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Abstract 

O S T ‘  

Frameworks for parallel computing have recently become popular as a means for 
preserving parallel algorithms as reusable components. Frameworks for parallel 
computing in general, and POET in particular, focus on finding ways to orchestrate and 
facilitate cooperation between components that implement the parallel algorithms. 
Since performance is a key requirement for POET applications, CORBA or CORBA-like 
systems are eschewed for a SPMD message-passing architecture common to the world 
of distributed-parallel computing. Though the system is written in C++ for portability, 
the behavior of POET is more like a classical framework, such as Smalltalk. POET 
seeks to be a general platform for scientific parallel algorithm components which can be 
modified, linked, “mixed and matched” to a user’s specification. The purpose of this 
work is to identify a means for parallel code reuse and to make parallel computing more 
accessible to scientists whose expertise is outside the field of parallel computing. 
The POET framework provides two things: 1) an object model for parallel components 
that allows cooperation without being restrictive; 2) services that allow components to 
access and manage user data and message-passing facilities, etc. This work has evolved 
through application of a series of “real” distributed-parallel scientific problems. The 
paper focuses on what is required for parallel components to cooperate and at the same 
time remain “black-boxes” that users can drop into the frame without having to know 
the exquisite details of message-passing, data layout, etc. The paper walks through a 
specific example of a chemically reacting flow application. The example is implemented 
in POET and we identify component cooperation, usability and reusability in an 
anecdotal fashion. The following conclusions are drawn: 

1) Specifically, POET components not only execute their assigned tasks, but provide 
data dependency information allowing components to cooperate on data decomposed 
across distributed machines. 

2) Generally, frameworks for parallel scientific computing have an advantage over 
parallel tools using a more imperative style of programming like compilers or 
subroutine libraries. Because frameworks are “aware” of components they contain, 
information can be gathered ahead of actual execution of the component task and 
more sophisticated latency for bandwidth tradeoffs can be made. 
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1. Why Frameworks for Parallel Computing? 
Frameworks for parallel computing have recently become popular as a potential way to 
encapsulate and preserve parallel numerical algorithms. Because parallel numerics are 
orders-of-magnitude more complex and machine dependent than their serial 
counterparts, the motivation for preserving working implementations is strong. 
Currently, most practitioners of parallel computations write all of the component 
numerical implementations customized for each application. If a new application is to 
be written then all of the component numerical operations must be rewritten to suit the 
new application. In the past scientific subroutine libraries, written in, and for, use in 
FORTRAN, were able to provide the functionality necessary to encapsulate numerical 
algorithms for serial machines. For a variety of reasons, this familiar model for 
computational code preservation will not do for parallel computing: 

1. The data needed by the subroutine is decomposed on the participating processors. 
All of the data cannot be passed through the argument list, as on a serial machine. 
This means the user must be cognizant of the data decomposition and provide this 
information to the routine. Minimally, the user may not attempt to access data 
present on another processor. 

2. The subroutine cannot “tell” the system what data has to be present on a processor 
in order for it to perform its function. “Asking“ for the data after the subroutine is 
called is usually inefficient, especially on distributed systems. 

3. Because parallel computation is essentially real-time computing and is message- 
passing event driven, the user can either unwittingly stall event handling or, at 
least, must be made aware of the details going on below his/her code. 

To paraphrase Albert Einstein, code reuse for parallel computing should be as simple as 
possible but not simpler. A model of parallel computing that makes a parallel machine 
look serial or casts the application as a sequence of subroutine calls is too simple to put 
the unnecessary details of processor/data decomposition out of the user’s way. 

1. I Defining a Framework 
The word framework is so overloaded to mean so many different things that it often 
conveys only a vague idea of a software “system.” For the purposes of this work, 
framework will be defined as a system that provides services to components. The 
components are created via a template designed for cooperation among themselves and 
the framework system. Frameworks have long been accepted in areas where the user 
does not want to acquire the knowledge necessary to be in total control of the software 
system. A framework provides an environment that “takes care” of the top-level and 
provides a frame within which user-modified components can be placed. In addition to 
this environment, the framework typically will come with an assortment of pre-made 
components with which the user can base his application. Examples of frameworks are 
GUI’s: X Window System Toolkit, and programming languages: Smalltalk and Visual 
Basic. Note that a framework need not be object-oriented: the X toolkit and Smalltalk 
are object-oriented, Visual BasicTM is not. The key to each of these frameworks is that 
components nested in the frame are easily modifiable by the user and new components 
are easy to create from old components or from scratch. [An exception: Visual BasicTM 
actually does not have a way, within the language, of creating new components.] 
An application implemented in a framework consists of the framework itself, providing 
predefined services to the components, and a user-chosen set of components linked 
together by a means provided by the framework. There are two distinct phases to a 
frame-based application: 
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1. Theframingphuse: in which the components are selected and instantiated and the 
links between them created. It is at this point that the user creates or modifies 
components that will specialize their application. This phase can be thought of as 
“programming“ the framework: like creating a script. 

