
Abstract 

ps 096 - /%%2 CH 
o ~ F -  778 112 .. -3 

STATISTICAL VALIDATION OF SYSTEM MODELS 

Patrick Barney 
Experimental Structural Dynamics Department 

Sandia National Laboratones 
Albuquerque, New Mexico 

Carlos Ferregut . 
Luis E. Perez. 

'FAST Center for Structural Integrity of Aerospace Systems 
The University of Texas at El Paso 

El Paso, Texas 

Norman F. Hunter 
Engineering Science and Analysis Division 

Los Alamos National Laboratory 
Los Alamos, New Mexico 

Thomas L. Paez 
Experimental Structural Dynamics Department 

Sandia National Laboratories 
Albuquerque, New Mexico ' 

.. 

It is common practice in system analysis to develop mathematical models for system 

behavior. Frequently, the actual system being modeled is also available for testing and 

observation, and sometimes the test data are used to help identify the parameters of the 

mathematical model. However, no general-purpose technique exists for formally, 

statistically judging the quality of a model. This paper suggests a formal statistical 

procedure for the validation of mathematical models of systems when data taken during 

operation of the system are available. The statistical validation procedure is based on the 

bootstrap, and it seeks to build a framework where a statistical test of hypothesis can be run 

to determine whether or not a mathematical model is an acceptable model of a system with 

regard to user-specified measures of system behavior. The approach to model validation 

developed in this study uses experimental data to estimate the marginal and joint confidence 

intervals of statistics of interest of the system. These same measures of behavior are 

estimated for t h B g w a l  model. The statistics of interest from the mathematical- model 
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are located relative to the confidence intervals for the. statistics -obtained from the 

experimental data. These relative locations are used to judge the accuracy of the 

mathematical model. An extension of the technique is also suggested, wherein randomness 

may be included in the mathematical model through the introduction of random variable and 

random process terms. These terms cause random system behavior that can be compared to 

the randomness in the bootstrap evaluation of experimental system behavior. In this 

framework, the stochastic mathematical model can be evaluated. A numerical example is 

presented to demonstrate the application of the technique. 

Introduction 

Decisions based on any system analysis depend, naturally, on the mathematical model 

which is set up to predict the behavior of the system. However, if careful real life decisions 

are to be made, it is necessary that considerations about the validity of the model itself be 

taken into consideration. The validity of a model can be assessed by 'comparisons with 

other more involved, proven models that exhibit a closer representation of the physical 

system, or by comparisons with measures of collected data from the field or the laboratory. 

These so called real data of system behavior, however, contain in one way or another a 

certain degree of uncertainty, because any data collection and data processing scheme is 

never error free, and real systems have features that are unaccounted for in measurements 

and models. Real systems exhibit test-to-test variations, unit-to-unit variations (between 

units that are nominally identical), and measurement uncertainty. 

Development of a system model is commonly guided by a balance between two 

requirements: (1) the need to represent reality, reflected by the measured data, and (2) the 

pragmatic need for a relatively simple mathematical model. Therefore, the validation of a 

model would depend on the degree of uncertainty associated with the measured data of 

system behavior and the number of basic variables, parameters and complexity of their 



interrelationships that have been included in the model. It is obvious from this that it is not 

particularly helpful to try to validate a model by calculating the differences of the resuIts 

from the measured data. However, any alternative validation scheme should have a level 

of sophistication which does not alter the pragmatic level of complexity that characterizes 

the model. Further, it would be convenient if the model validation scheme makes full use of 

the information provided by the measured data. 

Using the concept that the "real" behavior of the system in any measured behavior space is 

a random realization within the measured space, which is supposed to be represented by the 

model, a validation methodology based on statistical significance tests may be devised. 

The bootstrap is a method for assessing the accuracy of arbitrary-statistics of measured 

data. It was developed by Efron (1979) and is clearly explained in a text by Efron and 

Tibshirani (1993). It provides a means for estimating the standard evor, confidence 

intervals, and bias in statistical estimates. It was developed for situations in which the 

underlying data are non-Gaussian, and the statistics of interest are non-Gaussian and not 

Gaussian-related. It can be used in the system analysis/system modeling framework to 

assess the accuracy of measures of system response and characteristics of systems, for 

example, response spectral density, cross-spectral density, frequency response function, 

modal parameters, and other measures of linear and nonlinear system response. The 

procedures for using the bootstrap to perform these statistical analyses are described in 

Hunter and Paez (1995), and Paez and Hunter (1996). 

