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1.0 Introduction 
There are many instances in which time series measurements are used to derive an empirical model 
of a dynamical system. State space reconstruction from time series measurement has applications 
in many scientific and engineerig disciplines including structural engineering, biology, chemistry, 
climatology, control theory, and physics. Prediction of future time series values from empirical 
models was attemped as early as 1927 by Yule, who applied linear prediction methods to the 
sunspot values (Yule, 1927). MoTe recently work has been done by many investigtors, including 
Priestly (Priestly, 1980), Tong (1990) , Packard (Packard,. 1980), Farmer (Farmer, 1988), 
Casdagli (Casdagli, 1991), and Larimore (Larimore, 1983). Efforts in this area have centered on 
two related aspects of time series analysis, namely prediction and modeling. In prediction future 
time series values are estimated from past values, in modeling, fundamental characteristics of the 
state model underlying the measurements are estimated, such as dimension and eigenvalues. In 
either approach a measured time series 

{y(ti)>,i= 1 ,..., N 
is assumed to derive from the action of a smooth dynamical system 

s (t+z)=a(s(t)) 
where the bold notation indicates the (potentially ) multivariate nature of the time series. The time 
series is assumed to derive from the state evolution via a measurement function c. 

In general the states s(t), the state evolution function a and the measurement function c are 
unknown, and must be inferred from the time series measurements. 

Y <t)=c(s (t)) (3) 

We approach this problem from the standpoint of time series analysis. We review the principles of 
slate space reconstruction in Section 2. Section 3 deals with the specific model formulation used in 
the local canonical variate analysis algorithm. A detailed description of the state space 
reconslruclion a1 yrithm is included in Section 3 and the references therein. Applications are 
illustrated in Section 4. Section 4.1 covers the application of the algorithm to a single-degree-of- 
freedom Duffing-like Oscillator. Section 4.2 illustrates the difficulties involved in reconstruction of 
an unmeasured degree of freedom in a four degree of freedom nonlinear oscillator, while 
illustrating a successful reconstruction. In the concluding section the advantages and current 
limitations of state space reconstruction are summarized. Improvements in neighborhood selection 
algorithms, noise elimination, and error estimation are suggested as further topics of research. 

2.0 State Space Reconstruction. 
We assume that the measured data y(t) , derived from the action of the dynamical system, consists 
of samples separated by a sampling interval t, and that this sampling interval is chosen to ineude 
frequencies of interest in the analysis. 

Reconstruction of a state model from a time series relies on the fact that the past values of a time 
series contain information about unobserved state values at the present time. In a simiar manner, 
evolution of the time series contains information about the state evolution function a(s(t). A proof 
of this equivilance was demonstrated by Takens (Takens, 1981). Takens showed that, for a state 
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space s(t) of dimension d and a scalar time series y(t) that 2d+l values of the timeseries provide, 
in principle, all of the information neccessary to reconstruct the system state space at a given time t. 
Taken’s theorem relies on the fact that 2d+l nonlinear equations are sufficient to determine d 
variables. The “rec~nstructed’~ state space will contain information about all of the “observable” 
state variables whose influence effects the observed time series response. Taken’s theorm forms 
the basis for the approach used in this paper. We emphasize the modeling of driven systems, 
where system response depends explictly OR delayed values of the measured response and input 
time series. These systems are described by the state formulation in equation 4. 

Models of driven systems have been considered by Larimore( Larimore, 1983), Casdagli 
(Casdagli, 1991) and Hunter (Hunter 1990, 1991). Casdagli showed that, given 2d+l lagged 
values of both the measured response y and known input u, a state model of the nonlinear sytem 
can be constructed. This is the “driven system” equivilant to Takens’ theorem. 

Figure 1 illustrates the general state reconstruction problem. The true state values s (t) and the state 
evolution a(t) are unknown. Measured values of the system response y(t) are related to the states 
s(t) by an unknown measurement function c(s(t)). Inputs to the system are known, and the 
functions which relate inputs to states, b(u(t)), and inputs to measurements, d(u(t)) are unknown. 
To reconstruct the dynamics of the system, an “embedding” space is constructed from delayed 
time series values of the measured responses and inputs. A canonical transformation of the 
embedding space yields a reconstructed state space. Since the functions which evolve the 
reconstructed states are potentially highly nonlinear, a IocaI linear model, which fits local 
hyperplanes to each region of the state and response spaces, is used to construct the unmeasured 
functions. 

mxmistrucuon o i  [ne s1ate’space in these circumstances is a challenging problem and a number of 
procedures have been proposed, including local linear models (Farmer, 1988), NA RMAX models 
(Billings and Tomlinson, 1988),local Principal component analysis (Casdagli7199lb, and 
nonlinear Canonical Variate Analysis (Larimore, 1983). Our local Canonical variate analysis 
model is related to these, and especially relies on the work of Farmer, Casdagli, and Larimore. The 
basic assumptions underlying the local CVA modeling procedure include: 

1. An emphasis on accurate prediction of future values of the (potentially multivariate ) time series 
from past values of the time series. The time series values are encoded as future and past 
“waveforms” whose evolution is basic to the system dynamics. 

