range of dis- 
parities, among .three cameras roughly aligned in an 
“L” shape. Horizontal scene structures may be am- 
biguous from the left-right comparison, but will be 
separated by the upper-right comparison. Both com- 
parisons create combined measure of support for a 
particular depth. 
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The VIP TIM DSP corrects for warping of images 
due to lens distortion and aligns the geometry so that 
the epipolar lines are alighted to the z and y axis. 
Cameras are calibrated [12] and the images correction 
mapping is computed off line, using Matlab. Images 
are first smoothed, then down sampled and corrected 
via a large table. This implements a “soft” calibration 
that can be redone on demand. 

The stereo is then computed a multi-baseline cor- 
relation method[l7]. This is implemented using the 
All0 convolver to do the stereo correlation. 

This replaces stereo previously implemented on the 
Datacube system which could operate at 15Hz, but 
the Datacube does not fit into an embedded sys- 
tem [13]. Optical flow [4] can be implemented in sim- 
ilar fashion to the stereo on the VIP TIM, to support 
obstacle avoidance based on flow [5]. 

, 

Sample Image Stereo Depth Image 

Figure 9: Results of the stereo algorithm 

Figure 9 presents an example of the results ob- 
tained by the stereo algorithm. The brighter shades 
of grey represent points in the scene that are closer 
to the robot. Likewise the darker shades of grey rep- 
resent the points further away. The black areas of 
the image represent points for which distance can 
not be determined accurately. The system processes 
128x128 pixel images at 20 disparities at 2 Hz. 

The robot controller receives requests from the com- 
munications server. The controller coordinates the 
outputs sent to the robot actuators, suppresses re- 
dundant commands and repeat commands that have 
not been fully executed. 

The robot controller regularly requests vision ser- 
vices such as blobs and stereo range data, at varying 
rates, depending on the task. The data is passed 
back to  the host and distributed to the task mod- 
ules. By initiating regular requests for stereo data, 
recent data is always available to service host requests 
without the otherwise unacceptable delay. Similarly, 
the robot controller regularly updates all other robot 
state information. 

The robot controller communicates directly to the 
RWI controller, which controls the RWI base. The 
unit transformations and the communication through 
the serial port on the serial Tram are transparent. 
The serial Tram connected to the robot controller 
points the pan/tilt unit during tracking and pushing. 

The stereo vision data sent from the vision ser- 
vices to the Robot controller may contain depth val- 
ues that indicate that an object is “too close”. The 
robot controller recognizes this situation, and acts to 
stop the forward progress of the robot. This tight 
loop between the RWI controller and the vision ser- 
vices must be implemented on the robot to minimize 
delay in reaction. 

Paths come down from the path plan generator 
on the host as waypoints in the robot’s coordinate 
system. To direct the motion of the robot along a 
smooth trajectory, the trajectory controller divides 
such a path into a sequence of tightly monitored com- 
mands that smoothly combine rotation and forward 
movement. Likewise a tight control loop is necessary 
to control the robot’s movement while pushing ob- 
jects along a specified trajectory. These capabilities: 
obstacle avoidance using stereo data, smooth trajec- 
tory execution, and obstacle pushing are all examples 
of the tight synchronous control loops required at the 
lowest level of software in our robot model. 

4.3 Host Communication Server 

The communication module provides message and 
data passing capabilities both robot H host and host 
interprocess communication (IPC) . Several issues had 
to be considered in the design to meet various com- 
peting requirements. 

The first problem, is that the robot-host band- 
width is a scarce resource, much in demand. If every 
time a host process requires robot state information a 
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request is sent to the robot, the system would quickly 
bog down. To eleviate this, we had to design a system 
that would limit robot queries and reuse the results 
as much as possible. 

Another difficulty was the number of host pro- 
cesses. There are many processes, which often require 
to communicate with several others. If each process 
had to create a separate connection to all other pro- 
cesses, the number of links would increase quadrati- 
cally and communication management would quickly 
become unwieldy. Also, to minimize the impact of fu- 
ture changes in hardware and software architecture, 
we want to minimize the direct knowledge of system 
configuration required by each process. 

