
Intelligent Agents for Matching Information Providers and Consumers on the
World-Wide- Web

Joseph K. W. Lee, David W. Cheung, Ben Kao, Jax Law and Thomas Lee

Department of Computer Science
The University of Hong Kong
Powlam Road, Hong Kong

Email: {jkwlee,dcheung,kao,ktlaw, ytlee} @ cs. hku. hk

Abstract
In this paper, we discuss the various issues in

designing intelligent software systems to assist world-
wide-web users in locating relevant information. We
identi3 a number of key components in such intelligent
systems. These include a web document database
management system, a client-based goal-directed search
engine, an intelligent leaming agent which discovers
users’ topics of interest by studying their browsing
behavior, and an intelligent agent which monitors “hot”
web sites. We give examples and suggestions on how
these components are designed and implemented. We
also describe the architecture of a prototype system that
integrates the various components.

1. Introduction

The “Information Superhighway” (Internet) enables a
computer user to be connected to virtually endless
numbers of sites on the network. Massive amount of
information (such as news, stock price quotes) is being
pumped into the superhighway at a great rate around the
clock. The World-Wide-Web (WWW) uses the Internet
to transmit hypermedia documents between computer
users located around the world. Due to its extensive
coverage and its enormous commercial potential, the
WWW has been gaining much attention lately. Large
amount of interesting and valuable information has been
made available on the Web for retrieval. In order to fully
utilize the power of the WWW as a gigantic information
source, it is essential to develop intelligent software
systems on top of the Web to assist users in retrieving
relevant documents. In this paper, we discuss the various
issues in designing such intelligent systems. In particular,
we identify the key features and components of the
intelligent systems, and propose an approach (and the

underlying algorithms) for deducing users’ topics of
interest from their browsing behavior.

It has been reported that the Web contains more than
30 million web pages [l] (not counting USENET news
articles) located on more than 275,600 hosts. While new
information sources are being added to the Web at a
tremendous rate, large numbers of old articles are being
updated regularly. For example, a page reporting the
score of a basketball game may be updated once every
two minutes. Since it is impossible for a human being to
keep track of all this information and changes, there have
been proposals on software tools to help users retrieve,
locate, and manage Web information. We call these
software systems Web tools.

1.1. Classifying Web Tools

In general, we can classify Web tools into five levels,
according to their intelligence and power.

A level 0 Web tool retrieves documents for a user
under straight orders. The user has to instruct the tool on
where the documents are located and how they are
retrieved by supplying the document URLs (which
specify both the transfer protocols and the addresses of
the documents). Popular Web browsers, such as Mosaic
and Netscape fall into this category.

A browser is primarily a user agent for navigating the
Web. Its basic functions are to interpret HTML
documents, format and present them at a multimedia
console, and to navigate their hypertext structures.
Typical browsers offer little assistance to users in
locating useful information (a user needs to know exactly
what he wants, and exactly where the information is
located). They also possess very limited functionality in
managing the retrieved information. For example,
documents fetched by the browsers are transient or
browse-once, meaning that the documents are no longer
available without being re-fetched after the browser

1060-3425197 $10.00 0 1997 IEEE 189

session is exited (Although most browsers cache
documents, some of them do not keep the cache across
sessions. Also, the cached documents are not organized
for further querying and retrieval by the users). For rareIy
updated pages, re-fetching them wastes network
bandwidth and causes long response time. Even though
most browsers allow users to save a document as a file,
they do not provide tools for organizing and managing the
saved files. Moreover, the structure of a hypermedia
document is very often destroyed after begin saved. For
example, the images in the saved documents are not
retained and the hypertext links are not maintained.

Higher levels Web tools should help tackle the two
important problems, namely, information discovery and
document management. In this paper we focus on the
information discovery problem. (We will, however,
mention a simple document management system in
Section 4 and discuss how it can be used to help
unraveling users’ topics of interest. Interested readers are
also referred to the WAIS software [9]). We believe that
in the era of information overloading, intelligent software
systems that can automatically and effectively match or
connect users to relevant information play a key role in
information technology. We therefore further categorize
Web tools according to how much assistance they offer to
users in pointing them to the interesting information. In
general, the less amount of information a user needs to
provide to a tool to locate relevant documents, the higher
is the tool’s ranking.

A level 1 Web tool should provide a user-initiated
searching facility for finding relevant web pages. Internet
search engines, such as Yahoo!, Alta Vista, and Infoseek
are examples of level 1 tools. Most of the search engines
take a robot-based approach. They usually work by
traversing the WWW visiting a large population of the
pages. Information about the pages, such as their titles,
subjects, word frequency counts, URLs, etc. are stored
and indexed. To find out relevant pages on a particular
topic, a user supplies keywords to a search engine which
describe the concepts. The keywords are then matched
against the huge index for relevant information.
Documents that match the user query will be ranked
according to the degree of consistency it shares with the
supplied keywords. Information about the matching
documents, such as their URLs and their brief
descriptions will then be sent back to the user.

