
Intelligent Spider for Internet Searching
Hsinchun Chen, Yi-Ming Chung, Marshall Ramsey,
Christopher C. Yang, Pai-Chun Ma and Jerome Yen

Abstract- As the World-Wide Web (WWW) based
Internet services become more popular, information
overload also becomes a pressing research problem.
Difficulities with searching on Internet get worse as
the amount of information tha t available on t h e inter-
net increases. A scalable approach t o support Internet
search is critical t o t h e success of Internet services and
other current or future National Information Infras-
tructure (NII) applilcations. A new approach t o build
intelligent personal spider (agent), which is based on
automatic textual analysis of Internet documents, is
proposed in this paper. Best first search and genetic
algorithm have been tested to develop the intelligent
spider. These personal spiders a r e able to dynamically
and intelligently analyze the contents of t he users se-
lected homepages as t h e start ing point t o search for
the most relevant homepages based on t he links and
indexing.

An intelligent spider must have t h e capability t o
make adjustments according to progress of searching
in order t o be an intelligent agent. However, t he cur-
rent searching engines do not have the communica-
tion between t h e users and t h e robots. The spider
presented in this paper use Java t o develop t h e user
interface such tha t t h e users can adjust t he control
parameters according to the progress and observe the
intermediate results. T h e performances of t he genetic
algorithm based and best first search based spiders a re
also reported.

I. INTRODUCTION

Information searching over the cyberspace has be-
come more and more important. It has been esti-
mated that the number of homepages is doubled ev-
ery six months or even shorter. In some areas, such
as, Hong Kong and Taiwan, the increasing speeds can
be even faster. Searching for the needed homepages
or information, therefore, becomes a challenge to the

MIS Department, Karl Eller Graduate School of Manage-
ment, University of Arizona, McClelland Hall 4302, Tucson,
Arizona 85721, hchenQbpa.arizona.edu, (520) 621-4153.

MIS Department, Karl Eller Graduate School of Man-
agement, University of Arizona, Tucson, Arizona, 85721,
ychung@bpa.arizona.edu.

MIS Department, Karl Eller Graduate School of Man-
agement, University of Arizona, Tucson, Arizona, 85721,
ychung@bpa.arizona.edu.

ECE Department, University of Arizona, Tucson, Arizona,
85721, chrisy@ece.arizona.edu.

Department of ISMT, Hong Kong University of Science
and Technology, Clearwater Bay, Kowloon, Hong Kong,
pcmaQusthk.ust .hk.

Department of Computer Science, The University of Hong
Kong, Hong Kong, jyen@cs.hku.hk.

1060-3425/97 $10.00 0 1997 IEEE 178

users of Internet. To develop searching engines or
spiders which are “intelligent” or have the necessary
properties to be called agents is always the dream to
the researchers in this area. In order to qualified as
an agent or intelligent agent, such searching agent or
spider must be able to make adjustments according
to progress of searching.

The major problem with the current searching en-
gines is that no communication between the users
and the spiders or robots who were dispatched by
the users. Since no communication, the users can-
not understand the progress of searching and have to
tie themselves to the terminals. This paper reports
a new searching engines which used Java to develop
the user interface. Which allow the users to keep
track of the progress of searching, in the mean time,
the users can make changes on the searching param-
eters, such as, the depth and breath, according to
the progress reported from the spiders. Besides, var-
ious algorithms have been tested for building the spi-
ders, for example, best-first searching and genetic al-
gorithms. The performance of using such algorithms
will also be reported in this paper.

Although network protocols and software, such
as, HTTP, Netscape and Mosaic, significantly im-
prove the efficiency and effectiveness of importation
and fetching of online information. However, their
uses are accompanied by the problem that users can-
not explore and find what they want in the enor-
mous cyberspace [l], [a], [16]. While Internet ser-
vices become popular to many users of Internet, dif-
ficulties with searching on Internet will get worse as
the amount of information stored on the Internet in-
creases. This is mainly due to the problem of in-
formation overload [5] and vocabulary differences [8],
[4]. We consider that divising a scalable approach
to Internet search is critical to the success of Inter-
net services and other current and future National
Information Infrastructure (NII) applications.

