
uu

POET (Parallel Object-oriented Environment and Toolkit)
and Frameworks for Scientific Distributed Computing

Alex Cheung
Distributed Systems Research
Sandia National Laboratories

Livermore, CA 94551
rob@ca. sandia. gov

Abstract

O S T ‘

Frameworks for parallel computing have recently become popular as a means for
preserving parallel algorithms as reusable components. Frameworks for parallel
computing in general, and POET in particular, focus on finding ways to orchestrate and
facilitate cooperation between components that implement the parallel algorithms.
Since performance is a key requirement for POET applications, CORBA or CORBA-like
systems are eschewed for a SPMD message-passing architecture common to the world
of distributed-parallel computing. Though the system is written in C++ for portability,
the behavior of POET is more like a classical framework, such as Smalltalk. POET
seeks to be a general platform for scientific parallel algorithm components which can be
modified, linked, “mixed and matched” to a user’s specification. The purpose of this
work is to identify a means for parallel code reuse and to make parallel computing more
accessible to scientists whose expertise is outside the field of parallel computing.
The POET framework provides two things: 1) an object model for parallel components
that allows cooperation without being restrictive; 2) services that allow components to
access and manage user data and message-passing facilities, etc. This work has evolved
through application of a series of “real” distributed-parallel scientific problems. The
paper focuses on what is required for parallel components to cooperate and at the same
time remain “black-boxes” that users can drop into the frame without having to know
the exquisite details of message-passing, data layout, etc. The paper walks through a
specific example of a chemically reacting flow application. The example is implemented
in POET and we identify component cooperation, usability and reusability in an
anecdotal fashion. The following conclusions are drawn:

1) Specifically, POET components not only execute their assigned tasks, but provide
data dependency information allowing components to cooperate on data decomposed
across distributed machines.

2) Generally, frameworks for parallel scientific computing have an advantage over
parallel tools using a more imperative style of programming like compilers or
subroutine libraries. Because frameworks are “aware” of components they contain,
information can be gathered ahead of actual execution of the component task and
more sophisticated latency for bandwidth tradeoffs can be made.

cu ,

1. Why Frameworks for Parallel Computing?
Frameworks for parallel computing have recently become popular as a potential way to
encapsulate and preserve parallel numerical algorithms. Because parallel numerics are
orders-of-magnitude more complex and machine dependent than their serial
counterparts, the motivation for preserving working implementations is strong.
Currently, most practitioners of parallel computations write all of the component
numerical implementations customized for each application. If a new application is to
be written then all of the component numerical operations must be rewritten to suit the
new application. In the past scientific subroutine libraries, written in, and for, use in
FORTRAN, were able to provide the functionality necessary to encapsulate numerical
algorithms for serial machines. For a variety of reasons, this familiar model for
computational code preservation will not do for parallel computing:

1. The data needed by the subroutine is decomposed on the participating processors.
All of the data cannot be passed through the argument list, as on a serial machine.
This means the user must be cognizant of the data decomposition and provide this
information to the routine. Minimally, the user may not attempt to access data
present on another processor.

2. The subroutine cannot “tell” the system what data has to be present on a processor
in order for it to perform its function. “Asking“ for the data after the subroutine is
called is usually inefficient, especially on distributed systems.

3. Because parallel computation is essentially real-time computing and is message-
passing event driven, the user can either unwittingly stall event handling or, at
least, must be made aware of the details going on below his/her code.

To paraphrase Albert Einstein, code reuse for parallel computing should be as simple as
possible but not simpler. A model of parallel computing that makes a parallel machine
look serial or casts the application as a sequence of subroutine calls is too simple to put
the unnecessary details of processor/data decomposition out of the user’s way.

1. I Defining a Framework
The word framework is so overloaded to mean so many different things that it often
conveys only a vague idea of a software “system.” For the purposes of this work,
framework will be defined as a system that provides services to components. The
components are created via a template designed for cooperation among themselves and
the framework system. Frameworks have long been accepted in areas where the user
does not want to acquire the knowledge necessary to be in total control of the software
system. A framework provides an environment that “takes care” of the top-level and
provides a frame within which user-modified components can be placed. In addition to
this environment, the framework typically will come with an assortment of pre-made
components with which the user can base his application. Examples of frameworks are
GUI’s: X Window System Toolkit, and programming languages: Smalltalk and Visual
Basic. Note that a framework need not be object-oriented: the X toolkit and Smalltalk
are object-oriented, Visual BasicTM is not. The key to each of these frameworks is that
components nested in the frame are easily modifiable by the user and new components
are easy to create from old components or from scratch. [An exception: Visual BasicTM
actually does not have a way, within the language, of creating new components.]
An application implemented in a framework consists of the framework itself, providing
predefined services to the components, and a user-chosen set of components linked
together by a means provided by the framework. There are two distinct phases to a
frame-based application:

2

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

1. Theframingphuse: in which the components are selected and instantiated and the
links between them created. It is at this point that the user creates or modifies
components that will specialize their application. This phase can be thought of as
“programming“ the framework: like creating a script.