Depending on whether the Web traversal is driven by
user queries, search engines can be further classified as
either server-based or client-based. A server-based search
engine, such as Alta Vista, traverses the Web off-line, and
the traversal pattern is not based on any user queries. The
idea is to visit and to keep information about as many
Web pages as possible for answering future queries.

System resource requirements, such as the amount of disk
space needed to maintain the large index, are high. A
client-based search engine [4], on the other hand, directs
the Web traversal according to certain goals, e.g., a set of
keywords specifying a particular user’s interests. Much of
the Web space that are unlikely to contain documents
matching the goals are not visited. Web traversals are
thus customized to each individual user’s goal. Although
a client-based search engine is less demanding on system
resources than a server-based one, its use risks causing
high demand on network bandwidth and overloading the
information sources if many Web users employ their own
client-based search engines [lo].

Search engines have gained popularity among Web
users and are indispensable tools in finding information
on the Internet. They are, however, passive in nature.
Most search engines do not remember a user’s query or
his goals across sessions. The users are therefore not
notified when new or modified information is found
available on the Web until the engines are queried
explicitly. They thus response to and act for users on-
demand.

A level 2 Web tools, on the other hand, should
maintain users’ profiles and have an active component
for notifying users whenever new relevant information is
found. Examples of level 2 Web tools include
Webwatcherr21 and SIFT[14]. As an example, with the
SIFT system, users supply a number of keywords that
describe topics of interest (called standing orders). Every
day, SIFT automatically matches new Netnews articles
with the standing orders, looking for news that are of
interest to the users. Summaries of the relevant news
articles are sent to the users via emails.

Most of the existing Web tools require the users to
explicitly specify a target or a goal of the search, usually
in terms of keywords which describe the information
interested. Unsophisticated users may find it hard to
formalize a query, and in many cases, they do not know
the existence of an interesting topic until an example is
given to them. A level 3 Web tool, therefore, should have
a Zeaming and deductive component of user profiles.
Example contents of a user profile include topics of
interest (e.g., a user may be interested in the U.S.
financial markets) and browsing patterns (e.g., he may
read the financial summary report at 7pm every
weekday). DiffAgent [SI and Letizia [I11 are two
experimental systems that track a user’s browsing
behavior to infer the user’s topics of interest and can be
considered as level 3 tools.

Finally, to better inform the users of the most up-to-
date and relevant information, an intelligent Web tool
should also understand the behavior of the information
sources (e,g., what are the relevant subjects of a page?

190

How often is a page updated?) We define a level 4 Web
tool to be one that has the capability of learning the
behavior of both information users and information
sources. This knowledge enables the system to match the
requirements and behavior of the two sides of the
information interchange. For example, if a newspaper
page is updated at 5:30am every day and that a user
always read that page after 6:30am, an intelligent system
could pre-fetch the page at say, 6:OOam to reduce the
access time to the page.

In this paper, we focus on the techniques in designing
a level 4 Web tool. In particular, we study the problem of
constructing user profiles from user access patterns. We
also discuss issues in monitoring information sources.

We remark that a higher level Web tool does not
preclude the needs of lower level ones. In’fact, Web tools
at different levels should work together to achieve
effectiveness and efficiency. For example, a level 3 Web
tool that learns a user’s topics of interest can submit its
learning results as standing orders to a level 2 tool, such
as SIFT [14]. A level 2 tool could in turn use a level 1
search engine to find out new information matching the
standing orders.

The rest of the paper is organized as follows. Section 2
surveys some related studies on the information discovery
problem. Section 3 briefly summarizes the desired
features of a level 4 Web tool. In Section 4 we describe a
prototype of such a tool. The description includes the
prototype architecture and its underlying components. In
Section 5 we discuss an implementation of our prototype
system and the algorithms used in the learning agents (for
both users and information sources profiles). In Section 6,
we present the experiment result of using the prototype.
Finally, we conclude the paper in Section 6.

2. Related Work

There are a number of studies on the design of
intelligent Web tools. In this section we briefly mention
four such systems. Interested readers are referred to [2, 3,
4,6, 11 J for more details.

Client-based Searching Tools. De Bra and Post
modify Mosaic to incorporate a client-based search
engine. The system allows a user to specify a searching
goal in three different ways: keywords, regular expression
and external filters. Relevant documents are than ranked
according to the scores.

Web traversal employs the fish search algorithm [161:
afish is spawn when a page is visited. Given a starting
web page (a fish), the fish algorithm controls the number
of links to follow (and thus the pages to visit) according
to three parameters:

width - determines the fraction of the outgoing links
to be followed (the number of children a fish produces).

depth - determines how many links are followed
without finding relevant information before the direction
is given up (how long the fish can keep reproducing
without food).

rate - determines which transfer rate is considered
acceptable; outgoing links to sites with low transfer rates
are avoided.