2. The executionphase: when control is handed over to the framework itself which in 
turn drives the framed components to do what they are framed to do. 

The framing and execution phases may often be mixed together, some components may 
as part of their execution do some additional framing to be executed later, but the two 
phases are distinct and is what gives frameworks their distinctive advantage to parallel 
computing. As opposed to a standard imperitive style of computing, frameworks are to 
a greater or lesser degreee “aware” of what its constituent components are going to do 
before they are asked to do it. There is no opportunity for the user to stall message- 
passing events. The framework system lives along side the components during 
execution so that data dependencies can be queried and re-queried. In Section 4 an 
example will present that shows how components for parallel computing describe their 
data dependencies to the managing framework before an computing takes place. 

1.2 Review of Existing Frameworks for Parallel Computing 
POOMAl (Parallel Object Oriented Methods and Applications) and POET2 (Parallel 
Object-oriented Environment and Toolkit) are examples of parallel frameworks from Los 
Alamos National Laboratory and Sandia National Laboratories respectively. Currently, 
these frameworks are being merged so as to share components. The discussion here is 
general enough to apply to both of these systems, but the author’s experience and 
familiarity with POET will necessitate its use for the examples. While sharing the same 
philosophy, POET seeks to be a general framework for parallel algorithms, POOMA’s 
approach is more toward specific applications. Though both packages are written in 
C++, POOMA tends to exploit and rely more heavily on the C++ concepts of operator 
overloading and templates. POET looks more like a “classic” framework in the spirit of 
Smalltalk. Both frameworks are oriented toward building applications in a modular 
fashion for code reuse. While POOMA is oriented toward particular applications 
implemented on parallel machinery, POET is oriented toward parallel algorithm 
implementations that are important to a variety of applications. POOMA focuses on 
numerical component reuse across problem domains. It can be said, for example, that 
POOMA has a component for Molecular Dynamics (MD) and POET has a component for 
equation solving, while it is simultaneously true that an MD application is implemented 
in POET and POOMA contains equation solvers for the work it needs to do. Though 
POET and POOMA are the closest to objective of this work there are related parallel 
computing tools that are useful to mention here. 
The Portable, Extensible Toolkit for Scientific Computation3 (PETSc) is a software library 
written at Argonne National Laboratory for the solution of partial differential equations 
on high-performance computers. A s  a complete rewrite of previous versions, PETSc 2.0 
is written in ANSI C, employs the MPI standard for d message-passing 
communication, and is usable from Fortran, C, and C++. PETSc 2.0 incorporates a 
hierarchical set of abstractions in the form of software modules (e.g., matrices, linear 
and nonlinear solvers, time steppers, etc.), which are organized via encapsulation and 

1 To appear in Parallel Programming in C++, MIT Press. 
2 http: / /glass-slipper.ca. sandia.gov/ -rob /poet. 
3 Satish Balay, William Gropp, Lois Curfinan McInnes, and Barry Smith, PETSc 2.0 Users Manual, Technical 
Report ANL-95/11, Argonne National Laboratory, November, 1995. 
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polymorphism. In contrast to the framework approach of POOMA and POET, PETSc 
application programs are procedural based, where the user interface is a uniform set of 
routine calls for each library component. PETSc provides many facilities related to 
linear algebra and matrix manipulation and, similarly to POET, seeks to provide a 
platform for parallel algorithms. 
Legion4 is an 00 framework that orchestrates parallel computing on a wide-area 
network, providing an object model for scheduling (as a superset of load balancing), 
object naming and location, object security, etc., on world-wide metacomputer. Legion 
does not concern itself with parallel algorithms and application domains as do the other 
frameworks mentioned above. It is probably most similar to a COMA (Common Object 
Request Broker Architecture) but built with high-performance computing in mind. 
Though Legion is based on C++, its object model, like POET, is similar to a “classicaln 
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Figure 1 
Diagram of the important services the POET Framework provides. The services are 
available through a single C++ class called partitionMap. Data of arbitrary type and 
dimension are contained in the data Cell’s. Not all Cell‘s will be available on all 
processors. The partitionTable contains the decomposition relating which cells are on 
what processor. The partitionTable contains procCellPair entries, identifying which 
cell exists on which processor. Every component can expect that each processor has 
an up-to-date version of the partitionTable. The partitionMap also provides 
communication and processor information. 