We propose in this paper a framework for statistical validation of system models when 

experimental data are available. The procedure includes the following steps. First, identify 

one or more measures of system character as the basis for validation of the mathematical 

model. (These measures might be quantities to be considered individually, or quantities to 



be considered jointly. For example, the second eigenfrequency of a linear system might be 

a quantity to be considered individually. The three individual average values of system 

response spectral density in three critical frequency ranges might be quantities to be 

consideredjointly.) Next, using the bootstrap and the experimental data from the physical 

system, estimate the confidence intervals and the joint confidence intervals (as appropriate) 

for the measures of system character, say at the (l-a)xlOO% level. Then.evaluate these 

same measures of system character from the mathematical model. Locate the measures of 

system character from the mathematical model relative to the confidence intervals of 

measures of system behavior from the bootstrap analysis. Now make a statistical 

hypothesis: the measures of system character from the mathematical model are accurate 

representations of the corresponding measures from the actual system. Perform a statistical 

test of hypothesis. If the measures of system character from the mathematical model fall 
.. 

within the confidence intervals of the measures of system character from bootstrap 

analysis, then the hypothesis is accepted at the level of significance a. Otherwise, the 

hypothesis is rejected. The mathematical statistics of this framework are developed in this 

paper and a numerical example is presented to demonstrate use of the technique. 

The development described above assumes that the model for the system under 

consideration is deterministic, in the sense that all its parameters are deterministic variables. 

However, it is clear that under certain circumstances it may be desirable to include 

parameters in the mathematical model that are random variables and random processes. 

After all, there are features of the system under consideration that cause the measures of its 

behavior to display the random variation to be characterized with the bootstrap analysis. In 

view of this, we describe in the following how mathematical models with random variable 

and random process parameters might be validated using a simple extension of the present 

technique. 
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It is possible to think of situations in which a model may be said to be validated in a 

"limited sense." Two of these situations may occw 1) when the model predicts only a 

certain aspect of the system behavior, and 2) when only a subset of the variables 

representing that aspect of system behavior fall within the specified confidence intervals. In 

the first case, the argument can be made that if the predicted behavior is what the engineer 

was looking for, then the model could be satisfactorily valid under the constraint of this 

pragmatic condition, and as long as the predicted measurements fall within the defined 

confidence regions. However, the second situation immediately introduces the need for 

defining a scalar index that could be used to quantify the degree of validation. 

In the following we first introduce the bootstrap - what it'is, how it is used, how it is 

computed. Next, we show how the bootstrap can be used to compute confidence regions 

for measures of system behavior. We provide a simple example of the. application of the 

bootstrap. Then we develop the framework for statistical validation of mathematical 

models. Finally, we present the results of an experimental example, demonstrating how the 

finite element model of an aluminum beam might be validated. 

The Bootstrap 

The bootstrap is a technique for the assessment of the accuracy of estimates of parameters 

of probability distributions. These estimates are statistics of measured data and their 

accuracy is estimated in terms of standard error, confidence intervals, and/or bias. To 

perform a bootstrap analysis, we measure data from a random source and assume that the 

observed data represent the source. The source is assumed to geneFte realizations with an 

unknown probability distribution. Each observed data point is assigned a probability of 

Occurrence of l/n, where n is the total number of data points measured. A bootstrap sample 

of the data is created by selecting at random, with replacement, n elements from the 



measured data set. This process is illustrated in Figure '1.. The procedure is 'readily 

implemented using a uniform random number generator which selects, with equal 

probability, integer values in the range 1 to n. Sampling is done with replacement, so each 

bootstrap sample may have several occurrences of some data values and other data values 

may be absent. 

8 = X = ( x ~ , x ~ , . . . , x ~ ~ )  (Samples have equal probability) 

Creationof bootstrap sample is accomplished 
through random selection among elementsof X .  
For example, let X = ( X I ,  ..., ~16). A potential 
bootstrap sample is shown below. (The sample 
contains 16 elements.) .. 