DiffAgent. The DiffAgent [8] is an intelligent agent
developed by IndustryNet, in collaboration with Carnegie
Mellon University, for a news-clip service. A DiffAgent
monitors many sites on the Internet and notifies its
masters (IndustryNet users) if any changes of relevant
Web pages are detected. Besides automatic notification,
the agent also learns about its user’s interest by studying
what he reads. The agent scans each article the user read
for keywords and phrases. It also obtains feedback from
the user on the relevancy of the document (in terms of a
score). Such scores and keywords are used by the agent
to create a model of the user’s interests. The current
limitations of the DiffAgent are (1) it handles only news
articles but not other forms of information like WWW
documents; and (2) it monitors only a predefined set of
sites without the ability to explore new information
sources.

Webwatcher. Also developed at Carnegie Mellon
University, Webwatcher [2] is a tool that assists users by
interactively giving them navigation advises. A user starts
a Webwatcher session by specifying what information is
sought (e.g., publications, personal home-pages,
softwares, etc.). While the user is browsing through Web
pages, Webwatcher assesses the hypertext links (and the
documents referred to by the links) contained in the
pages. It then recommends those links that the system
guesses is promising in matching the goal of the session.
Recommended links are highlighted on the user’s display.
While Webwatcher waits for the user’s action, it pre-
fetches any Web pages it has just recommended, and
processes these pages to make further recommendations.
Webwatcher tracks the user’s response to its
recommendations, for example, whether the
recommendations are taken, and if so, which are taken.
User response is logged for further fine tuning of the
system’s performance.

In the current implementation of Webwatcher, link
recommendation is based on a simple function which
estimates the probability that a user will select a
particular link given the current page and goal.
Information about previous browsing paths are not
considered in the predictions. Unlike DiffAgent,
Webwatcher does not learn the user’s searching goals

19 1

automatically (which have to be specified at the beginning
of a session).

Letizia. Letizia [1 I] is an intelligent agent that works
with a conventional Web browser such as Mosaic or
Netscape. It tracks the user’s browsing behavior and tries
to infer the user’s goals. While the user is reading a page,
Letizia conducts a resource-limited search based on the
goals it deduced. Relevant pages found during the search
will be recommended to the user upon request. The goal
of Letizia is to automatically perform some of the Web
exploration on behalf of the user to anticipate future page
accesses.

3. System Features

Before we discuss the design and implementation
issues of our prototype level 4 Web tool, let us state some
of the desired features for which such a tool should
possess. To reiterate, the goal of the intelligent Web tool
is to discover the most updated and the most relevant
information to its user with the least amount of user effort
and system resources required. Here, we list some
desirable features of such tools:

The system should learn its user’s topics of interest
automatically. Several systems (e.g., [3, 8, 11, 151 have
already shown that such interests can be discovered by
examining the user’s browsing behavior and the contents
of the documents he has read. The system should also
learn about its user’s shift of interests over time. This
knowledge of user’s interests is used when the system is
navigating the Internet on behalf of the user to discover
relevant information

The system should learn its user’s access patterns and
information sources’ update patterns. A user may access
certain documents on a regular basis. For example, he
may read a newspaper front page at 9am and a financial
report at 6pm, every day. The system should learn about
when the documents are updated at the sources, and
retrieve in advance the latest version before the user
requests them. For pages that are updated at irregular
intervals (such as the price of a certain stock), the system
should intelligently monitor the source and notify the user
for new updates.

The system should make efficient use of network
resources. A system that performs an exhaustive search of
the whole Web, for example, may encounter many
interesting documents. However, it also creates excessive
traffics on the Internet and on the system’s network
connection, crippling the system. If Web search is
required, a goal-directed search is a better alternative than
exhaustive search in saving network bandwidth.
Searching goals of multiple users should be clusterized.

Similar goals should be batched together to reduce the
number of Web searches conducted.

The system should maintain a database and a full-text
index on retrieved documents. The database serves three
purposes: (1) it helps the user to organize and retrieve
previously read documents; (2) data mining techniques
[5] can be applied to the saved documents to discover the
user’s interest; and (3) the system can use the set of saved
documents as starting point for automatic navigation and
exploration.

The system should be compatible with most WWW
browsers. There should be no extra requirements for a
browser to communicate with the system in addition to
the standard H” protocol.

4. System Architecture

Figure 1. System architecture

In this section we give an overview of our prototype
system. Figure 1 shows the system architecture and
components. Let us take a guided tour of the system
following the flow of information (indicated by the
numbers shown beside the major components).