The main information retrieval mechanisms pro-
vided by the prevailing Internet WWW-based soft-
ware are based on either keyword search (e.g., Lycos
server at CMU and Yahoo at Stanford) or hypertext
(e.g., NCSA Mosaic and Netscape browser). Key-
word search always results in low precision, poor re-
call, and slow response due to the limitations on in-

http://hchenQbpa.arizona.edu
mailto:ychung@bpa.arizona.edu
mailto:ychung@bpa.arizona.edu
mailto:chrisy@ece.arizona.edu

dexing and communication (bandwidth), controlled
language based interfaces (vocabulary problem)) and
the inability of searchers to fully articulate their
needs. Furthermore, browsing allows users to explore
only a very small portion of the large Internet infor-
mation space. An extensive information space ac-
cessed through hypertext-like browsing can also po-
tentially confuse and disorient its users. “embedded
digression problem” may cause a user to waste his or
her time and learn nothing specific, which is called
the “art museum phenomenon” [3].

Our proposed approach, whic$ is based on auto-
matic textual analysis of Internet documents, aims
to address the Internet searching problem by cre-
ating intelligent personal spider (agent). Best-first
search has been tested for local searching, and ge-
netic algorithm has been tested for global search-
ing with subject-specific categories of homepages pro-
vided. These personal spiders (agents) can dynam-
ically and intelligently analyze the contents of the
users selected homepages as the starting point t o
search for the most related homepages based on the
links and indexing.

11. LITERATURE REVIEW
The WWW was developed initially to support

physicists and engineers at CERN, the European Par-
ticle Physics Laboratory in Geneva, Switzerland [l].
In 1993, when several browser programs (most n e
ticeably the NCSA Mosaic) became available for dis-
tributed multimedia and hypertext-like information
fetching, Internet became the preview for a rich and
colorful information Cyberspace [17]. However, as
the Internet services based on WWW have become
more popular, information overload also has become
a pressing research problem [2]. The user interactions
paradigm on Internet has been shifted from simple
hypertext-like browsing (human-guided activity ex-
ploring the organization and contents of an informa-
tion space) to content-based searching (a process in
which the user describes a query and a system locates
information that matches the description). Many re-
searchers and practitioners have considered Internet
searching to be one of the most challenging and re-
warding research areas for future NII applications.

Internet searching has been the hottest topic at
recent World-Wide Web Conferences. Two major
approaches have been developed and tested: the
client-based searching spider (agent) and the online
database indexing and searching. However, some sys-
tems contain both approaches.

.

Client-based search spiders (agents):

Broadly defined, an ”agent” is a program that
can operate autonomously to accomplish unique
tasks without direct human supervision (simi-
lar to human counterparts such as real estate
agents, travel agents, etc.). The basic idea of
the agent research is to develop software sys-
tems which engage and help all types of end users
[15]. Such agents might act as ”spiders” on the
Internet and look for relevant information [7],
schedule meetings on behalf of executives based
on their constraints, or filter newsgroup articles
based on “induced” (or learned) uses’ profiles
[ll]. Many researchers have focused on devel-
oping scripting and interfacing languages for de-
signers and users such that they can create mo-
bile agents for their own [18]. Some researchers
attempt to address the question: “How should
agents interact with each other to form digital
teamwork?”. Other researchers are more con-
cerned about designing agents which are ”intel-
ligent” [15].
Several software programs based on the concept
of spiders, agents, or softbots (software robots)
have been developed. TueMosaic and the We-
bCrawler are two prominent examples. Both of
them are using the Best First Search Techniques.
DeBra and Post [SI reported tueMosaic v2.42,
which developed at the Eindhoven University
of Technology (TUE) using the Fish Search
algorithm, at the First WWW Conference in
Geneva. Using tueMosaic, users can enter key-
words, specify the depth and width of search for
links contained in the current displayed home-
page, and request the spider agent to fetch home-
pages connected to the current homepage. The
Fish Search algorithm is a modified Best First
Search. Each URL corresponds to a fish. Af-
ter the document is retrieved, the fish spawns
a number of children (URLs). These URLs are
produced depending on whether they are rele-
vant and how many URLs are embedded. The
URLs will be removed if no relevant documents
are found after following several links. The
searches are conducted by keywords, regular ex-
pressions, or by relevancy ranking with external
filters.
However, potentially relevant homepages that do
not connect with the current homepage cannot
be retrieved and the search space becomes enor-
mous when the depth and breadth of search be-
come large (an exponential search). The ineffi-
ciency and characteristics of the local search of