SmallTalk-like framework. Legion is complementary to the other frameworks to the 
extent that any of PetSC, POET, and POOMA could themselves be “framed” inside of 
Legion, exploiting Legion services to facilitate computing in the large. 

2. The POET Framework 
Though the purpose of this paper is to make the case for parallel computing frameworks 
in general, what follows is a sketch of the POET framework as an example. The purpose 
of POET is to encapsulate parallel algorithms similar to the way scientific subroutine 

4 Legion: The Next Log‘cal Step Toward a Nationwide Virtual Computer, Andrew S .  Grimshaw, William A. Wulf, 
James C. French, Alfred C. Weaver, Paul F. Reynolds Jr., Roc. of High Performance Distributed Computing 
5, Aug. 5, 1996. 
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libraries are used in serial architectures. As was mentioned, a framework must provide 
services to constituent components. As part of the design these components must also 
follow a “template” interface to interact with the framework services and peer 
components. For object-oriented frameworks, like POET, this translates into an object 
model for the components to be framed. The user is expected to instantiate components 
and link them together using this object model to create a parallel application. The 
POET model is entirely SPMD, though it is useful to identify a “host” and ”worker” 
processors for most applications. Many pre-made POET components support this 
paradigm. As opposed to other parallel tool-kits, POET makes no attempt to hide the 
fact that the application is running on a parallel machine. 

2.1 POET Services 
In POET the services are provided by the partitionMap5 class (see Figure 1). This class 
packages user-defined data into “cells.” A Cell is the smallest division of data with 
which POET will concern itself. Cell’s can contain arbitrary amounts and types of data 
and represent the smallest granularity of the problem. The Cell should contain enough 
data such that the work needed to process the data is large enough to amortize the 
framework overhead. This has to be defined by the user, who is the only expert on what 
their code is doing. CelZ‘s are then distributed to various processors either by means of 
a default decomposition or by components particularized by the user for the user’s task. 
Objects are particularized by the use of C++ virtual functions. The partitionhfap also 
contains information about which CelZ’s are on what processor (partitionTabZe) and the 
means to communicate CelZ‘s or parts of CelZ‘s to other processors that require data 
contained in them (proc). 

exec(void); 

createOverlap(partitionTab1e *); 

Figure 2 
The sExec is an object, signifled by a rectangle, that is expected to operate on the 
data. Everything a POET application does will be done by a derived sExec 
overloading the two methods the sExec class has: exec(uoid) and 
createOuerlaplpartitionTable*). sExec inherits Exec to provide information to the 
framework system about what data is needed for the component to do its work. 
The createOverlap method adds entries to the partitionTable identifying data that 
has to be on a particular processor. 

2.2 POET Object Model 
In addition to these services, the framework provides various pre-made components that 
act on the data and provide ways for user code to act on the data. The fundamental 
component in POEYT is called an UExec.n This is a pure virtual class that has one 
method on it called “exec(uoid),” which means: “do something; its your turn.” All 
components that form the application, and participate in the framework, will inherit 
from this class and overload the exec() method. Because components almost always 
operate on user data, information must be provided by the Exec about the type and 
quantity of data needed to perform its function. Indeed, if the framework could access 

5 Italics denote the names of actual POET data types. 
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only this exec0 method alone, then POET could do nothing more than the standard 
imperative scientific subroutine libraries of the past. A derived Exec is provided for this 
purpose called sExec; so-named because it associates or “scopes” cells or parts of cells 
to perform its task. It adds a new virtual method to be overridden called creuteOverZup. 
This method examines the given purtitionTubZe and adds entries needed by the sExec to 
perform its exec0 task. The sExec is the fundamental building block for POET 
applications. 

Another important kind of sExec is one that exists to message and maintain other 
sExec’s. A common example is the buZZetinBourdExec, which maintains an array of 
sExec’s and executes them in sequence when the exec0 method is called (see Figure 3). 
Other useful pre-made components include an arbitrary dimensional ceZZPkgExec for 
processing user-defined callbacks over a stencil of Cells and an equation solver (biCG 
with various preconditioners). Nested sequences of these Exec’s will be created during 
the framing phase of the application. During the framing phase, the user is expected to 
instantiate selected sExec components. These can be modified by replacing constituent 
objects derived from base classes used by the sExec or by inheriting directly off of a 
particular kind of sExec, or both. The execution phase begins by simply calling the top- 
level object’s exec method: this object is usually a container of sExec’s such as 
buZletinBoardExec. 