WWW Browsers (1). A user accesses the Internet
through a conventional Web browser such as Netscape or
Mosaic. If the user chooses to use our system, he simply
instructs the browser to connect to a Proxy Server
maintained by the system. Since almost all modern
browsers are able to use a proxy with simple
configuration, users of the system are free to pick their
favorite browsers as the interface. To start a session, a
user fills in a special HTTP form and send it to the Proxy
identifying himself. The browser window will then split
into two frames (see Figure 2). The upper frame is the
System Frame which consists of a number of buttons.
These buttons are hypertext links referring to various
functions provided by the system. For example, the first

192

button, when followed, instructs the system to make
suggestions on new information sources and interesting
Web pages; the second button invokes the search function
from the Document Manger (to search the Document
Database for documents containing certain keywords).
The lower frame displays the normal documents
requested by the users. During a session, all HTTP
requests go through the Proxy. This mechanism allows the
system to track every single document read by the user.
We remark that the user can maintain his privacy by
quitting the session at any time. The Proxy will be
bypassed and further HTTP requests will not be logged
after that.

Figure 2. The system and document Frames.

Proxy (2). Users communicate with the system via a
WWW proxy server [12]. The Proxy is a special HTTP
server that lies between a browser and the Internet. When
a user issues a HTTP request, the request is forwarded to
the Proxy, which fetches the desired Web document on
behave of the user. The retrieved page is then deposited
into the Document Database through the Document
Manager (to be discussed shortly).

The Proxy serves two important functions to the
system. First, it caches the documents retrieved by the
users into the Document Database (It also caches
documents that are retrieved by the system during
automatic exploration of the Web). This helps reducing
network traffics when the same document is requested
repeatedly by the When submitted a HTTP request, the
Proxy will first check with the Document Manager and
see if the desired document is already cached at the
Document Database. If so, the local copy is returned to
the user; else, the Internet is accessed. Second, the Proxy
knows every document read by every user. This allows
high-level logging of user information be performed. In
the prototype each user request generates a log record,

which consists of the user’s ID, the UlU requested, the
time of the request, and the document retrieved. All log
records are stored in the Access Log database.
Information kept in the log is used by the Learning Agent
to reconstruct the browsing histories of the users, such as
the paths of page accesses, time-related access patterns,
statistical summaries of the pages read, and the keywords
searched by the users against the Document Database.
We will study how the Learning Agent analyzes this
information to deduce the kinds of information sought by
the users in Section 5.

Figure 3. The graphical user interface of the
Document Manager.

Document Manager (3). The Document Manager is
the interface for accessing the Document Database. It is
responsible for storing and retrieving documents
deposited by the system (from both user-initiated and
system-initiated HTTP requests). The hypertext
structures of the saved documents are preserved by
reconstructing some of the links. For example, if a page
A contains a hypertext link to another page B. When the
pages A and B are retrieved and stored as local copies A’
and B’ respectively in the database, the link in the local
page A’ will be modified to point to the local copy B’.
Links that refer to non-local pages are not changed.
Besides providing a persistent storage for the documents,
the database also maintains a full-text index on the
documents.

Figure 3 shows the graphical user interface of the
Document Manager. Three windows on the foreground,
each designed to handle a unique function of the
Document Manager, are shown. The Document-base
Navigator window allows a user to manipulate and
navigate the Document Database. For example, a user can
organize collections of documents into folders. He can
also browse the documents by simply clicking on their

193

UIUs. When the “Crawl” button is depressed, the
Crawler window (lower right one) pops up. This window
provides an interface for the user to retrieve a batch of
documents and the hypertext links among them. This
function requires the user to specify a few parameter
values such as the URL of a starting page and the depth of
the traversal. In the example shown in Figure 3, all pages
that are within 2 hypertext links away from the Hong
Kong University Home Page (http://www.hku.w are
retrieved. Finally, the Document Manager provides a
searching facility (upper right window in the figure). A
user can conduct a keyword search on the Document
Database. Both conjunctive and disjunctive queries are
allowed.

The Document Manager provides the users with two
spaces of hypertext navigation: the Dodument Database
and the World Wide Web. The Document Database
provides a relatively small set of documents that are of
special interest to the users. The WWW, on the other
hand, is a jungle of exciting and useful information
waiting for a hunter. When a user discovers interesting
documents from WWW explorations, he can move them
to the Document Database for future references without
having to re-locate them when they are needed.

The Document Manager is written in the Java language
[7] except that indexing and keyword searches are
implemented using the Wide Area Information Servers
(WAIS) software [9].

Learning Agent (4). Tine Learning Agent discovers
user access patterns and topics of interest by analyzing the
access log created by the Proxy. It generates a user profile
for each user. A profile consists of two types of
information:

Information seeking goals. A goal is a set of weighted
keywords and phrases that describes a topic that is
interesting to the user. For example, the goal:
{“Basketball, 0.7”, “Chicago-Bulls, 0.4”) shows that the
user is interested in information about “basketball” in
general (with a weight of 0.7), and the term “Chicago-
Bulls” in particular (with a weight of 0.4). These
keywords are used to drive the Search Engine for
information discovery.