2.0rderly selection of the most critical features, here referred to as “fundamental waveforms”, or 
“pseudo-states”, which lead to effective prediction of the future from the past. 

3. Analysis of model features emphasizing reconstructed states, state evolution, eigenvalues and 
local mode shapes. Where practical, model features are related to the physical system parameters. 

3.0 LocaI Canonical Variate Analysis 
The model used is based on two specific concepts, the Canonical Variate Analysis algorithm for 
constructing models from a time series (Larimore,1983) and the local modeling approach for 
dealing with systems whose properties change as a function of state (Farmer, 1988). In canonical 
variate analysis past waveforms are selected based on their utility in predicting future waveforms. 
this contrasts to approaches which emphasize prediction of individual future time series values. 
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To construct the model, we define the past p(t) and future f(t) of a multivariate time series as : 

p(to>={ y(t0-z) 7 - - - ~( to- lo-~)  7 ~ ( t o >  7 - - .u(to-kz)) 
f(&)={y (to) 9 .  - - ,Y (to+lo-C)) 15) 

where the y ’ s  refer to response time series values and the u’s refer to input time series values, to is 
the time at index 0, l i  is the number of input lags ans lo is the number of response lags. In a local 
region of the space of past and future vectors the matrices of past and future behavior are: 

. .  
The time indices 0717...7j refer to response and input values selected as “neighbors” in a given 
region of the space of past and future vectors. A Euclidian metric is used as the distance measure. 
Figure 2 illustrates the local modeling concept. Direct formulation of the system a F=aP usually 
leads to serious over fitting and the resultant estimation of a large number of parameters. The 
dimension of the past vector is No*lo+Ni*li+l, where the number of input channels is Ni and the 
number of measured response channels is No. The measured time series are derived from a d 
dimensional dynamical system. The number of parameters necessary to describe the d dimensional 
system are (Larimore, 1992): 

Local Model Global 
Model 

v f t - z )  
Local Modeling 

Figure 2 
A global  model would f i t  a s i n g l e  func t ion  t o  t h e  e n t i r e  response surface r e l a t i n g  past and 
f u t u r e .  A local model, i n  c o n t r a s t ,  f i ts  a f u n c t i o n  t h e  t h e  r e l a t i o n s h i p  i n  a l o c a l  
neighborhood. U s e  of local modeling allows simple func t iona l  forms l i k e  l i n e a r  models t o  be 
used i n  t h e  context  of nonlinear systems. 
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Suppose, for example, we measure one input and four responses from an 8 state system, and use 
12 lagged values of each time series to represent the past. Then 60*12=720 parameters are needed 
to formulate the P=aF relationship, while the actual number of parameters needed to fully describe 
the system is, from equation (7), 216. 

Canonical Variate Analysis accomplishes the necessary dimensional reduction by diagonaization 
of three fundamental relationships between the past and future matrices P and F such that: 

JP~PJT=I, 
LF~FLT=I~ 

JPTFLT=E (8) 
Ip and If are identity matrices with rank of the past and future respectively. E is a diagonal matrix 
of singular values. The singular values are arranged in order of decreasing magnitude. The 
magnitude of each singular value is proportional to the importance of the corresponding row of J in 
predicting the future. The matrix 3, which is computed from a generalized singular value 
decomposition of P and F as above, converts the past vectors to estimated states as: 

( 9 )  
J is computed by from: 

(10) 
T h i s  generalized SVD i s  neccessary t o  produce t h e  re la t ionships  defined i n  
equation 8. The algorithm is implemented in matlabT". Once the estimated states have been 
obtained froni equation (9) functions a(s(t),b(u(t)),c(s(t)), and d(u(t) are approximated using a 
least squares solution of equations 12. 

c(t+T)=qqt))+i;cu( t))+.(t) 

(11) 
y (t)=qqt))+&( t))+Ge( t)+h(t) 

The terms e(t) and h(t) are explicit estimates of the errors in the estimation of future states from past states. In the 
least squares formulation the estimated states and measurements are known. 

Equations 11 govern the behavior in the reconstructed state space of Figure 1. 

Future responses are estimated for short term predictions (one step predictions) and long term 
predictions (iterated predictionsj. The form of the estimated state transition matrix a(s(t)) is 
reviewed, state evolution of the states s are computed, and local estimates of eigenvalues and 
mode shapes are calculated. I[ chaotic behavior is or interest ihe largest Lyapunov exponent is 
estimated. 