Figure 3 
BuIletinBoardExec’s are a derived from sExec and serve as a 
container. Rectangles denote POET tool-kit code and ovals 
denote user code add-on. This particular bulletinBoard, 
bulZetinBoardLmop, tests a user predicate before each iteration 
over it’s constituents. The bulletinBoard also manages the 
data dependency of each sExec through the createOverlap 
method on its contained sExec’s. User-supplied callbacks 
(indicated by the ovals) particularize the sExec’s function to 
user’s task. Most types of sExec’s have these callbacks and, in 
this case, so does the predicate object, ZoopPredicate. The block 
represented here is executed on all processors simultaneously 
in a SPMD fashion. No synchronizations are made by the 
framework, though it is likely that the constituent sExec’s will. 

As the name implies, the buZZetinBourdExec is a container one can tack sExec’s onto 
and, when the buZletinBourdExec’s exec method is called, will call its constituents’ exec0 
methods. The buZZetinBoarcLExec’s createoverlap() method also conveys dependency 
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information via the contained sExec’s createOverZup0 method. A variety of 
bulletinBoardExec’s exist as well: providing for iteration over its constituents until a 
predicate test returns false (buZZetinBoardLoop). Another kind does a gather 
communication to an host processor, an exec0 for each of the bulletinBoard’s 
constituent components, and a scatter back to the worker processors (standAZoneBB6). 
In general, an application implemented in the POET framework will look like nested 
bulletinBoardExec’s within bulletinBoardExec’s as in Figure 3. 
Note that little in the way of a predefined model for parallel computing is required by the 
POET object model. No a priori constraint is placed on the parallel numerical method. 
The two methods from sExec: exec and createOverZap0, can be overridden to allow any 
numerical method to coexist in the POET framework. 

3. Interfaces for Parallel Algorithms 
Broadly, numerical algorithms are categorized as either implicit or explicit. Implicit 
methods, as the name implies, are treated as a black box: given the needed data, it 
computes independent of user intervention and returns the answer. Examples of 
implicit methods are an equation solver or matrix inverter. Explicit methods require the 
needed data supplied to a user-created computation updating the data with the result. 
Stencil problems are the most common explicit algorithms. Though the implicit 
methods are usually difficult to implement in their own right, especially on parallel- 
distributed systems, encapsulating and preserving implicit schemes as components is 
relatively straightforward. 
For example, the POET sparse conjugate-gradient solver component allows the user to 
enter the coefficients row-wise via a method. It performs the solution and returns the 
solution vector, with the same partitioning as the original matrix. For the explicit 
ceZPkgExec component, user-specified data has to be marshalled to a user-specified 
callback and images of the user-specified data existing on another processor (i.e. ghost 
data) must be maintained. This rich interplay between component code and user code 
is what makes the user interface to stencil methods difficult. 

3. I Components for Implicit Methods 
Though implicit methods present a straightforward user interface, often performance, 
especially on parallel distributed systems, is lacking. The most significant feature of the 
componentized equation solver is that it must accept a variety of data/processor 
decompositions. Indeed all components in POET must be flexible to a wide range of 
decompositions. The numerical method component might have an optimum 
decomposition, and for an equation solver component on a distributed system, might 
well force the decomposition. Each component however, cannot dictate the 
decomposition. The interface for the POET bi-conjugate gradient (biCG) solver, CGExec, 
looks like: 
class CGExec : public sExec ( 
private : 
\ \  ... 
public: 
/ /  ... 
CGExec (CGAnswerCallback *, proc * )  ; 
/ /  ... 
/ /  execstatus is an enum type that provides success or  failure information. 
virtual execstatus exec(void); 
virtual void createOverlap(partitionTable*); 

1; 

standAloneBB: i.e. allows a component to run by itself on a single processor. 
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/ /  This interface is exported by CGExec, to sExec’s upstream from it. 
class CGInput { 
private : 
/ /  ... 
public: 
/ /  a array are the coefficients, size is the number of coefficients (always the 
/ /  same), b is the RHS column vector. 
void addRow(doub1e *a, int size, double *b); 

/ /  ... 
1; 
// This is used by CGExec to convey the answer to where it needs to go. 
class CGAnswerCallback { 
private : 
/ /  ... 
public : 
/ /  Overridden by the user. 

1; 

Here CGInput is exported by CGExec and can be used by another component to load the 
matrix into CGExec. When CGExec’s exec0 method is invoked, the linear system of 
equations is solved. CGExec then uses CGAnswerCallback to convey the answer 
through the user overridden useAnswer0 method. 