Figure 1. Obtaining a bootstrap sample. 

In a bootstrap analysis, numerous bootstrap samples are created. The statistic of interest is 

computed from each bootstrap sample; the resulting quantities are known as bootstrap 

replicates of the statistic of interest. Standard error, confidence intervals, and bias of the 

statistic of interest are computed using standard techniques and formulas on the bootstrap 

replicates of the statistic of interest. For example, let B denote the number of bootstrap 

samples used in an analysis, and letQ*(b),b = l,...,B, denote the bootstrap replicates of the 

statistic of interest. Then the standard error of the statistic of interest is estimated with 

' 



** l B  where 0 (.) = - x $ ( b ) .  
b=l B 

In one type of bootstrap analysis, the two-sided, (l-a)xlOO% confidence interval is 

obtained by sorting the bootstrap replicates of the statistic of interest, and identifying (or 

interpolating) the (cr/2)x100% percentile value and the (l-a/2)x10% percentile value in the 

sorted list, and using the identified values as the limits of the confidence interval. Another 

more advanced method for confidence interval estimation is discussed in Efron and 

Tibshirani (1993). 
.. 

The number of bootstrap samples, B ,  used in an analysis, ranges from 25 to several 

thousand. The standard error of a parameter estimate may be computed using 25 to 50 

bootstrap samples. Accurate computation of the confidence intervals of an estimated 

parameter requires analysis of a thousand or more bootstrap samples. 

Bootstrap sampling provides an optimal estimate of the probability density function which 

characterizes the data source given that our knowledge of the source is limited to the 

measured data. Computation of a statistic from the bootstrap samples simulates 

computation of the same statistic on samples drawn from the real world distribution. 

Properties of the “real world’, distribution are estimated in the “bootstrap world” as 

illustrated in Figure 2. 

. 



Real World 

Unknown Probability Observed 
Distribution Sample 

\1 
6 = s (X)  

statistic 
of Interest 

Bootstrap World 

Observed Boots~ap 
Distribution Samples 

F + x* = ( X I  * *  ,x2,...,xn) * 

\ 1 '  
$ = s(x*)  

Bootstrap Replicates 
of Statistic of Interest 

.. 

Figure 2. The bootstrap approximation to the real world. The observed distribution is our 
best estimate of the true distribution. The observed sample is X ,  and the statistic of interest 
6 = s ( X )  can be computed based on this. In the bootstrap world the observed data are used 
to generate as many bootstrap samples X" as we wish. Each bootstrap sample is used in 
the formula P = s(x*) to compute a bootstrap replicate'of the statistic of interest. The 
bootstrap replicates are used to analyze the standard error, confidence intervals and bias of 
the statistical estimator. 

Confidence Regions for Measures of Mechanical System Behavior 

We showed in the previous section that the bootstrap is a technique for the accuracy 

analysis of statistics of random data. Among other things, it can be used to estimate 

standard error and the confidence intervals of statistical estimators. Figures 1 and 2 and the 

text in the previous section make it clear that in order to use the bootstrap we need to build 

up an ensemble of bootstrap replicates of the statistic of interest. In this section we seek to 

demonstrate that a general approach to the generadon of bootstrap replicates can be 

developed in a very practical framework. 



To commence the development we assume that measured inputs (if required) and outputs 

from the system to be characterized are available; Denote these (X,Y) = (~l,...,~~,yl,...,y~) 

where yi is an output corresponding to input xi. We assume that one or more statistics of 

these data are the measures of system behavior or parameter estimates of interest.,To keep 

this discussion general, we denote the statistics of interest'as the vector of quantities 

{f?} = S(X,Y) 

where the function s(.) yields a vector output. These parameter estimates or measures of 

system behavior can be any quantities that are mathematically describable in terms of the 

measured input and response data (X,Y). There are hundreds, perhaps thousands, of 

examples in different fields of interest of what these parameters might represent. In general, 

for example, they might be: 

Constant coefficients or parameters of variable coefficients of linear or nonlinear 

parametric algebraic equations 

Constant coefficients or parameters of variable coefficients of linear or nonlinear 

parametric ordinary differential equations 

Constant coefficients or parameters of functional coefficients of partial differential 

equations 

Measures of behavior that assume a framework for system operation like impulse 

response functions of transfer functions or frequency response functions 

Eigenvalues or eigenfunctions of systems of equations assumed to govern the 

measured data 

Quantities that characterize nonlinear or possibly .chaotic systems, like. Lyapunov 

exponents, fractal dimensions of chaotic attractors, and other measures. 