Local CVA has been applied to measured data from numerous systems. Some, like a Duffing 
oscillator, were synthesized to test the method. Ofhers, iiire a ciimatic time series, were analyzed to 
obtain insight into unknown dynamics. Hardening Osciiiators, bilinear oscillators, and a beam 
vibraling chaolically between two potential wells have been analyzed, as has a global climate time 
series(dunter,1991 ). To illustrate the results of nonlinear state space modeling, we study data 
from two examples of nodineai systens. 
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4 .  o Applications 
Our applications are taken from the context of mechanical vibrations. The application of local 
modeling to other fields is covered in the references. In our first example a nonlinear Duffing-like 
oscillator, driven by a known realization of band limited random noise, is simulated using an 
analog computer. The states and eigenvalues are computed and iterated prediction accuracy 
demonstrated for this nonlinear, non chaotic single-degree-of-freedom system. In the second 
example a nonlinear four-degree-of-freedom system is simulated and a “hidden” state detected. 
Neither of these systems is chaotic, though both are significantly nonlinear. 

4.1 Application to a Nonlinear Hardening Oscillator. 
Consider the nonlinear oscillator described by equation 12. In this two state system the stiffness 
k01 varies as a function of the relative displacement xi-xo. The system is similar to the Duffing 
Oscillator (Moon, 1994) but the stiffness increases as the absolute value of a quadratic, rather than 
a cubic, function of the displacement. The quadratic formulation is more convenient to implement 
on the analog computer used to simulate the system behavior. The system is driven by an input 
xo”(t), a realization of band-limited random noise. The response acceleration xi’’ and the drive 
acceleration XO’’ are digitized at 150 samples/second. Embedding is accomplished using the 
measured input accelerations and the estimated velocities and displacements obtained from 
integration of the accelerations. A local CVA model computes the functions and states in equations 
(1 l), and estimates responses and eigenvalues. 

The nonlinear model is approximately described by : 

a=3000 
j3=3500 

wn=Zx (1 I -5) 
< = 0.04 

The nonlinear oscillator is simulated using an analog computer. Band limited random noise is applied to the input 
xo”. The acceleration response xl” is digitized at 150 sampleslsecond. At low level we expect a resonant frequency of 
i i.3 fit. ’I’lie input level IS adjusted to provide approximately equal nns levels from the linear and nonlinear stiffness 
terms. For positive excursions of xi-x0 the quadratic ana absolute value terms add. For negative excursions they 
subt~acl. Since fbu we expect increasing stiffness in either direction, but less stiffness increase occurs in the 
direction of negative xi-xo. 

Figure 3 illustrates the measured and predicted responses. Predictions are based on data outside of 
the sample range used for the model. The complete 1.4 seconds of response waveform is 
estimated using the known input and the initial conditions at t=O seconds. This is a much more 
demanding task than estimating a series of one step predictions based on the known data from the 
past measured time step. 
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Measured and predicted Responses for the Noniinear Osciiiator 
rigure 3 

Estimated Stales for the nonlinear oscillator are illustrated in Figure 4. Note the approximate sine 
and cosine nature of the wavefomis, conibined with the occiimence of sharp peaks associated with 
the nonlinear stiffening behavior. 
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States for the Noniinear Oscilfator 
Figure 4 

With the local linear formulation, the model results may be illustrated in several ways. At each 
time step the state transition matrix AI is estimated. For a linear system the elements of A are 
constant. For a nonlinear system, the elements of a change with time (or more fundamentally, with 
state). Both A and the states s(t) associated with a represent one example out of the set of (A,s) 
which can be used to fomuiate tile state modei. All A's in the set are related by siiniiariiy 
transforms and possess identicd eigenviihes. Figire 4 ihistiiites the eigeavdiiies of ii from t=3 to 
t=1,4 seconds. The absokite vdiie of the relztive dis~;!zceize~t is plottedjiist below the iCsoficEt 
frequency to show the coneiaticn Setwen response leve! and stiffness. The system resonant 
frequency varies fmrn appr~ximately 10.0 Hz. ~t lnw relative dirnla-m~nts r----------- tn nearly 25 EIz. at 
large relative displacements. 

-. 