2. The executionphase: when control is handed over to the framework itself which in
turn drives the framed components to do what they are framed to do.

The framing and execution phases may often be mixed together, some components may
as part of their execution do some additional framing to be executed later, but the two
phases are distinct and is what gives frameworks their distinctive advantage to parallel
computing. As opposed to a standard imperitive style of computing, frameworks are to
a greater or lesser degreee “aware” of what its constituent components are going to do
before they are asked to do it. There is no opportunity for the user to stall message-
passing events. The framework system lives along side the components during
execution so that data dependencies can be queried and re-queried. In Section 4 an
example will present that shows how components for parallel computing describe their
data dependencies to the managing framework before an computing takes place.

1.2 Review of Existing Frameworks for Parallel Computing
POOMAl (Parallel Object Oriented Methods and Applications) and POET2 (Parallel
Object-oriented Environment and Toolkit) are examples of parallel frameworks from Los
Alamos National Laboratory and Sandia National Laboratories respectively. Currently,
these frameworks are being merged so as to share components. The discussion here is
general enough to apply to both of these systems, but the author’s experience and
familiarity with POET will necessitate its use for the examples. While sharing the same
philosophy, POET seeks to be a general framework for parallel algorithms, POOMA’s
approach is more toward specific applications. Though both packages are written in
C++, POOMA tends to exploit and rely more heavily on the C++ concepts of operator
overloading and templates. POET looks more like a “classic” framework in the spirit of
Smalltalk. Both frameworks are oriented toward building applications in a modular
fashion for code reuse. While POOMA is oriented toward particular applications
implemented on parallel machinery, POET is oriented toward parallel algorithm
implementations that are important to a variety of applications. POOMA focuses on
numerical component reuse across problem domains. It can be said, for example, that
POOMA has a component for Molecular Dynamics (MD) and POET has a component for
equation solving, while it is simultaneously true that an MD application is implemented
in POET and POOMA contains equation solvers for the work it needs to do. Though
POET and POOMA are the closest to objective of this work there are related parallel
computing tools that are useful to mention here.
The Portable, Extensible Toolkit for Scientific Computation3 (PETSc) is a software library
written at Argonne National Laboratory for the solution of partial differential equations
on high-performance computers. A s a complete rewrite of previous versions, PETSc 2.0
is written in ANSI C, employs the MPI standard for d message-passing
communication, and is usable from Fortran, C, and C++. PETSc 2.0 incorporates a
hierarchical set of abstractions in the form of software modules (e.g., matrices, linear
and nonlinear solvers, time steppers, etc.), which are organized via encapsulation and

1 To appear in Parallel Programming in C++, MIT Press.
2 http: / /glass-slipper.ca. sandia.gov/ -rob /poet.
3 Satish Balay, William Gropp, Lois Curfinan McInnes, and Barry Smith, PETSc 2.0 Users Manual, Technical
Report ANL-95/11, Argonne National Laboratory, November, 1995.

3

http://sandia.gov

F

J

polymorphism. In contrast to the framework approach of POOMA and POET, PETSc
application programs are procedural based, where the user interface is a uniform set of
routine calls for each library component. PETSc provides many facilities related to
linear algebra and matrix manipulation and, similarly to POET, seeks to provide a
platform for parallel algorithms.
Legion4 is an 00 framework that orchestrates parallel computing on a wide-area
network, providing an object model for scheduling (as a superset of load balancing),
object naming and location, object security, etc., on world-wide metacomputer. Legion
does not concern itself with parallel algorithms and application domains as do the other
frameworks mentioned above. It is probably most similar to a COMA (Common Object
Request Broker Architecture) but built with high-performance computing in mind.
Though Legion is based on C++, its object model, like POET, is similar to a “classicaln

Contains any
user data that

be
available on a

par(iarlar
processor

partitionMap
Data

Contains all the
information about
what data cell exists
on what pmcessor.

Contains information
about pmcessors and
the means lo
mmmunicate with
them.

Figure 1
Diagram of the important services the POET Framework provides. The services are
available through a single C++ class called partitionMap. Data of arbitrary type and
dimension are contained in the data Cell’s. Not all Cell‘s will be available on all
processors. The partitionTable contains the decomposition relating which cells are on
what processor. The partitionTable contains procCellPair entries, identifying which
cell exists on which processor. Every component can expect that each processor has
an up-to-date version of the partitionTable. The partitionMap also provides
communication and processor information.

SmallTalk-like framework. Legion is complementary to the other frameworks to the
extent that any of PetSC, POET, and POOMA could themselves be “framed” inside of
Legion, exploiting Legion services to facilitate computing in the large.

2. The POET Framework
Though the purpose of this paper is to make the case for parallel computing frameworks
in general, what follows is a sketch of the POET framework as an example. The purpose
of POET is to encapsulate parallel algorithms similar to the way scientific subroutine

4 Legion: The Next Log‘cal Step Toward a Nationwide Virtual Computer, Andrew S . Grimshaw, William A. Wulf,
James C. French, Alfred C. Weaver, Paul F. Reynolds Jr., Roc. of High Performance Distributed Computing
5, Aug. 5, 1996.