Given that the parameters of interest can be estimated using an expression with the form of 

Eq. (2), they can also be estimated using a bootstrap sample of the data. A bootstrap 

replicate of the statistics of interest can be denoted 

{6*} = S(X*,Y*) (3) 

where the (X*,Y*) are bootstrap samples of the measured data (X,Y). To perform the 

computation in Eq. (2) or (3) using measured data in a practical way may require some 

imagination in dealing with the data, but it can usually be done directly. (See Hunter and 

Paez, 1995, or Paez and Hunter, 1996, for specific descriptions of how bootstrap 

replicates of such quantities as estimates of autospectral density, cioss-spectral density, 

frequency response function, eigenvalues, and eigenvectors can be obtained from measured 

data.) 

Any number of bootstrap replicates 0b , b = l,...,B, can be generated using the approach 

and the formulas described above. These replicates can be used to compute the accuracy 

statistics of interest. The descriptor of special interest in the present application is the 

confidence interval (if there is only one parameter, or if we are interested only in the 

marginal behavior of the individual quantities in {6} )  or the joint confidence region for 
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multiple parameters in {G}. The reason is that these will be used later as the basis for a test 

of hypothesis. When there is only one parameter in the vector {G} then its confidence 

interval can be obtained as described in the previous section. When there are multiple 

parameters, their confidence region can be obtained as follows. 



Each of the bootstrap replicates {&}, b = 1, ..J, occupies a point in the space whose 

coordinates are defined by the elements of {i}. That is, if the vector {G} has N elements, 

then each of the bootstrap replicates has N corresponding elements, and these replicates 

are, in general, different. The collection of bootstrap replicates constitutes a measured 

ensemble from the random process source that has the'sampling distribution of the vector 

{i}. When the ensemble of generated bootstrap replicates is large enough it can be used to 

empirically infer the characteristics of the sampling distribution of {i}. Among other 

things, the limits of the measured ensemble can be used to infer confidence regions for the 

parameter estimates. 

.. 

The manner in which the confidence regions are constructed using the ensemble of 

generated bootstrap replicates is open to the discretion of the analyst. However, there are 

two general approaches for obtaining confidence intervals. These are the parametric and 

nonparametric approaches. With nonparametric approaches the analyst seeks to define a 

confidence region that accurately reflects the shape of the joint probability density function 

( p w  of the source of the bootstrap replicates. The methods for' accomplishing this are so 

varied that we will not pursue their description here. The idea behind parametric approaches 

is that a parametric form for the confidence region that approximately reflects the contours 

of the joint pdf can be specified and its parameters identified. For example, a 

multidimensional ellipsoid might be appropriate in many applications for the specification 

of the confidence region of multiple statistics of measured data, 

Example. Let X be a random variable defined as 

x=u2+0.22 

_ _  .. . 
-v- - -- _____. ,* . 



where U is a uniform(0,l) random variable, and Z is a standard normal random variable, 

independent of U. Create 20 realizations of the random variable X, &d from these 
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realizations create lo00 bootstrap samples. From each bootstrap sample create a bootstrap 

replicate of the mean estimator of X and a bootstrap -replicate of the skewness estimator of 

X. The skewness estimator replicates are plotted versus the corresponding mean estimator 

replicates in Figure 3, and clearly show some degree of correlation. For this example the 

mean estimator random variable and the skewness estimator random variable are the two 

elements of the vector {i}. The bootstrap replicates of the mean estimator and the 

0 

0 
0 

- 

0 
- 

skewness estimator are the bootstrap replicates 0b , b = 1, ..., 1000. We assume that joint 

confidence regions of the mean and skewness estimators can be defined using ellipsoids. 