1 The function a(s) is nonlinear. Here A, a square matrix of constants represents the local linear 
approximation to the unknown function a(s). 
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Instantaneous Resonant Frequency for the Nonlinear Oscillator 
Figure 5 
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4.2 Application to a Four-Degree-of-Freedom Bilinear Oscillator. 
Consider the mufti-degree-of-freedom system illustrated in Figure 6. ............ - ....... 

x”4 
M4 

c34 
....................... 

x”3 
M3 

C 2 3  
....................... 

k23 
x”2 

M 2  

c12 
....................... 

x” 1 
M1 

f(t) 

Ml=MEM3=M4=1.0 
k12=k23 =4z2 

q-~3>0-k34=4~~’ 
~ - x 3 < o d & k 4 8 ~ 2  
c12=c23=c34=2( 50) 

‘s=o.o 1 
0=%( 1 .O) 

Four Degree of Freedom System With A Single Nonlinear Stiffness 
Figure 6 

rour masses are connected in chain fashion. Band iimited random excitation is applied to the base 
mass Ml. The rigid body mode is eliminated by connecting icllass 1 to ground through a soft 
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spi-iiig. The siiffiiess ‘E4 is 5 g h  in coiiipession and low in tension. In the first case an eigenvalue 
analysis shows frequencies of 0.1094 Hz., 0.7793 Hz., i.4i87 Xz., and i.8488 Ez. in the 
second case, with the stiffer spring, the eigenvalues are 0.1096 Ez., O.̂ 058O Xz., 1.66% Ez., and 
4.9531 Kz. Local c~i~ionical iiziiate aii&ysis is applied t~ the system with N O S  respmse poiiits 
used to train the i ~ ~ ~ d e l .  Two fomdatkxis are made: in the first the aCCe!eia~GE respoi~e of each 
of the four masses 8re mezsured. In the seccnd case the acce!eratisn respcnses cf mcisses cne ,and 
four are measured. The iterated prediction, based GI? the i~i t ia l  co~d i t im  at t=O seco~ds, for a 
region of the response time series not nsed in the model fo-w-idation, is shown in Figtire 7. The 
local frequencies, based on four measurements and two lags, are shown in Figure 8. Comparative 
local frequencies based on two measurements and four lags are shown in Figure 9. In both cases 
the state rank of the system is eight, corresponding to four eigenvalues. The indicated 
eigenfrequencies correspond to the theoretical values for the three higher system modes. Note the 
major change in frequency for the highest mode as predicted by the analysis of the system 
eigenvalues. 

Iterated Prediction for the -. Four Degree of Freedom System 
rigure 7 
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Local Frequency for the Fonr Degree of Frsedom System- Fern ,Ve~nrernent L~cations. 
Figure 8 

The instaiitaneous frequeiicy agrees qiiitz -well with the theoretical v a h s  ttheii EM=&. A 
significant increase in frequency occurs when ld4-4&, though the frequency does not increase 
to 4.95 Hz. 

This example clearly illustrates three features of the local CVA algorithm: reasonably accurate 
iterated predictions, approximate measurements of fhe nature of the noniinearity , and detection of 
two hidden states when direct measurements of the state variables are unavailable. 
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Local Frequency for The Four Degree of -_ Freedom System-Two Measurement Locations. 
Figure 5 

Conclusion 
The examples shown, in concert with numerous other exampies iiiustrated in the references, 
demonstrate the utility of local linear time series models for characterization and prediction. in this 
paper the the diagnostic capabilities or local L {A are iliusiraied by detecting hidden states, 
quantifying state rank, and showing, through the change in eigenvalues, the nature of a 
nonlinearity. 

Significant problems remain. With real data, as opposed to analytically generated time series, the 
state rank determined from the separation of significant and trivial singular values is more difficult. 
More important is the estimation error inherent in the seiection of nearest neigFbors in the 
measurement space. Casdagli (Casdagli, i99ib) has pointed out the rundamentai problem in 
selection of neighbors, namely that neighbors in the space of measured variables do not in general 

the measurement space gives some “fa&” neighbors rvhose inclusion in the l ~ c a l  medd leads to 
increased estimation errors. These estimatkm errors czn in pr;lncinl- raw h- -- r-Jli-d ~ y u y y  throunh 0 a 
transformation of coordinates prior to the selection of nezrest neighbors. Severd algorithms haye 
been suggested (Casdagli, 1991b). We intend to investigate some of these transformations in a 
future paper. 

Characterization of nonlinear systems from measured response data is a difficult and challenging 
problem. In general, as fhe dimension of the system increases, exponentially increasing numbers 
of data points are required for accurate characterization. -We have shown two approaches which 
mitigate this problem lor systems o1 moderaie dimension. Local Canonical vanale analysis makes 
the most of the available data by emphasizing directions in the vaiiable space critical for 
predicitons of system respofise. !ii piiiiciple, the states ~f a djjnaiiiic systein czii be coiistricteb 
from delayed values of the time series from a single measurement. In practice, measurements at a 
number of points in z multidimensienzl system drasticzl!y redwe estimition error. Local 
Canonical Vxiate Analysis provides a meam of effectively combi~ng meas~rements at a nllrrnher 
of locations into a single model. 

Many interesting topics of research remain. Neighborhood selection can be improved through use 
of nonlinear coordinate transformations. The effects of noise on estimation errors requires further 
investigation. Finally, the problem of constructing a viable giobai modei from the piecewise linear 
system derived 1rom Local Analysis methods needs Iurther aiteniion. 

1 n T  
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