179

the BFS/DFS-based spiders as well as the bot-
tleneck of communication bandwidth on Internet
severely constrained the usefulness of such agent
approach.
At the Second WWW Conference, Pinkerton
[14] reported a more efficient spider (crawler).
The Webcrawler extends the tuehlosaic’s con-
cept to initiate the search using its index and
to follow links in an intelligent order. It first
appeared in April of 1994 and was purchased
by America Online in January of 1995. The
Webcrawler extended the concept of the Fish
Search Algorithm to initiate the search using in-
dex, and to follow links in an intelligent order. It
evaluates the relevance of the link based on the
similarity of the anchor text to the user’s query.
The anchor text are the words that describe a
link to another document. However, these an-
chor texts are usually short and do not provide
relevance information as much as the full doc-
ument text. Moreover, problems with the local
search and communication bottleneck still exist.
A more efficient and global Internet searching
algorithm is needed to improve the performance
of client-based searching agents. Other spiders,
such as TkWWW robot, WebAnts, and RBSE
(Respository Based Software Engineering), were
also developed afterward.

An alternative approach to Internet resource dis-
covery is based on the database concept of index-
ing and keyword searching. They retrieve entire
Web documents or parts of the documents and
store them on the host server. This information
is then indexed on the host server to provide a
server-based replica of all the information on the
Web. This index is used to search for web doc-
uments that contain information relevant to a
user’s query and point the user to those docu-
ments. These spiders include World Wide Web
Work (WWWW), AilWeb, Harvest information
discovery and access system, Lycos, Yahoo, Alta
Vista, Excite, etc.

Online database indexing and searching:

111. ARCHITECTURE OF INTELLIGENT SPIDER

The architecture of the intelligent spider is di-
vided into five components: Requests and Control
Parameters, Graphical User Interface and Client-
Server, Search Engine, Indexing Score, and Home-
pageFetching. Each has different functions. But all
the components work together to make the intelligent
automatic spider be able to search through the world

180

lodcdag Se-:

Cootrdpnllmuen Keyvordnink

Hmcpage Fetching
LynxMMGobbiciT*h

GUI & ClieatServer: Scarch Endue: I CGIoan BFS’GA

Fig. 1. Architecture of Intelligent Spider

wide web to find the most related homepages.

A . Requests and Control Parameters

Tasks are the queries submitted by the users and
resources are the databases available on the server.
Users submit queries with information, such as, the
starting URLs, the keywords, the number of URLs
expected to return, and the category of the searching
space. A searching will begin whenever a task is sub-
mitted. The resources in the server provide several
categories of searching space. When a task is submit-
ted, the appropriate searching space in the available
database will be invoked.

3. Graphacal User Interface and Client-Server

The graphical user interface (GUI) provides a link
between the submitted task and the searching engine.
It provides graphical interfaces, such as, forms, im-
ages, scrollbars, and radio buttons, for the user to fill
up the input and control parameters for the searching
engine. It also displays the output of the searching
engine in the formats of table, grap
For this project, two interfaces have been developed:
Common Gateway Interface (CGI) and JAVA.

The shortcoming of the CGI interface is its lack of
dynamic interaction. The server is completely event-
driven. It can only responds to requests from the
clients, but cannot initiate requests of its own. In
addition, it can only respond to one event. These lim-
itations lead to relatively static user interface. The
lack of capability in dynamic interaction is undesir-
able to our spider application. The searching process
of the spider usually takes from 5 minutes to 20 min-
utes to complete. Users are easily frustrated when
they are relegated to passive roles during
and unable to view intermediate results o
parameters in response to searching events. As a re-
sult, a truly dynamic user interface which based on
a client-server design and TCP/IP is desired. The
WWW protocol, HTTP, which is the same protocol
used by CGI programs, does not fit this purpose. It
is because the two-way data flow cannot be handled

by this protocol.
In order to develop a dynamic interface, the

client-server architecture based on the UNIX sock-
ets is created in both C++ and JAVA. JAVA is
an object-oriented language for the Internet. It is
portable, platform independent, and it creates dy-
namic applications embedded in HTML documents.
The codes for the searching engine are written in C
before JAVA is available. Although reproducing the
searching engine in JAVA can avoid the communi-
cation problems and the programming of sockets, it
involves a lot of extra and repeated efforts and the
performance may be dramatically reduced. As a re-
sult, a client-server architecture based on the UNIX
sockets is preferable. Searching is performed by the
server that used a slightly modified version of the
prototype code. The client was written in Java to
enable users to run the user interface on their local
computers when they loaded the spider’s homepage.
The communication between the client and the server
is based on the UNIX sockets which allows dynamic
client-server communication.