Therefore, to define the 95% joint confidence region for the mean and skewness 

estimators, we identify the ellipsoid that encompasses 95% of the points in.Figure 3; the 

(^*I 

ellipsoid matches the general shape of the distribution of the replicates. This is the region 

enclosed by the ellipsoid in Figure 3. 

0.06 

-0.06’ . o  A 0- 

0 0.2 0.4 0.6 
Mean estimate 

Figure 3. Joint bootstrap replicates (shown by circles) of the mean and skewness 
estimators based on 20 realizations of the random variable defined in Eq. (a), and the 
estimated 95% confidence region. 



Validation of Mathematical Models 

The procedure for validation of mathematical models is based on the concept of statistical 

hypothesis testing. We assume that a mathematical model for the system under 

consideration has been constructed, and that characteristics of the mathematical model that 

correspond to the characteristics of the actual system can be obtained. The characteristics of 

the mathematical model that correspond to the parameters evaluated for the experimental 

system will be denoted {&.,d}. These model parameters must be obtained in a manner 

compatible with the specification of the model. For example, eigenvalues and 

eigenfunctions of a linear model can be obtained directly from the model. On the other 

hand, nonlinear mathematical models may require the use of measured inputs to compute 

simulated outputs, followed by the use of the measured inputs with the simulated outputs in 

Eq. (2) to evaluate the model parameters. 
.. 

To perform a model validation, we first make the hypothesis that the mathematical model is 

a satisfactory representation of the actual system with respect to the parameters in the vector 

{b}. We test this hypothesis at the 100& level of significance by estimating the 

(1 - a) x 100% confidence region for {b}. We can use the bootstrap to accomplish this. 

Denote this region R I - ~ ( ~ ) .  If 

then we accept the hypothesis and consider the model validated with respect to the 

parameters {b}. Otherwise, we reject the hypothesis and consider the model invalid with 

respecit to the parameters { b}. 



Figure 4 shows a schematic representation of the model validation procedure. Recall that 

model validation is performed from two ends. From one end, a confidence region is 

specified for statistics of data measured from an experimental system. From the other end, 

the parameters of interest are computed from the mathematical model. In the middle, the 

parameters from the mathematical model are located with respect to the confidence region, 

and the accuracy of the mathematical model is confirmed or rejected. 

The validation procedure described here can be applied to any individual measure or sets of 

measures of model characteristics. It is anticipated that in practical applications a good 

mathematical model will be validated with respect to some measures and will not be 

validated with respect to other measures. The only way that a mathematical model might be 

validated with respect to all measures of system performance is that it perfectly incorporates 

every bit of information in the experimentally measured inputs and responses (X,Y). Even 

if this could be done, the mathematical model would likely fail if it were tested with 

reference to other sets of experimentally measured inputs and responses. Therefore, in 

practical applications it should only be hoped that a mathematical model might be validated 

with respect to some fundamental set of parameters or measures of system response. 

Numerical Example 

The system to be considered in this example is a simple, elastic, aluminum beam. Its 

dimensions are 24 x 1 x 0.25 inches. The beam was suspended from one end by a string to 

simulate free boundary conditions. A piezoelectric accelerometer was mounted at the end 

opposite the string attachment point to measure the system’s response. An additional mass 

was added to the beam during each experiment; specifically, an accelerometer was mounted 

to the beam at a random location. The purpose of this was to simulate the random variation 

in a complex system. The parameters of interest in the beam are its linear model parameters, 



Figure 4. 
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and in particular, its eigenfre uencies or modal frequencies. These can be estimated by first 

estimating the frequency response function of the beam, then fitting a linear model to the. 

frequency response function, and finally infening the modal frequencies from the linear 

model. 

The experiments performed on the beam to obtain its dynamic characteristics are impact 

tests. During each experiment the beam is excited by impacting it with an instrumented 

hammer near the string attachment end; the input force and the response (near the free end) 

are measured. The impact experiment was repeated 10 times with one input and one 

response measurement during each experiment. This time history information was then 

used in the manner outlined in Hunter and Paez (1995) to estimate the system frequency 

response function. The first three modal frequencies of the beani were inferred from the 

frequency response function. The beam frequency response function is shown in Figure 5. 