Though many applications would benefit from equation solvers like CGExec, the high 
latency of TCP networking on networked distributed systems prevents the solvers from 
working well enough to be practical. Recent developments both in the networking7 and 
algorithmic8 sides promise to improve equation solvers on distributed systems in the 
future. 

virtual void useAnswer(f1oat * )  = 0; 

3.2 Components for Explicit Methods 
The celPkgExec class is derived from sExec and implements the notion of a generalized 
stencil computation. It is so-named because it is designed to call a package of cells to 
user code, dictated by the stencil. ceZPkgExec manages and interprets a stencil class. 
The stencil implements the idea that, to advance the solution for a particular target cell, 
a certain number of other cells, or parts of cells, are needed. It is used to encapsulate 
data dependency information alone. POET regards a stencil to be an object that 
encapsulates the answer to the question: “what data do you need to accomplish your 
task?” The stencil class is given a target procCelPair from the current partitioning 
scheme (partitionTuble) and is expected to produce a table of cells representing the 
region required for the computation of that target. Note that this is a much broader 
interpretation than the usual idea of a stencil as a template mask of cells moving over 
grid. Here each cell on the entire distributed machine can have a different region 
associated with its computation and there is no need for associated cells to be spatially 
“close” to the target cell. Indeed the POET framework does not have any concept of lD,  
2D or any dimensionality built-in, though many components are designed to suit a 
particular dimensional grid. 
The stencil class is a pure virtual class that can be user inherited but is more likely to 
be used as a pre-made, inherited component that comes with POET. POET has many 

UMyranet Fast Networking Hardware”, IEEE-Micro, pp. 29-36, 15, (1995) 
8 Optimistic Active Messages: A mechanism for scheduling communication with computation, Deborah A. 
Wallach, Wilson C. Hsieh, Kirk Johnson, M. Frans Kaashoek, and William E. Weihl, 5th ACM SIGPLAN 
Symposium on Principles and Practice of Parallel Programming (PPoPP ‘95), Santa Barbara, California, July 
17-22, 1995. 
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kinds of stencils: stenci2-1 d,  for one-dimensional grids; stencil-2d for two-dimensional 
grids, etc. 
class stencil { 
private : 
/ /  ... 
public: 
/ /  ... 
partitionTable *createRegionAbout(partitionTable *t, procCellPair *target) = 0; 
/ /  ... 
1; 

Recall the purtitionTubZe container class from Figure 1 that holds the global 
cell/processor partitioning information for the entire distributed machine. It contains 
procCelPuiJs that identify what processor a cell is on, whether that cell is a copy (ghost) 
and what part of the cell’s contents that copy has. The createRegionAbout() method 
returns a new partitionTable containing just the region the computation for target 
requires. The partitionTable region output by the stencil can be used by sExec to 
identify what ghost cells need to be freshened from other processors after the user 
callback has been run. A sketch of a kind of cellPkgExec: 
class cellPkgExec : public sExec { 
private: 
/ /  ... 
public : 
/ /  ... 
cellPkgExec (scallback *, stencil *, proc *)  ; 
/ /  ... 
/ /  execstatus is an enum type that provides success or failure information. 
virtual execstatus exec(void); 
virtual void createOverlap(partitionTable*); 
1; 
/ /  *Not* derived from sExec. Provides hook for user code. 
class sCallback { 
private : 
public: 
/ /  1.. 

virtual execstatus exec(cel1Package *cP) = 0; 
1; 

Here the methods exec and createoverlap() override the ones from sExec. The 
constructor for celPkgExec requires the user to supply a callback in the form of a class 
derived from sCallback. The celPackage container class will have the data cells 
identified by the stencil The proc type in the third argument to the celPkgExec 
constructor contains processor configuration information. The user overrides 
exec(ce2Puckage *cP) in sCaZlback class to do the work required by the explicit 
algorithm. It should be emphasized that celPkgExec does not need to know anything 
about the dimensionality of the computation. All of that is encapsulated in the stencil. 
The stencil class provides a way to associate a target cell with other cells so the 
framework can make provision for them in the decomposition of data cells across 
processors. Stencils also provide finer control by allowing scoping of only parts of cells 
to reduce communication further. 

4. An Example: Chemically Reacting Flow 
Many applications have been implemented in POET: Molecular Dynamics, Quantum 
Monte Carlo, Seismic Ray Tracing, etc. Target users for POET can be described as 
computer literate scientists that are expert in disciplines other than Computational 
Science. These users are typically familiar with the concept of parallel computing and 
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already have an  idea of how their problems can be mapped to a parallel environment. 
They are unwilling however, to hand code the communication patterns and algorithms 
necessary to implement their ideas. The focus here will be the mechanics of creating an 
application in POET and as an example a Chemically Reacting Flow (CRF) application 
will be used. 