Time-related access patterns. Some documents are
requested by one or more users on a regular basis, e.g.,
newspaper, stock price quotes. A time-related access
pattern records the period and location of a periodically
accessed document. This information is used by the
Monitor Agent for pre-fetching documents.

We will discuss in details the algorithms used in
generating the user profiles in Section 5.

Search Engine (5). The Search Engine performs
robot-based traversal about the Web. Interesting
documents encountered during Web exploration is stored

and indexed in the Document Database. In the prototype,
the Search Engine is implemented as a goal-directed
crawler, employing an algorithm similar to the fish-search
algorithm. User goals, generated by the Learning Agent
are used to drive the crawler, which tries to avoid visiting
Web sites and their pages that are irrelevant to the goals.
It could also search the Document Database with the user
goals to get a set of starting pages for further exploration.

Monitor Agent (6). The Monitor Agent monitors
specific sites and Web pages that are known to contain
interesting documents. It serves two functions. First,
users can indicate that certain documents should be kept
up-to-date. For this type of documents, the Monitor
Agent periodically accesses them and learn about the
sources’ update patterns (like how
updated, and when). With this knowledge, the Monitor
Agent schedules future retrieval of the pages and keeps
them fresh in the Document Database. The refresh
schedule of a document is determined by two factors:
1.The maximum staleness (i.e., how out of date a page

can be) that is acceptable by the user.
2.Any regularity in the source’s update pattern.

As an example, if a source updates a particular page
once every hour, and that the user requires that the page
be not older than the latest version by 30 minutes. The
Agent can refresh the page by the hour. On the other
hand, if the page is being updated irregularly, the Agent
will need to refresh the page once every 30 minutes.

The second function of the Monitor Agent is to
schedule pre-fetches. As we have mentioned, part of the
user profiles created by the Learning Agent contains
information about pages that are regularly accessed by
the users. The Monitor Agent tries to predict when a user
will access a particular page and pre-fetches it for the
user, Successful pre-fetches can greatly reduce the
response time of retrieving the documents. As incorrect
predictions imply useless retrievals and wasted network
bandwidth, only those pages whose access patterns are
highly predictable are pre-fetched.

Suggestion Agent (7). Useful and new documents
discovered by the Search Engine and the Monitor Agent
are stored in the Document Database and for which the
Suggestion Agent is notified. The Suggestion Agent ranks
the newly found documents and assigns scores to them
according to the extent that they match the user’s profiles.
A user, when looking for new information, can submit a
form to the Suggestion Agent through the Proxy
requesting document recommendation. The form asks the
user for keywords that describe a topic. The Suggestion
Agent then composes a list describing a set of relevant
new pages found by the Search Engine and the Monitor
Agent to the user. Documents in the list are ranked
according to the scores assigned to them by the

194

http://www.hku.w

Raw Term AdjustedTerm User
Vectors

User Access

_____)
Discovery ____,

Figure 4. Transforming user access log to topics of interest.

Suggestion Agent, and the degree that they match the user
supplied keywords. The description includes their URLs,
titles, and the first 10 lines of the pages. Documents
recommended can be subsequently retrieved from the
Document Database. The Agent will also learn from the
user’s feedback (such as, which recommendations are
taken) to improve the quality of future recommendations.

5. Learning and monitoring

The Learning Agent and the Monitor Agent are two
important components of a level 4 Web tool. On the client
side, the Learning Agent is capable of identifying the
access patterns from the users’ access logs, while on the
server side, it can discover the update patterns of the web
pages collected. The Monitor Agent serves the clients by
monitor adaptively the updates on the web pages that
users are interested in. The information sources with
documents matching the access patterns discovered by the
Learning Agent form a domain of monitoring for the
Monitor Agent. In this section, we will discuss the
approach and the algorithms adopted in our prototype
system in the implementation of the Learning and
Monitor Agents.

5.1 Discovery of Topics of Interests
We first discuss the simple case of processing the

access log of a single user. Subsequently, we will explain
how the topics from multiple users can be discovered.

The mechanism to discover the topics of interest is a 3-
phase process (Figure 4). The input to the learning agent
of the discovery process is the user’s access log which
consists mainly of a sequence of URLs. We use the
CERN httpd as the proxy server to capture the log
entries. In the first phase, the document of every URL
entry in the log is retrieved and processed to produce a
term vector of (keyword, weight) pairs. Entries in the log
which do not refer to textual documents (e.g., images,
movies, Java applets) are removed before the generation
of the term vectors. For example, a term vector including
pairs such as (MA, 0.5), and (basketball, 0.3) may be
extracted from a sport document. A modified version of

TFIDF [IO] is used to compute the weight of the
keywords.