This is an average based on the 10 experimental measurements. 

200 4CO K O  BM) 1000 1ZGO ' 
F q  (Hz) 

co 

Figure 5. Frequency response function of the beam used in the experiment. 

One thousand bootstrap samples of the input/response data were formed by sampling 

among the 10 input/response pairs, and a bootstrap replicate of the frequency response 



function was formed from each bootstrap sample. There is substantial variation among the 

bootstrap replicates of .the frequency response function, and this variation is depicted near 

the first modal frequency in the shade density diagram of Figure 6. The figure is lightly 

shaded in regions where many replicates of the frequency response function lie, and it is 

darkly shaded where there are few replicates. The first three modal frequencies of the 

system were infei-red from each frequency response function, thereby creating 1000 

bootstrap replicates of the beam modal frequencies. The kernel density estimators 

(estimators of the pdf's) of the first three beam modal frequencies are shown in Figure 7. 

(See Silverman, 1986, for a description of the kernel density estimator.) It is apparent from 

the kernel density estimators that the sampling distributions of the modal frequencies are 

skewed, and that they are not all skewed in the same direction. Further, the dispersion in 

modal frequency values increases as the mode number increases:- The 'percentage points of 

the cumulative distribution function estimators that are the integrals of the kernel density 

estimators of the beam modal frequencies are used directly to establish the confidence 

intervals for the modal frequencies. For example, the 99% marginal confidence intervals 

for the first three modal frequencies are I 

(81.58,83.27) Hz, (228.12,231.37) Hz, (446.85,455.30) Hz 
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Figure 6. Shade diagram showing the density of bootstrap replicates of frequency response 
function near the first modal frequency of the system described above. 
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Figure 7. Kernel density estimators for the sampling distributions of the first, second, and 
third modal frequencies of the experimental system. 



The mathematical model of the beam used in this experiment is a finite element model 

created in the computer code ALGOR using three dimensional beam elements. Twenty-four 

elements were used to model the beam. Accelerometers were modeled as lumped masses; 

the second lumped mass was located at the center of the beam. Because the code cannot 

simulate free-free boundary conditions, the boundary conditions were modeled using 

rotational and translational springs with very small elastic constants. The modal frequencies 

of the beam model can be computed directly in the finite element code, and the first three 

modal frequencies are 

83.37 Hz, 232.92 Hz, 447.60 Hz 

Comparing the modal frequencies from the finite element model in Eqs. (6) to the 99% 

confidence intervals in Eqs. (5) indicates that the finite element model'would not be 

validated with respect to the first and second modal frequencies at the one percent level of 

significance, and it would be validated with respect to the third modal frequency. Note that 

no attempt was made to reconcile the finite element model to the experimentally measured 

data or to the computed modal frequencies. In this particular case, the analyst could 

reasonably modify parameters in the mathematical model to cause the first, second, and 

perhaps the third, modal frequencies to match the measured data. This is one of the 

important points in the model validation framework described here. 

Extension of the Validation Concept to Stochastic .Mathematical Models 

The model validation concept described in the previous sections acknowledges the presence 

of randomness in statistics of data measured from an experirhentd system. This is the 

reason why we can develop confidence regions for parameters and measures of system 

performance. It is assumed that the mathematical models used to simulate the actual 



systems are deterministic in the sense that the mathematical forkof the model is prescribed, 

and the parameters of the model are deterministic constants. 

To extend this concept we might seek to introduce the potential for randomness in the 

mathematical model through the introduction of model terms that are random variables or 

random processes; Such a mathematical model is known as a stochastic model. This 

requires that we know specifically where randomness rnight arise in the mathematical 

model, or that we be able to introduce generic terms whose influence on the model output 

mimics the behavior of the actual system even though it does not precisely match the 

system phenomenology. Either way, the effect of the introduction of randomness into the 

mathematical model is to create random variation in the behavior of the simulated system. 

This random variation may be quite difficult to analyze in most systems and requires the 

execution of probabilistic system analysis. A probabilistic system analysis might be 

performed using a Monte Carlo approach, a semi-analytic approach, or a hybrid approach. 