C. Search Engine

For this research, several searching algorithms
have been investigated. They include genetic al-
gorithm, best-first search, and simulated annealing.
The goals of these searching engines are to visit the
URLs in the neighborhood and the URLs in the se-
lected searching space and to find the most related
URLs by comparing their links and keywords. The
details of these algorithms will be discussed in Sec-
tion 4.

D. Homepage Fetching

Currently, there are several fetching machines to
retrieve HTML documents in the Internet such as
Lynx and HtmlGobble. Lynx is a fully-featured
WWW client for users running cursor-addressable,
character-cell display devices such as vt 100 terminals,
vtlOO emuulators running on PCs or Macs. It will
display HTML hypertext documents containing links
to files residing on the local system, as well as files
residing on remote systems running Gopher, HTTP,
FTP, WAIS, and N N T P servers. Similarly, HtmlGo-
bble paps HTML pages from remote web sites. In
order t o make the spider more portable and light-
weighted, instead of using Lynx or HtmlGobble, a
generic fetching function is developed to fetch URLs.
Using this generic fetching function, it speeds up the
fetching time by a significant amount of time. More-

over, the spider code is now more portable and light-
weight ed.

E. Indexing Score

The goal of indexing is to identify the content
of the document (homepage). The indexing method
employed here includes the following procedures:
word identification, stop-wording, term-pharse for-
mation.

Word Identification
Words are identified by ignoring punctuation
and case.
Stop-wording
A “stop word” list, which includes about 1,000
common function words and “pure” verbs, is de-
veloped. The common function words are non-
semantic bearing words, such as on, in, at, this,
there, etc. The “pure” verbs are words which are
verbs only, such as calculate, articulate, teach,
listen, etc. High frequency words that are too
general to be useful in representing document
content are deleted.
Term-pharse Formation
Adjacent words are then used to form phases.
Pharses are limited to three words. The result-
ing pharses and words are referred as the key-
words of the documents (homepages).

After retrieving the keywords of the .homepages,
the coccurence pattern of indexes which appears in
all homepages are identified. Jaccard’s score is used
to measure the similarity of homepages. The score is
computed in terms of the homepages’ common links
and term frequency and homepage frequency. The
detail formulation is available in Section 4.1.

IV. USING AI IN SPIDERS

In this research, we have investigated several AI
techniques for developing an intelligent spider (agent)
for more efficient and optimal client-based search of
relevant Internet information. These techniques in-
clude best first search, genetic algorithm, and simu-
lated annealing. Although we have investigated the
simulated annealing, it is discared because it does
not show significance difference in its performance
comparing with genetic algorithm. In this section,
the best-first search and genetic algorithm are dis-
cussed. The simulated annealing is briefly covered.
These techniques have different searching and con-
trol mechanisms, but they all compare the similarity
of homepages based on the Jaccard’s score.

181

A . Jaccard’s Scores

In order to compare the similarity between two
homepages, Jaccard’s scores are used. In this a p
plication, Jaccard’s score are computed base on the
homepages’ links and indexing. A homepage with a
higher Jaccard’s score has a higher fitness with the
input homepages. The Jaccard’s scores are computed
as follows:

Jaccard’s Scores from Links
Given two homepages, x and y, and their links,
X = x ~ , Q , , xm and Y = yl,y2, ...-, gn, the
Jaccard’s score between x and y based on links
is computed as follows:

(1)
(X n y >
#(X u Y)

where #(S) indicates the cardinality of set S.

Given a set of homepages, the terms in these
homepages are identified. The term frequency
and the homepages frequency for each term in a
homepage are then computed. Term frequency,
t f z j , represents the number of occurrences of
term j in document (homepage) x. Homepage
frequency, d f j , represents the number of home-
pages in a collection of N homepages in which
term j occurs.
The combined weight of term j in homepage x,
d x j , is computed as follows:

Jaccard’s Scores from Indexing

where wj represents the number of words in term
j , and N represents the total number of home-
pages.
The Jaccard’s between homepage x and y based
on indexing is then computed as follows:

where L is the total number of terms

B. Searching Methods:

Three algorithms, best-first search, genetic al-
gorithm, and simulated annealing, are investigated.
The detail of these algorithms are as follows:

Best First Search:
Best First Search is a state space search method
1131. It looks for the best homepage at each iter-
ation and the number of iterations equals to the

number of output homepages required by users.
A sketch of the best first search algorithm is pre-
sented below:
1. Input Homepages and initialization:
Initialize k to 1. A set of homepages, inputl,
inputz,, input,, are obtained from users.
These input homepages are fetched and their
linked homepages are saved in H = hl , h2,

2. Determine the Best homepage:
Determine the best homepage in H which has the
highest Jaccard’s score among all the homepages
in H and save it as OZbtPUtk.