The term vectors produced in phase-one could be used
to discover the user’s topics directly. However, there
could be a significant amount of noise in the vectors.
Firstly, some Web pages may not be supplying any
information to the user, but are visited simply because
they provide linkages to other documents. The learning
agent has to determine the relevancy of the documents
and some particular keywords. Some heuristics have been
designed for this purpose. For example, if a Web page
has a large number of URL’s, it is very likely a directory
page, and its relevancy to the discovery should be
decreased. An access graph which captures the forward
and backward browsing relationship between Web pages
is compiled from the access log entries to support the
identification of access paths. An access path starts from
the user’s home page and terminates at a backward
browsing movement. Once the access paths are
determined, the documents near the end of an access path
can be determined and they have a much higher chance of
containing some relevant information. Also, the W ’ s
that lead to the highly relevant documents may contain
keywords that are very close to the information domain
that the user wishes to browse. Weight enhancement are
done on the relevant documents and keywords, weight
decrement is performed on the irrelevant Web pages, and
directory pages which have a large number of URL’s
exceeding a threshold are removed. The output of the
second phase is a sequence of term vectors with adjusted
weights.

The last phase of the discovery is to produce the
topics of interests. The clustering technique is being used
to form the topics. The output are a small number of topic
vectors truncated to a small predefined length, such as
(NBA, basketball, stadium, arena). Note that this set of
keywords represent an area of interest of a user. In fact,
these keywords can be input into a goal-directed search
engine to retrieve documents that have a high chance of
matching to the user’s browsing habit.

The clustering is based on the similarity between the
term vectors. The similarity s(v1 , v2) between two
term vectors v, and v2 is given by the inner product of VI

195

and v2. The distance s(v1 , C2) between a term vector v1
and a cluster C2 is given by s(VI , c2), where c2 is the
centroid of C2 . The centroid of a cluster is a term vector
which is the average of all the vectors in the cluster.
Adjusted term vectors from phase-two are clustered with
respect to a similarity threshold. All term vectors in a
cluster have a similarity from its centroid greater than a
threshold. If the number of clusters found are too large,
the clustering will be repeated with a smaller similarity
threshold until the number is small enough. The last step
in this phase is to convert the clusters to topics. Since the
term vectors in a cluster are very close to its centroid, it is
reasonable to use the centroid to represent all the term
vectors in a cluster in deriving the topic. However, a
centroid in general may have too many keywords and
many of them may have relatively 'small weights. A
further selection of keywords from those in a centroid is
performed on every cluster. The centroids can be
truncated with respect to a predefined length threshold or
the keywords in it can be filtered against a weight
percentage threshold. At the end, the output will be a
small number of topic vectors such as (NBA, basketball,
Chicago-Bulls), (NHL, hockey, Canada, Maple-Leaf).

In the following, an example is presented to illustrate
the above algorithm in details. Figure 5 is a document
recorded in our access log. In processing this document to
extra the term vector, not every keyword in the document
are regarded to have the same importance. The HTML tag
are used to modify the weight of the keywords. For
example, those in the title with the tag <TITLE> will
have their weights increased, while those in the header
under the tag <H1> will received a smaller adjustment, all
other keywords in different sections of the document are
modified in a similar fashion. Once the keywords are
extracted, their weights are calculated by using the TFTDF
method. The resulted term vector of this document is
((shell, 0.2994), (bash, 0.2425), (bourne, 0.2379),).

<HEAD>
<TITLE>Bourne Again SHell (bash)</TITLE>
< /HEAD>
<BODY>
<Hl>Bourne Again SHell (<SAMP>=</SAMP>)</Hl>

<P>This is a public domain shell written by the
Free
Software Foundation under their GNU initiative.
Ultimately it is intended to be a full
implementation of the IEEE Posix Shell and Tools
specification. This shell is widely used within
the academic commnity.</P>

<P>= provides all the interactive features of
the C shell
(csh) and the Korn shell (ksh). Its programming
language is compatible with the Bourne shell
(sh) .< /P>

<P>If you use the Bourne shell (sh) for

shell
programming consider using bash as your
complete shell environment.</P>

Su"ary of
features
< /UL>

</BODY>
< / HTML>

Figure 5. A sample document. Underlined words
are those appear in the term vector.

The above term vector, together with other term
vectors extracted from the documents in the access log
become a domain for the discovery of areas of interest.
These vectors are input into the learning algorithm to
produce clusters. The following is a cluster generated by
the learning algorithm. The similarity threshold used in
this example is 0.1. We present the URLs of the
documents in the cluster instead of their term vectors.

http://theory.uwinnipeg.ca/unixfiles/unixheip/shell-o
view2.5.html
http://www.fnal.gov/cd/UNIX/unixhelp/environment-
exmp-bash.hm1
http://www.chernikeeff.co.uk/data/doc/lightstr/r2~lh
p-oslgnubash. htm
http://www.lib.ox.ac.uk/intemet/news/faq/by-categor
y .unix-faq.shell.htm1
http://www.ilap.comllJNIXhelp1.3/Pages/shell/ovew2
.2.html
The centroid of the above cluster calculated from its

term vector is ((bash, 0.2881), (shell, 0.2792), (bourne,
0.2312), (unix, 0.1 138), (csh, 0.1024), (2-shell, 0.08673),
(tcsh, 0.03126), ...).