This CRF application models a turbulent fuel jet into stagnant air. Because realistic 
chemistry is computationally demanding, implementations of this and similar models 
on serial architectures require a drastically simplified and reduced chemistry. Usually 
one to three chemical species is the practical limit for these models. Generally, serial 
implementations for chemically reacting flow predict only gross and cumulative 
properties accurately, such as temperature and &/fuel mixture fraction. With 
increasing interest in pollutant formation in combustion systems, a need has developed 
for detailed chemical calculations involving 50- 100 species. Because pollutants, such 
as Oxides of Nitrogen, are present in only trace quantities in combustion effluent, even 
minor species must be tracked in order to produce a credible prediction of pollutant 
formation. Predicting pollutants created by flames necessitates a parallel approach to 
the problem. 

We use a Probability Distribution Function (PDF) approach9 that models species in 
terms of an ensemble of statistical instances. Since our intention is to use a 
workstation cluster where equation solvers function poorly, we chose to compute the 
explicit chemistry and transport in parallel only, leaving the implicit fluid mechanics to 
a single node. Because the fluid mechanics deals only with averaged quantities 
(density, and velocity) the extra communication caused by this host/worker 
arrangement is kept to a minimum. These presuppositions are born out in the resulting 
model: for a typical run on 10 SGI Indigo10 workstations, 3.5 days are needed for the 
chemistry and during this time only 15 minutes of CPU time are required for the fluid 
mechanics running on a single processor. At present there exists both steady and 
unsteady versions of this model. In what follows, the framing operations necessary to 
create the CRF application in POET will be sketched. 

4.1 Framing the Chemically Reacting Flow Problem 
The task is to reduce what needs to be done into components. Components must be 
linked together by means provided by the framework and by the components 
themselves. During this framing phase no calculation is done, or rather no exec 
method is called. Here only the “script” for what will be done at execution time is laid 
out. 
First, the data for the grid must be initialized with the starting values of chemical 
species, velocities, etc. 
/ /  PVM identifies the message-passing library 
/ /  PVM requires the name of the executable 
char *name = “crf”; 
proc *p = new proc ( numProcs, PVM, name) ; 
I B P  Callback* cbO = new initcallback; 

/ /  n s C e l l s  is the number of cells in the x-direction 
/ /  numYCells is the number of cells in the y direction 
partitioner* part = new Partitioner-2d(pI numXCells, numYCells); 
sExec *iBP = new initByPieces(p, part, cbl); 

The above code fragment is how the CRF application is framed for initialization and is 
concerned with instantiating an initI3yPiece.s object. The initByI3ece.s class initializes 

9 “An Improved Turbulent Mixing Model“. S.B.Pope, Comb. Sci. & Technol., 28, 131-135, (1982) 
10 Silicon Graphics Indigo 1’s with R4000 processor, 64Mb memory. 
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the two-dimensional grid cells in small pieces to reduce memory usage on a user- 
designated host machine and sends the cells out to worker machines. This code 
fragment is included for completeness and is not important to a discussion of the POET 
object model. Briefly, the proc class, instantiated frst, holds the information defining 
the distributed machine resources and is needed by the various components (see Figure 
1). Here initCuZZback is derived from a pure virtual class IBP-Callback that is needed by 
the initialization sExec initByPieces, similar to the case for sCaZZback above. Created by 
the user, initCaZZback~' inserts initial velocities, densities, concentrations, etc. into the 
cells that form the grid. This also introduces a new (pure virtual) class called 
partitioner. The derived Partitioner-2d class understands that the problem is 2D and 
will provide the initial partitioning scheme for the problem. Note that the InitByPieces 
sExec is aloof from the dimensionality of the problem: only the initCaZZbuck needs to be 
coordinated with the Partitioner-2D. 
Now that things are initialized, the stencil operations must be framed into components: 
Stencil-t is[91 = { Pt-St-NotNeeded, Pt-St-Needed, Pt-St-NotNeeded, 

Pt St-Needed, Pt-St-Target, Pt-St-Needed, 
PtrSt-NotNeeded, Pt-St-Needed, Pt - -  St NotNeeded } ; 

sCallback *cbl = new diffCB; 
/ /  stencil2d requires a vector of Needed/NotNeeded's and the x and y dimension 
/ /  of that vector 

stencil *thestencil = new stencil2d(isI 3, 3, numXCells, numYCells); 
sExec *cPXl = new cellPkgExec(cb1, p, thestencil); 