The Jaccard’s score based on links for hi is com-
puted as follows:

..... } .

where JS[inks (inputj, hi) represents the Jaccard’s
score between inputj and hi based on links using
Equation (1).
The Jaccard’s score based on indexing for hi is
also computed similarly:

(5)

where JSindes(inputj, hi) represents the Jac-
card’s score between inputj and hi based on
links using Equation (3).
The Jaccard’s score for hi is computed as follow:

The homepage in H which have the highest Jac-
card’s score is saved as an output, OutPutk.
3. Fetch the best homepage
Fetch the best homepage, OUtpUtk, and add all
its linked homepages to H. Increase k by 1.
4. Repeat until all the output homepages
are obtained
Repeat 2 and 3 until k equals to the total number
of outputs plus one required by users.

Genetic algorithms (GAS) [9], [la], [lo] are prob-
lem solving systems based on principles of evolu-
tion and heredity. Genetic algorithms perform a
stochastic evolution process toward global opti-
mization through the use of crossover and muta-
tion operators. The search space of the problem

Genetic Algorithm:

182

is represented as a collection of individuals which
are referred as chromosomes. The genetic algc-
rithm find the chromosomes with the best “ge-
netic material”. The quality of a chromosome is
measured with an evaluation function (Jaccard’s
score). In the algorithm, the initial population is
chosen and the quality is determined. In every
iteration, parents are selected and children are
produced by crossover and mutation operations.
Each iteration is referred as a generation.
A sketch of the genetic algorithm for Internet
client-based searching is presented below:
1. Initialize the search space
The spider will attempt to find the most rele-
vant homepages in the search space, using the
user-supplied starting homepages. Save all the
input homepages, inputl, inputz,, into a set
of CurrentGeneration, CG = { cgl , cg2, - . .).
Homepages in 14 categories will be used as the
search space for mutation. The categorization is
done by multi-layered Kohonen self-organizing
feature map in our earlier work. These cate-
gories includes arts, business, computer, educa-
tion, entertainment, government, health, news,
recreation, reference, regional, science, social-
culture, and social-science.
2. Crossover and Mutation:
- Crossover

Fetch the homepages that linked by the home-
pages in CurrentGeneration. Compare the
linked homepages of these fetched homepages
and the linked homepages of the homepages
in CurrentGeneration, cgi. The fetched home-
pages which have the highest number of over-
lapping linked homepages with the homepages
in CurrentGeneration will be saved in the set
of CrossoverHomepages, C = { c1 , c2,

Homepages are obtained from the ranked home-
pages using SWISH in the user selected cate-
gory and saved in the set of MutationHome-
pages, M = { m l , m 2 , . . - } .

The sizes of CrossoverHomepages and Mutation-
Homepages are both 50% of the population size.
The population size, N, is double of the number
of output homepages requested.
3. Stochastic Selection Scheme based on
Fitness:
Compute the Jaccard’s score for each home-
page in CrossoverHomepages (C) and Muataion-
Homepages (M) using Equations (4), (5) , and
(6). The homepages in CrossoverHomepages

0) .

- Mutation

and Mutation Homepages are compared with the
homepages in ElitePool, E = {el,e2,--.,eN}.
The best N homepages are selected and up-
dated to the ElitePool. (For the first genera-
tion, ElitePool is empty, comparison is not pro-
cessed. Insteads, the homepages in Crossover-
Homepages and MutationHomepages are saved
to the ElitePool and automatically become the
best N homepages.) Selection of the popula-
tion for the next generation is based on the fit-
ness scores. Fitter homepages in the Elitepool
have better chances of getting selected. Create
a “roulette wheel” with slots (F) sized accord-
ing to the total fitness of the population. F is
defined as follows:

N
F = JS(ei) (7)

Each homepage in these best homepages has a
certain number of slots proportional to its Jac-
card’s score. A homepage is selected by spinning
the wheel and saved to CurrentGeneration. The
total number of spinning is N. Some homepages
will be selected more than once. This is in ac-
cordance with the genetic inheritance: the best
chromosomes get more copies, the average stay
even, and the worst die off.
4. Converge:
Repeat 2 and 3 until the improvement in total
fitness between two generations is less than a
threshold. The final converged set of homepages
is presented as the output homepages.