Lastly keywords in the centroid of the cluster with
small weight are truncated to produce the topic vector
((bash, 0.2881), (shell, 0.2792), (bourne, 0.2312)).

We have described the algorithm to discover the topic
vectors from the log of a single user. The same algorithm
can be applied to a log recording the access behavior of
multiple users. The topic vectors discovered would be the
common areas of interests. If these topic vectors are used
by a goal-directed search engine, the retrieved documents
would match the common interests of these users. This
approach could save a significant percentage of the
communication bandwidth required if the search are
performed independently by individual users with their
own topic vectors.

5.2 Discovery and Monitoring of Hot Pages

Besides discovering the areas of interests, the
prototype system also support the discovery of "hot"

196

http://theory.uwinnipeg.ca/unixfiles/unixheip/shell-o
http://www.fnal.gov/cd/UNIX/unixhelp/environment
http://www.lib.ox.ac.uk/intemet/news/faq/by-categor
http://www.ilap.comllJNIXhelp1.3/Pages/shell/ovew2

pages. Many users have their favorite Web pages and
these documents usually are updated frequently. The hot
pages can be discovered from the users’ access log by
checking their occurrences against a threshold. Similar to
the areas of interest discovered, the hot pages are also
announced to the Monitor Agent so that they can be
retrieved in advance from the information sources
whenever they are updated.

In order to retrieve the hot pages in a timely fashion,
we propose to use an adaptive monitoring algorithm in the
prototype system. Initially, the Monitor Agent polls a hot
page with a fixed time period to request its last-updated-
date in order to determine whether the page has been
updated and hence should be retrieved again. When the
page’s update frequency starts to change, the agent will
adjust its polling frequency according’ to its update
frequency. In the prototype, the simple strategy of using
the period between the last two updates to determine the
time of the next polling is adopted.

The Learning Agent can provide the system with the
users’ areas of interest and the hot pages. The Monitor
Agent can adaptively determine when these “useful” and
“hot” documents should be checked for updates.
Together, these two agents provide an integrated and
intelligent service to bring to the customers the documents
and information that they need.

User
0
1

6. Experimental Results

of term vectors User # of term vectors
364 5 151
299 6 213

The prototype system is implemented on an AIX
system on an RS/6000 workstation of model 410. The
proxy server is a CERN httpd. We have collected the user
access logs from 9 volunteers for the duration of one
month. The logs are then input to the Learning Agent to
compute the areas of interest. Some users in the test
period were quite active, while some of them were not.
Table 1 shows the number of unique term vectors
generated for each users.

2
3
A

365 7 25
642 8 51 1
1W

Table 1. Number of URLs accessed by each user.

One of the major step in the discovery of the users’
topics of interest is to identify the clusters. The choice of
the similarity threshold has a decisive effect in the
formation of the clusters. A smaller threshold would
facilitate the formation of larger clusters, but they may not
reflect a very focusing topic. A large threshold would
produce clusters which are more focusing, but also

decrease the cluster sizes significantly. Figure 6 plots the
number of clusters discovered against different threshold
values for all the nine users in our experiment. When the
threshold equals to 0, any two term vectors who have
some overlapping keywords would be treated as similar.
Therefore, the least number of clusters will be generated
in that case. We have observed that the number of
clusters increases faster when the threshold is at the end
of our test range.

User o I -
900
800

(D 700
CI 8 600
9 500
t 400
6 300
* 200

100
0

User
User
User
User
User
User
User

-
-
-
-
- -

0 v) 2 2 2 [-User81
2 0

Threshold

Figure 6. Number of clusters against different
threshold values.

In Table 2, we have recorded the clustering results of
all the users with respect to different thresholds (T is the
threshold value). For each user, the first row (Max) is the
size of the largest cluster with respect to a particular
threshold. The second row (Mean) is the average size of
all the clusters. The third row is the number of clusters
generated.
Table 2. Various statistics against the choice of
threshold value.

It is also informative to investigate the distribution of
the clusters for different thresholds. Figures 7, 8 and 9 are
the distributions of the clusters against their sizes and
similarity thresholds. User 7 has the least number of
clusters, its distribution is in Figure 7. The clustering can
only be detected when the threshold is below 0.1. The
distribution of user 2 is in Figure 8. This user has the
largest number of documents, the clustering effect can be
seen on all the threshold values. However, the effect is
more visible when the threshold is around 0.1 or less.
User 3 is an average user is our experiment, the number
of documents in his log is about the average. The
distribution of the clusters of this user is in Figure 8. In
fact, among all the users in our experiment, it can be seen
that the cluster distributions are more visible when the
threshold is less than or equal to 0.1.