The solution was to use a central data blackboard 
process we dubbed the “mailer”. This process pro- 
vides IPC through the mechanism of Unix message 
queues. This provides each process its only avenue 
to data and state information. Any process can re- 
quest data by sending a request to the mailer via the 
mailer’s message queue. It then performs a hanging 
read on its message queue until the requested data is 
available. Request take 3 forms: 

New item the requested data or item must be 
queried from the robot. This request is restricted 
as much as possible. 

Next item the process wishes to  be provided with 
this data when it is next submitted (as new) to 
the blackboard 

Last item the most recent data of this type is re- 
quested and provided without delay. 

In addition to requests, a process may provide an 
updated data product for the blackboard. Host pro- 
cesses generally follow a L L p r ~ d u ~ e r - ~ ~ n ~ ~ m e r ~ 7  model. 
That is, the process waits for the next issue (or pro- 
duction) of its input data, performs its task, then 
produces a resultant item for other processes to con- 
sume. 

This design has many advantages. One is that it is 
host CPU friendly. Each time a process is complete, 
rather than polling communications or repeating op- 
erations on already processed data, it will suspend 
until new data arrives. This conserves system re- 
sources. The system provides message passing that 
can work both as events in an event-driven system, 
or as a synchronization method between essentially 
asynchronous processes. 

It also means it is easy to  test and debug software, 
even if the robot is not available. It is easy to simulate 
robot state messages, and the mailer can run on any 
workstation. It also has the advantage that modules 
have no other point of contact that the mailer, and 

thus require no knowledge of system configuration, 
other than the address of the mailer message queue. 
New processes can be added at anytime and will au- 
tomatically have access to information available. 

For example, when a user requests the robot to 
move to a new location by clicking on the displayed 
map, the user interface produces a “goal update”. 
This unblocks the path planner which has posted a 
request for the “next goal”. The path planner makes 
the path, and posts a “path update”. The path execu- 
tor is in turn waiting for the “next path”. It receives 
the new path and issues robot commands appropri- 
ately, again through the mailer. 

~ 
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4.4 Mapper 

As described in Section 4.1, dense depth images are 
regularly constructed by the trinocular stereo vision 
service on-board the robot. These depth images can 
be reduced to represent the nearest obstacles by pro- 
jecting all sensed points down through a vertical col- 
umn to the plane of the floor. The depth image is 
reduced to a single row of disparities representing 
the closest obstacle as seen from a top-view perspec- 
tive. This 2-D map has high angular resolution; how- 
ever, range uncertainty varies proportionally with the 
depth. This representation is much smaller than full 
depth images and are much cheaper to send to the 
host. 

In the host, the radial depth maps are routed by 
the mailer to the mapper module. The mapper appli- 
cation integrates these directional range maps into a 
2-D map represented by an occupancy grid [7]. Such 
a map is represented by a tessellation of the mapped 
space into a grid. The value of each grid is related 
to the probability that this space is occupied by any 
part of an obstacle. The “mapper” initializes the map 
to contain only values at 50% probability, indicating 
that the entire space is unknown. As new range maps 
arrive, the mapper updates the occupancy grid so 
that each cell contains an updated probability that 
the cell is occupied by an object. Every point be- 
tween the current position of the robot and the near- 
est obstacle in a given direction is marked clear. The 
probability of the cell at the given range is updated, 
combining its previous value with the uncertainty of 
the range estimate. Cells beyond the object detected 
are unaffected. 

In a sense, the mapper acts as a smart memory, 
that integrates the information over time into a coher- 
ent whole, and buffers data between the vision service 
and the client. 



4.5 Path planner 
As its name suggests, the path planner produces 
paths for the robot to  follow. As such, it is used 
by those processes that move the robot from one po- 
sition to  another. The path planner takes as input 
a map of the environment produced by the mapper, 
a goal position, and an initial position (specified as 
triples of X, Y, and theta values). It returns a se- 
quence of x, Y, theta triples that denote significant 
waypoints along the path generated by the planner. 

Paths are generated in the following manner. A 
simple wavefront expansion[ll] algorithm is used to 
generate a unimodal, potential field between the goal 
and initial position. Then, an initial path is gener- 
ated by following the gradient of this field. Waypoints 
along the path are generated by starting at the ini- 
tial position and selecting the last point on the path 
for which there exists an unobstructed, straight line 
path from the initial state to the goal. This point 
is marked as a waypoint and the process is repeated 
from the new waypoint until the goal position can be 
seen. 