Spider based on simulated annealing is also de-
veloped, however, its performance is not better than
genetic algorithm based spider, it is abandoned. Sim-
ulated annealing algorithm is based on analogy be-
tween the simulation of the annealing of solids and
the problem of solving large combinatorial optimiza-
tion problems. At the first iteration, a high temper-
ature is initialized. In each iteration of simulated an-
nealing, procedures similar to the crossover operation
in genetic algorithm are used to produce a new set of
URLs (configuration). Jaccard’s scores are used as
the cost function to evaluate the current configura-
tion. If the Jaccard’s score is higher than the score of
the previous configuration, the new configuration is
accepted, otherwise, it will be accepted based on the
probability computed in terms of the current tem-
perature and the Jaccard’s score. At the beginning
of each iteration, the temperature is decreased. The
process terminates when the temperature reaches a

183

certain value or the change of the Jaccard’s score be-
tween two iterations is less than a threshold.

Since the simulated annealing based spider only
employ the crossover operation to produce new con-
figuration, it is only a local search. However, its per-
formance is worse than best-first search and genetic
algorithm. A hybrid technique based on simulated
annealing with the addition of mutation operation in
producing new configuration is also investigated. Ex-
periments are conducted. Its performance is closer
to the genetic algorithm based spider but it is not
better. As a result, we abandoned the simulated an-
nealing and the hybrid technique in our development
of intelligent spiders. For the rest of the paper, only
the performances of best-first search and genetic al-
gorithm are reported.

V. EXPERIMENT

In an attempt to examine the quality of results ob-
tained by genetic algorithm and the best-first search,
we perform experiments and analyze their results.
Experiments are conducted to compare the perfor-
mance and efficiency of the best-first search and ge-
netic algorithm based spiders. The same sets of input
URLs are submitted to both spiders, their results are
compared based on the Jaccard’s score in Equation
(6), and their cpu time and system time taken to
process the search are also compared.

A . Experimental Design

In our experiment, 40 cases are set up. For each
cases, 1 to 3 input homepages are submitted to the
spiders based on best-first search and genetic algo-
rithm. 10 output homepages are obtained as re-
sult. Homepages are chosen in the entertainment
domain. The average of the output homepages’ Jac-
card’s score for each case is recorded for comparing
their fitness. The cpu time and the system time for
processing the search on each case are also recorded.
In the experiment, we also recorded whether the out-
put URL is origined from mutation. This will give
us an idea on the percentage of the output URLs
that are contributed by the mutation operation in
the global search.

B. Experimental Resalt

Figure. 2 shows the statistics of the fitness on
the results obtained by the best-first search and ge-
netic algorithm performed on the 40 cases. The re-
sults show that the output homepages obtained by
genetic algorithm bas a slightly higher fitness score

than those obtained by best-first search, but the dif-
ference is not significant. The average of 40 average
Jaccard’s score for genetic algorithm and best-first
search are 0.08705 and 0.08519, respectively. Al-
though the Jaccard’s score does not show any signif-
icant difference between the performances of genetic
algorithm and best-first search, 50% of the home-
pages that obtained from genetic algorithm are from
mutation when the crossover and mutation rate are
50% and 50%’ respectively. These homepages that
obtained from mutation are most probably not linked
to the input homepages, therefore, most of them will
never be obtained by best-first search. In particular,
when the number of links of the input URLs is re-
stricted, the result of best-first search is poor and the
best-first search may not be able to provide as many
URLs as requested by the users for result. However,
the genetic algorithm does not have this problem be-
cause it is a global search, the mutation operation
break through this restriction in searching. In the
situation of restricted links of the input URLs, the
genetic algorithm is still performing very well, a sig-
nificant difference between their performance is ob-
served.

VI. CURRENT STATUS

As mentioned earlier, we have developed two in-
terfaces for our spiders. One is based on CGI and the
other based on JAVA. The CGI enables image maps
and fill-out forms to interact with the http server, un-
fortunately, it does not provide dynamic interaction
during the searching process. On the other hand,
JAVA is an object-oriented, platform-independent
multi-threaded, dynamic general-purpose program-
ming environment for the Internet, intranet, and any
other complex, distributed network. JAVA has the
capability to display intermediate results and accept
changes of input parameters dynamically. Using the
Java interface, users are able to observe the result
in every iteration of the searching process, and even
adjust the control parameters of the searching mecha-
nism. This dynamic interaction is powerful and users
can find what they want more efficiently.

Figure 3 shows the homepage which display the
final result of the searching using the CGI based user
interface. It displays the total average fitness (based
on Jaccard’s score) and the number of homepages
have been visited in the search. For each homepage,
its address, score, title, and matched keywords are
also displayed.