Here diffCB is derived from sCaZZback and does a diffusion step. The stenciZ2d defines a 
5 point star (using the Needed's and Not-Needed's). Both of these are used by 
ceZZPkgExec and are given to its constructor. Similar to the above a chemistry/post- 
processing callback, cb2 is created by the user (not shown) and a second CeZPkgExec 
instantiated with the same stencil: 

sExec *cPX2 = new cellPkgExec(cb2, p, thestencil); 

Now that the chemistry and transport operations are done, the fluid mechanics 
calculation has to be framed for a single host processor. Recall that this requires data 
from the grid, residing on the workers, to compute and is to be done on a single 
processor. 

standAloneBB *sABBO = new standAloneBB(p); / /  Special gather/scatter BB. 
sExec *dCFD = new doCFD; 
sABBO->addExec(dCFD); 

/ /  A derived sExec does CFD over the entire grid. 
//Add the CFD sExec to the bulletinBoard. 

The standAZoneBB is a buZletinBoardExec that has a user-designated host processor 
that: (1) has a built-in sExec component that does a gather operation to the host; (2) 
runs exec() it's constituent sExec components on the host alone; (3) has another built-in 
sExec that does a scatter operation back to the workers. New sExec's are added to any 
bulletinBoard by the addExec() method. Exec doCFD is derived directly off of sExec and 
operates on the entire grid, prepared for it by standAZoneBB. 
The diffusion, chemistry and CFD constitute the main iterate for advancing the solution 
in unsteady or steady modes. These will be contained in their own buZ2etinBoardloop 
(see Figure 3) with a predicate that decides step sizes and returns false when the 
calculation is over: 

11 All of the user-derived class are written by combustion scientists noted in the acknowledgments and are 
actually encapsulated FORTRAN subroutines and functions. The number of lines of FORTRAN in the 
application actually exceeds that of POET itself. 
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loopPredicate *1P = new stopOrGo; / /  user-derived predicate class. 
bulletinBoardLoop *loopBoard = new bulletinBoardLoop(1P); 
1oopBoard->addExec(cPXl); 
loopBoard->addExec(cPX2); 
1oopBoard->addExec(sABBO); 

Here stopOrGo is a predicate class user-derived off of the pure virtual loopPredicate. 
bulletinBoardLaop uses loopPredicate to tell it when to stop iterating. 
Finally, something that outputs the computed results must be framed: 
sExec *dIO = new doIO; / /  Derived directly from sExec to write results on host. 
standAloneBB *sABB1 = new standAloneBB(p) / /  Gather data host for output. 
sABB1->addExec ( (sExec*) dIO) ; 

The sABBl component makes sure that the results are written on a known machine in 
a known place. 

At this point we have three main components: for initialization, iBp, computing the 
chemically reacting flow, loopBoard; and post-processing and filing the results, StLBBl. 
All of these are a polymorphized sExec’s. They can be tied together to make the entire 
application by putting them into a standard buZletinBoardExec. 
bulletinBoardExec *mainBoard = new bulletinBoardExec; / /  Runs constituent 

mainBoard->addExec ( (sExec*) iBP) ; 
mainBoard->addExec((sExec*)loopBoard); 
mainBoard->addExec((sExec*)sABBl); 

/ /  sExec’s once. 

A plain bulZetinBoardExec does just one iteration of its constituents and returns. 
mainBoard is the entire application and encapsulates everything the CRF code will do. 
It is important to remember that at this point no calculation has been done. In this 
framing phase, components have been instantiated, particularized to the CRF 
application, and linked together, but nothing has actually been computed. The 
execution phase is begun by calling the top-level exec0 method: 
mainBoard.exec0; / /  End the framing phase, begin the execution phase. 

Here all that is to be done by the application is accomplished. 
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Note that the form of the POET framework is largely dictated by the limitations of C++. 
We might prefer that the final call to exec0 be automatic. We might prefer, for example, 
a Java-like language where mainBoard is implicit and created by the framework-where 
the user “extends” a system-provided, top-level component. C++ has be chosen mainly 
for portability reasons. POET applications must run on the latest parallel hardware, 
such as the 9000 processor Intel TFLOPSTM machine, where interpreters or compilers for 
less-used languages may be absent. Because POET scrupulously avoids using C++ 
built-in classes, all that is required is an ANSI C compiler and a C++ interpreter 
available somewhere in close proximity. 