For descriptions of these types of analyses, see for example Madsen, Krenk, and Lind 

(1986). These analytic approaches cannot be described in detail here for lack of space. 

However the stochastic model is analyzed, the net objective with regard to model validation 

is that we seek to identify regions in the space of the vector of parameters {i} where the 

parameters are most likely to fall. Such regions are equivalent to the confidence region 

R I - ~ ( ~ )  defined above. Denote the region obtained from the stochastic model where the 

parameters have a probability of 1-a of occurring as  MI-^(^). Our effort in validating the 

stochastic model i s  to determine whether the regions R I - ~ ( ~ )  and  MI-^(^) are 

equivalent. We can do this using any of at least three methods. 



. First, note that the region Ml-a(6) can be established based on realizations from the 

stochastic model in the same way that the region Rl-a(6) was established based on the 

bootstrap replicates ob , b = 1, ..., B .  Using Monte Carlo techniques we can generate B 

realizations of the vector {i} from the stochastic mathematical model. The difference 

between each realization and a corresponding bootstrap replicate from the expekental data 

can be computed, creating an ensemble of vectors 

where {Jm,,~} is the b* realization from the stochastic model. The bootstrap method can 

then be used to establish whether or not the average of the'random vector, {Db} can be 

accepted as equal to zero. 

A second method for judging the equivalence between the regions R1-a (6) and MI-a (6)  

is to use the bootstrap replicates ob , b = 1, ..., B , to identify a transformation to a space of 

uncorrelated, standard normal random variables, use the transformation on realizations 

from the stochastic model, and use a test of hypothesis to determine whether or not the 

transformed stochastic model realizations belong to the standard normal space. This is 

accomplished by first using the bootstrap replicates to approximate the pdf of { i}. A good 

(^*I 

framework'for writing the approximate joint pdf of the elements in {6} based on the 

bootstrap replicates {8;}, b = 1, ...,B, is the kernel density estimator, described in 

Silverman (1986). From the approximate joint pdf, the conditional pdf's of the elements in 

c 



{i} can be written, and based on these,'a transformation from the space of 8 to the 

space of uncorrelated, standard normal random variables can be written. The 

transformation that accomplishes this is known as the Rosenblatt transform. (See 

Rosenblatt, 1952.) Now if realizations {Jm,,,}, b = l,...,B, from the stochastic model are 

r 1  

operated on with the Rosenblatt transform, and if the'regions ZZl-a(i) and  MI-^(^) are 
equivalent, then the realizations {am,,,}, b = l,...,B, will appear normal in the transform 

space. A chi squared test can be used to test the appropriate hypothesis. 

A third method for assessing the equivalence between the regions R1-,(6) and MI-a(G) 

is a simple visual inspection and comparison of projections of the two regions into two 

dimensional spaces of pairs of coordinates in {i}. Even if one of the previous two 

methods for comparing the regions is adopted this approach is a prudent double check on 

the results. 

Conclusions 

We have developed in this paper an approach to statistical model validation that is based on 

the bootstrap method for statistical analysis. The approach accounts for randomness in real 

system characteristics and the data measured from real systems, and can be extended to 

account for randomness in the characteristics of the mathematical model. The approach is 

formal and systematic in that it is based on a well established statistical analysis procedure, 

and it provides an objective measure of the interval that a model parameter must occupy in 

order to be considered representative of the actual system at a particular level of 

significance. The approach is computer intensive; that is, it is time consuming to generate 

bootstrap samples and replicates of the statistics of interest. However, its advantage is that 

it properly accounts for the non-Gaussian nature of arbitrary statistics of interest. 



It must be emphasized that the analyst who uses the proposed procedure for statistical 

model validation must be judicious in his or her choice of the specific measures and the 

number of measures of model performance used to validate the model. The number of 

measures should be neither too great nor too small, and should reflect the importance of the 

application. The specific measures of performance used should reflect the analyst's 

expectations of the model. Some measures of performance (like average measures of 

system behavior over a broad region) will be easier to validate than others. However, when 

detailed model behavior is validated, model performance in the simulation of detailed 

behavior will be anticipated to be accurate. 
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