4.6 Task module 
The task module is the end-user programming envi- 
ronment that allows the use of all lower-level func- 
tionalities. Programming at this level is sequential, 
ie. get an image, move, get an image, turn right 
etc. While high level programming is sequential, the 
servers communicating information from other mod- 
ules run in parallel. The purpose of the task module 
is to shelters the developer from changes in the under- 
lying hardware of the robot. Ideally the code written 
in this module would need only recompiling, when a 
change in the hardware is made. 

4.7 Visual User Interface 
This module, the Visual User Interface (VUI), is an 
example of a user level application. VU1 provides a 
graphical user interface to some of the task modules 
and well as to the interface to the robot abstraction. 
The interface can access the state of the robot includ- 
ing its battery charge, odometry, images as currently 
seen. The VU1 can display the map of the environ- 
ment. By pointing and clicking user can specify a 
new goal location for the robot. 

5 Results 
Spinoza has demonstrated a number of tasks it can 
accomplish. These tasks include, chasing a brightly 

coloured ball, avoiding collisions with dynamic ob- 
jects, pushing a box along a specified path and ex- 
ploring and mapping a static environment. 

5.1 Ball Chasing 

The ball chasing demonstration was designed to show 
that all levels of onboard architecture can work co- 
herently. The task of the robot was to find a brightly 
coloured ball and keep it in the field of view. The 
body of the robot moved slower than the pan-tilt 
camera. The robot took advantage of the pan-tilt 
camera when the body of the robot was not pointing 
towards the ball. When the body of the robot was 
pointing towards the all, the robot would move until 
it reached a specified distance from the ball (about 
30cm). Ro.bots task at that point was complete. If 
the ball was moved the robot would chase it again. 
The challenge of this robot task was in synchronizing 
the communication between control modules as well 
as doing fast vision processing. 

5.2 Obstacle avoidance 

While colour camera was used for detecting dynamic 
objects in the environment, three cameras in the 
robot body were used for stereo vision. The results 
from these cameras produced a depth map of the en- 
vironment. The performance of the stereo algorithm 
was first tested by letting the robot move forward in 
its environment. If an obstacle was encountered the 
robot would choose to move left or right depending 
on where the obstacle was. Obstacles were defined 
as any object that is closer than a specified distance 
(about 30cm). The robot was able to avoid static ob- 
jects in the environment as well as dynamic objects 
such as people walking in front of the robot. 

- 

- 

5.3 Box Pushing 

The robot can interact with its environment by push- 
ing objects. To demonstrate this the robot was pro- 
grammed to push a box along a specified path. The 
challenge of this task was in locating the position of 
the box relative to the robot and controlling the mo- 
tion of the box. The pan-tilt camera was used to 
locate the position of the box and the bump panels 
were used to push the box. The robot was able to 
push the box along a specified triangular path. The 
box was kept at all times within 5 cm of the specified 
path. 
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as well as robot control. 
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Figure 10: Occupancy Grid Map 

5.4 Mapping 

An example of a map built autonomously by Spinoza 
is shown in Figure 10. The grey regions of the map 
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gions are areas where it is known that no obstacles 
exist, and the black regions are locations of known 
obstacles. This map was made on a 500 x 500 grid, 
each grid representing a 2 x 2 cm square. The robot 
was able to autonomously explore and map out this 
region in less than 10 minutes. 

6 Conclusion 

Spinoza demonstrates a sophisticated real-time vision 
system for control of a responsive mobile robot, op- 
erating in dynamic environments. It is a complex 
system, coordinating multiple distributed, concurrent 
processes on a wide range of architectures, and per- 
forming a range of asynchronous activities. Its de- 
sign represents the resolution of conflicting design 
requirements: high processing capability and teler- 
obotic guidance, under the limitations of a mobile 
robot: power, heat, space, and communication band- 
width. 

The performance gap between specialized digital 
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rapidly shrinking. Therefore the tradeoffs of using 
embedded hardware versus conventional computer 
hardware need to be closely examined. Our experi- 
ence suggests that the costs, in terms of development 
time and debugging time, are restrictively high using 
C40s and Transputers. In the future we plan to  ex- 
periment with Intel based CPUs for vision processing 
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