Figure 4 shows the window which displays the
result of the searching dynamically. The upper left

184

AIALYSIS OF VARIAICE
SOURCE DF ss
FACTOR I 0.00007
EBBOB 78 0.16535
TOTAL 79 0.16541

LEVEL I MEA1
GA 40 0.08705
BFS 40 0.08519
POOLED STDEV = 0.04604

HS F P
0.00007 0.03 0.857
0.00212

~ ~ ~~~~~

Fig. 2. The statistics of the average Jakcard’s scores obtained from 40 cases of searching by genetic algorithm and best-first
search.

corner is an animation. A light bulb is fleshing when
the process is initialized. During the process, a spider
is going up and down to catch a fly when a homepage
is being fetched. When the fetching of a homepage is
done, the spider will catch the fly. When the search-
ing is done, the spider in the animation will go to
sleep. In the upper left corner, there are buttons
and scroll bars to control the process dynamically.
Similar to the input window, buttons for new search,
back to last window and exit are available, scroll bars
for controlling the crossover/mutation rate, allowable
fetching time, and number of return URLs expected
are available. Under the buttons and scroll bars are
the text areas to display the status of the search-
ing process. The four text areas on the first row
display the total amount of time taken, number of
URLs fetched, number of URLs origined from muta-
tion, and the current number of generation according
to the genetic algorithm. The text areas in the sec-
ond row displays the current fetching URL and the
amount of time has been used to fetch this URL. It
should be less than the allowable fetching time shown
on the scroll bar. Below the text areas, there are two
text fields. The text fields on the left displays the
result URLs in the current generation. Their titles,
keywords, and links are also displayed. If the title is
clicked, a new browser is opened and the correspond-
ing homepage is fetched. The text fields on the right
display the score bars for the corresponding URLs.
The first score bar displays the Jaccard’s score based
on indexing and the second score bar displays the
Jaccard’s score based on links. The third score bar
display the fetching time score. For the titles and
the addresses of all the homepages in this window,
the color represents whether the homepage is a local
URL, non-local or origined form mutation. For ex-
ample, if the input URL is http://ai.bpa.arizona.edu,

http://ai.bpa.arizona.edu/ent is a local URL,
http://www.arizona.edu is a non-local URL, and
http://www.musenet.org which is origined form the
mutation database is a mutated URL.

VII. CONCLUSION AND DISCUSSION

This research presents two algorithms for intelli-
gent personal spiders (agents). The two algorithms
are best-first search and genetic algorithm. The best-
first search only supports local search, while the ge-
netic algorithm supports global search. The simu-
lated annealing algorithm is discarded in our work
because it does not provide a better performance in
the experiments. The spiders obtain a set of home-
pages from users and search for most relevant home-
pages. They operate autonomously without any hu-
man supervision. The results show that genetic al-
gorithm received a higher fitness score although it is
not significantly higher, however, it is time consum-
ing. Currently, we are optimizing the algorithm to
reduce the cpu time and system time.

Although a significant higher Jaccard’s score was
not obtained from the genetic algorithm, the users
evaluation shows that the subjects agreed that ge-
netic algorithm obtain significantly more relevant
homepages. These intelligent spiders are promising
in searching for related homepages on the interneton
the internet. The genetic algorithm based spider also
has made some brokenthroughs in lifting the limita-
tion of the best-first search which was restricted to
local search. The best-first search suffers in a poor
performance when the number of links from the in-
put homepages is small or when the links of the input
URLs are restricted to local site. Using the genetic
algorithm, these problems can be partially removed
and more potential homepages can be explored.

http://ai.bpa.arizona.edu
http://ai.bpa.arizona.edu/ent
http://www.arizona.edu
http://www.musenet.org

Fig. 3. The output homepage of the global search spider based on genetic algorithm.