197

7. Discussion and conclusion
The impact of information superhighway to

information retrieval is not simply the introduction of just
another new technology. It has brought in a revolutionary
change in the distribution and collection of information.
Very soon, Intemet will be connecting people in a large
percentage of the households in the world. Everyone
would like to be able to access every piece of information
in the Intemet easily and efficiently. However, this will
bring in an unimaginably high bandwidth requirement
and a very challenging management problem. These
problems can be solved by building intelligent agents to
provide sophisticated and smart services. The Web tools
proposed in this paper is an attempt in this direction. In
this study, we have provided a framework to classify
intelligent Web tools into 5 levels (levels 0 - 4). The
architecture of a system which has integrated a number of
level 4 Web tools has been described. The Web tools can
discover the users’ accessing behavior and bring in
documents that users are anticipating. More importantly,
resources for the discovery and retrieval can be shared by
multiple users and be performed only when it is necessary

=o.o Threshold

Cluster Size

Figure 7. Cluster size distribution of user 7.

198

as suggested by the Monitor Agent. It also provides a
Suggestion Agent to advice the users on the documents
that they may need without browsing through the Internet
blindly and hence draining resource. We also have built a
Document Database in the system to store those
documents that the users have a high chance to access,
and these documents are being updated in an efficient
way with the help of the Monitor Agent.

To prove its feasibility, we have built a prototype
system to demonstrate the ideas proposed in this study.
An algorithm for mining the users’ topic vectors from
their access logs has been implemented, the result shows
that the areas of interests discovered are valid and
meaningful. An adaptive algorithm for the Monitor Agent
to monitor the update frequency of the hot pages have
also been proposed.

In the future, more learning capability will be
introduced into the Learning Agent. It is very likely that
there are “hot page groups” and “hot pages access
sequences”, and the Learning Agent can be enhanced to
support these types of discovery. Another interesting area
for future study is the structure of the Document
Database. Initially, it is primary a hypermedia structure. It
may not be the best structure for the users to find their
required information. A relational type structure may
provide a more effective structure to handle users’
queries. Furthermore, the indices into the documents
could be adjusted dynamically according to the
information collected. For example, the indices to
collections of videos and text documents could be
different.

7. References
[I] Aka Vista. http://altavista.digital.com.

[2] Armstrong et al. Webwatcher: A Learning Apprentice for
the World Wide Web. Working Notes of the AAAI Spring
Symp.: Information Gathering from Heterogeneous, Distributed
Environments. AAAI Press, 1995, pp.6- 12.

[3] M. Balabanovic and Y. Shoham. Learning Information
Retrieval Agents: Experiments with Automated Web Browsing.
Proceedings of the AAAI Spring Symposium on Information
Gathering from Heterogenous, Distributed Resources, Stanford,
CA, March 1995.

[4] De Bra and R.D.J. Post. Information retrieval in the
World-Wide Web: making client-based searching feasible.
Proceedings of the First International World- Wide Web
Conference, R. Cailliau, 0. Nierstrasz, M. Ruggier (eds.),
Geneva; 1994.

16th International Conference on Distributed Computing
Systems, Hong Kong, May, 1996, pp385-392.

[6] 0. Etzioni and D.S. Weld. Intelligent Agents on the
Internet: Fact, Fiction, and Forecast. IEEE Expert, Vol. 10, No.
4, August, 1995, pp.44-49.

[7] The Java Language Overview. Available via
http://java.sun.com.

[8] D.H. Jones and D. Navin-Chandra. IndustryNet: A Model
for Commerce on the World Wide Web. IEEE Expert, October
1995, pp.54-59.

[9] B. Kahle and A. Medlar. An Information system for
corporate users: Wide Area Information Servers. Connexions -
The Interoperability Report, 5(11): 2-9, 1991.
M. Koster. Robots in the Web: threat or treat? ConneXions,
Volume 9, No. 4, April 1995.

[IO] H. Lieberman. Letizia: An Agent that Assists Web
Browsing. lntemational Joint Conference on Artijicial
Intelligence, 1995.

[I l l A. Luotonen and K. Altis. World-Wide Web Proxies.
Proceedings of the First Intemational World- Wide Web
Conference, R. Cailliau, 0. Nierstrasz, M. Ruggier (eds.),
Geneva, 1994.

[12] G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, Reading, MA. 1989.

[I31 T.W. Yan and H.Garcia-Molina. SIFT-A Tool for Wide-
Area Information Dissemination. Proceedings of the 1995
USENIX Technical Conference, 1995, pp. 177- I 86.

[14] T.W. Yan et. al. From User Access Pattems to Dynamic
Hypertext Linking. Proceedings of the Fifth Intemational
World- Wide Web Conference, Pans, France, May 1996.

[153 http://www.win.tue.~2L670/dynamiclfishsearch.html.

[5] M. S. Chen, J.S. Park and P.S. Yu. Data Mining for Path
Traversal Patterns in a Web Environment. Proceedings of the

199

http://altavista.digital.com
http://java.sun.com