I bulletinBoardExec 1 

b u I I et i n B oa cd Loop ’ 

Figure 4 
A block diagram of the framing process sketched in Section 4.1. Rectangular elements denote POET system 
components and ovals denote user-created classes. To orient this diagram to the code fragments given in 
Section 4.1, names of classes appear as titles for the components and class instance names appear in 
parenthesis. 
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Figure 5 
’erformance results for the CRF model on a cluster of 8 
vorkstations12. Combustion calculations often require load-balancing 
)ecause CPU work is usually localized to the flame position in motion 
in the grid. Here a load-balancer component is added to the framing 
iperation of Section 4.1 and comparison is made between load- 
danced and non-load-balanced case of Figure 4. Though the load- 
mlancer component is specific to the dimensionality of the problem, it 
ias been reused for an unrelated molecular dynamics application. 

The previous is meant to be just a sketch of a real application that produces usable 
results in the combustion field of research. As time progresses more components are 
added and existing ones tuned. Improvements can be made in the bare-bones 
application of Figure 4 by introducing a load-balancing component. The load-balancer 
is added to ZoopBoard and extracts timings from the ceZlPkgExec’s already in ZoopBoard. 
When the load-balancer is exec()’ed it rearranges the cell/processor decomposition to 
optimize performance (see Figure 5). 

5. Conclusions 
The purpose of a parallel framework is ease-of-use and code reuse. Although many 
applications implemented in POET share the same components, code reuse can best be 
seen within the CRF example (Figure 4). In the same application components are 
reused to perform different parallel tasks. The ease-of-use question is better addressed 
by a previous paper13 that goes through an actual user experience. Here we are 
concerned with the mechanics of what components attributes must be in order to 
cooperate with other components for parallel computing. No single component can 
dictate the processor/data decomposition. The framework is the arbitrator of the 
decomposition, must take the needs of all the components into account. The parallel 
framework must come to a decision that attempts to optimize performance. 
The advantage that frameworks have is two-fold: 
1. Reusable code. One can afford to invest time on components that you wouldn’t 

normally do for one application alone. 

l2 DEC ALPHA 3000/600 workstations running DEC OSF/1 V3.2 kernel. 
13 R.C. Armstrong, Frameworksfor Parallel Computing, Proceedings Of Parallel Object Oriented Methods and 
Applications (POOMA), December 5-7, 1994, Santa Fe, NM. 
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2. Control and monitoring the entire calculation. Can monitor progress of individual 
components in relation to the entire application and make changes on the fly, 
similar to the load-balancer component previously. 

Frameworks permit parallel code reuse by arbitrating the processor/ data decomposition 
and providing uniform services to components, allowing communication and 
cooperation. Without inter-component cooperation, parallel algorithms cannot be 
modular, and without modularity there can be no code reuse. Without this framework 
environment, persisting into the application’s execution phase, cooperation would not 
be possible. The user need only be aware of the interface to a component not the details 
of the parallel algorithm it represents, nor the data decomposition it requires. This 
property is shared by all of the frameworks mentioned in Section 1.2. Note that the use 
of frameworks is a fundamentally different approach than using a compiler; parallelizing 
or otherwise. The framework participates both in the creative, framing phase as well as 
the execution phase. Compilers are not involved in what happens during the execution 
of the programs they compile. 

The POET framework introduces an sExec class (see Figure 2) that is the embodiment of 
a component implementing a parallel algorithm. The sExec has two methods: 

1. exec0 which says go do what your component is designed to do-presumably a 
parallel algorithm. By itself exec0 admits only the imperative style of programming 
that frameworks seek to supplant. 

2 .  createOverZup0 which conveys data dependency information needed by the exec0 to 
accomplish its function. This allows sExec components to cooperate over the same 
data/ processor decomposition. 

Ghost overlap data communications, for example, can be piggybacked with among 
components are unaware of the each other’s existence. All of the POET framework is 
built on this single idea. This one extra concept however, allows for a rich expression of 
most commonly used implicit and explicit numerical algorithms. 
This extra bit of functionality though, is about the minimum that could be done and 
still have a functioning framework for parallel numerics. The current POET framework 
can know little or nothing about what communication pattern is produced by the sExec 
component. For load balancing and scheduling purposes, it is necessary for the 
framework to query, not only data dependencies, but the entire communication and 
computation graph for the component. Container sExec’s, like buZZetinBourd would then 
be able to sew together constituent sExec graphs into its own graph, and so on 
recursively. This should provide enough information to create much better load 
balancing components than that of Figure 5. A design that will accomplish this for the 
POET tool-kit is currently underway. 
Frameworks for parallel computing are a promising avenue to reusable parallel code. 
This is ultimately because the framework is ‘‘aware14” of what it has been framed to do 
and can query components as to what their individual requirements are, making 
provision for them in the most efficient manner possible. 

14 The authors are mindful that computer “awareness” is a topic in the popular media and they use the term 
in only its mildest sense. 
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