186

1. GS-Mao Instructions
GS, GS MAP, MAP
http://ai. b pa.arizona.edu/gs map
2. CS-MaD
AI, ARIZONA, GS MAP, INTERNET, MAP, MAP GS, MAP GS MAP, UNIVERSITY

3. Faculty Advisor

AI, ARTIFICIAL INTELLIGENCE INTERNET

AI, A I BPA, AI BPA ARIZONA, ARIZONA, ARTIFICIAL ARTIFICIAL INTELLIGENCE, BPA, BPA ARI
http://ai. b paarizonaedu/htm Vproject-list ht mi

Fig. 4. The window shows the result of the search during the process dynamically. Animation is display on the upper left
corner. Control panel which allows user to change parameters during the process is located at the upper left corner. The
results are shown at the center of the window.

c
VIII. ACKNOWLEDGMENT

This project was supported mainly by the follow-
ing grants:

0

NSF/ARPA/NASA Digital Library Initiative,
IRI-9411318,1994-1998 (B. Schatz, H . Chen, et.
al, “Building the Interspace: Digital Library In-
frastructure for a University Engineering Com-
munity”),

NSF CISE, IRI-9525790, 1995-1998 (H. Chen,
“Concept-based Categorization and Search on
Internet: A Machine Learning, Parallel Comput-
ing Approach”),

1992-1994 (H. Chen, “Building a Concept Space
for an Electronic Community System”),
NSF CISE Special Initiative on Coordination
Theory and Collaboration Technology, IRI-9015407,

NSF CISE Research Initiation Award, IRI-9211418,

187

http://ai
http://ai

1990-1993 (B. Schatz, "Building a National Col-
laboratory Testbed"),
AT&T Foundation Special Purpose Grants in
Science and Engineering, 1994-1995 (3. Chen),
and
National Center for Supercomputing Applica-
tions (NCSA), High-performance Computing Re-
sources Grants, 19941996 (H.Chen).

We would also like to thank the group members of
the Artificial Intelligence Laboratory and the under-
graduate students in the Department of Management
and Information Systems at the University of Arizona
for their participation in the user evaluation. Their
effort and time are greatly appreciated.

[16] B. R. Schatz, A. Bishop, W. Mischo, and J. Hardin. Digi-
tal library infrastructure for a university engineering com-
munity. In Proceedings of Digital Libraries '94, pages
21-24, June 1994.

[17] B. R. Schatz and J. B. Hardin. NSCA Mosaic and the
World Wide Web: global hypermedia protocols for the
internet. Science, 265:895-901, 12 August 1994.

[18] M. M. Walcbop. Software agents prepare to sift the riches
of cyberspace. Science, 265:882-883,12 August 1994.

REFERENCES
T. Bemers-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen,
and A. Secret. The World-Wide Web. Communications
of the ACM, 37(8):76-82, August 1994.
C. M. Bowman, P. B. Danzig, U. Manber, and
F. Schwartz. Scalable intemet resource discovery: re-
search problems and approaches. Commmicataons of the

E. Cannel, S. Crawford, and H. Chen. Browsing in
hypertext: A cognitive study. IEEE Transactions on
Systems, Man and Cybernetics, 22(5):865-884, Septem-
ber/October 1992.
H. Chen. Collaborative system: solving the vocabulary
problem. IEEE Computer, 27(5):5&66, May 1994.
H. Chen, P. Buntin, L. She, S. Sutjahjo, C. Sommer,
and D. Neely. Expert prediction, symbolic learning, and
nerual networks: An experiment on greyhound racing.
IEEE Eqert , 9(6):21-27, December 1994.
P. DeBraand R. Post. Informationretrievalin the World-
Wide Web: making client-based searching feasible. In
Proceedings of the First International World Wide Web
Conference '94, Geneva, Switzerland, 1994.
0. Etzioni and D. Weld. A softbot-basedinterface to the
Internet. Communications of the ACM, 37(7):72-79, J d y
1994.
G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais. The vocabulary problem in human-system com-
munication. Communications of the ACM, 30(11):964-
971, November 1987.
D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion. and Machine Learnina. Addison-Wesley, Reading,

ACM, 37(8):98-107, August 1994.

-
MA, 1989.

l l O l J. R. Koza. Genetic Proqrammina: On the Proqramminq
L .

of Computers by Means" of Natural Selection. -The M I T
Press, Cambridge, MA, 1992.

[Ill P. Maes. Agents that reduce work and information over-
load. Communications of the ACM, 37(7):30-40, July
1994.

[12] Z. Michalewicz. Genetic Algora'thms + Data Structures =
Evolution Programs. Springer-Verlag, Berlin Heidelberg,
1992.

[13] J. Pearl. Heuristics: Intelligent Search Strategies f O T
Computer Problem Solving. Addison-Wesley Publishing
Company, Reading, MA, 1984.

[14] B. Pinkerton. Finding what people 'want: experiences
with the Webcrawler. In Proceedings of the Second In-
ternational World Wide Web Conference '94, Chicago,
IL, October 17-20, 1994.

[15] D. Riecken. Intelligent agents. Communications of the
A CM, 37(7):18-21, July 1994.

188