4

libraries are used in serial architectures. As was mentioned, a framework must provide
services to constituent components. As part of the design these components must also
follow a “template” interface to interact with the framework services and peer
components. For object-oriented frameworks, like POET, this translates into an object
model for the components to be framed. The user is expected to instantiate components
and link them together using this object model to create a parallel application. The
POET model is entirely SPMD, though it is useful to identify a “host” and ”worker”
processors for most applications. Many pre-made POET components support this
paradigm. As opposed to other parallel tool-kits, POET makes no attempt to hide the
fact that the application is running on a parallel machine.

2.1 POET Services
In POET the services are provided by the partitionMap5 class (see Figure 1). This class
packages user-defined data into “cells.” A Cell is the smallest division of data with
which POET will concern itself. Cell’s can contain arbitrary amounts and types of data
and represent the smallest granularity of the problem. The Cell should contain enough
data such that the work needed to process the data is large enough to amortize the
framework overhead. This has to be defined by the user, who is the only expert on what
their code is doing. CelZ‘s are then distributed to various processors either by means of
a default decomposition or by components particularized by the user for the user’s task.
Objects are particularized by the use of C++ virtual functions. The partitionhfap also
contains information about which CelZ’s are on what processor (partitionTabZe) and the
means to communicate CelZ‘s or parts of CelZ‘s to other processors that require data
contained in them (proc).

exec(void);

createOverlap(partitionTab1e *);

Figure 2
The sExec is an object, signifled by a rectangle, that is expected to operate on the
data. Everything a POET application does will be done by a derived sExec
overloading the two methods the sExec class has: exec(uoid) and
createOuerlaplpartitionTable*). sExec inherits Exec to provide information to the
framework system about what data is needed for the component to do its work.
The createOverlap method adds entries to the partitionTable identifying data that
has to be on a particular processor.

2.2 POET Object Model
In addition to these services, the framework provides various pre-made components that
act on the data and provide ways for user code to act on the data. The fundamental
component in POEYT is called an UExec.n This is a pure virtual class that has one
method on it called “exec(uoid),” which means: “do something; its your turn.” All
components that form the application, and participate in the framework, will inherit
from this class and overload the exec() method. Because components almost always
operate on user data, information must be provided by the Exec about the type and
quantity of data needed to perform its function. Indeed, if the framework could access

5 Italics denote the names of actual POET data types.

5

only this exec0 method alone, then POET could do nothing more than the standard
imperative scientific subroutine libraries of the past. A derived Exec is provided for this
purpose called sExec; so-named because it associates or “scopes” cells or parts of cells
to perform its task. It adds a new virtual method to be overridden called creuteOverZup.
This method examines the given purtitionTubZe and adds entries needed by the sExec to
perform its exec0 task. The sExec is the fundamental building block for POET
applications.

Another important kind of sExec is one that exists to message and maintain other
sExec’s. A common example is the buZZetinBourdExec, which maintains an array of
sExec’s and executes them in sequence when the exec0 method is called (see Figure 3).
Other useful pre-made components include an arbitrary dimensional ceZZPkgExec for
processing user-defined callbacks over a stencil of Cells and an equation solver (biCG
with various preconditioners). Nested sequences of these Exec’s will be created during
the framing phase of the application. During the framing phase, the user is expected to
instantiate selected sExec components. These can be modified by replacing constituent
objects derived from base classes used by the sExec or by inheriting directly off of a
particular kind of sExec, or both. The execution phase begins by simply calling the top-
level object’s exec method: this object is usually a container of sExec’s such as
buZletinBoardExec.

Figure 3
BuIletinBoardExec’s are a derived from sExec and serve as a
container. Rectangles denote POET tool-kit code and ovals
denote user code add-on. This particular bulletinBoard,
bulZetinBoardLmop, tests a user predicate before each iteration
over it’s constituents. The bulletinBoard also manages the
data dependency of each sExec through the createOverlap
method on its contained sExec’s. User-supplied callbacks
(indicated by the ovals) particularize the sExec’s function to
user’s task. Most types of sExec’s have these callbacks and, in
this case, so does the predicate object, ZoopPredicate. The block
represented here is executed on all processors simultaneously
in a SPMD fashion. No synchronizations are made by the
framework, though it is likely that the constituent sExec’s will.

As the name implies, the buZZetinBourdExec is a container one can tack sExec’s onto
and, when the buZletinBourdExec’s exec method is called, will call its constituents’ exec0
methods. The buZZetinBoarcLExec’s createoverlap() method also conveys dependency

6

information via the contained sExec’s createOverZup0 method. A variety of
bulletinBoardExec’s exist as well: providing for iteration over its constituents until a
predicate test returns false (buZZetinBoardLoop). Another kind does a gather
communication to an host processor, an exec0 for each of the bulletinBoard’s
constituent components, and a scatter back to the worker processors (standAZoneBB6).
In general, an application implemented in the POET framework will look like nested
bulletinBoardExec’s within bulletinBoardExec’s as in Figure 3.
Note that little in the way of a predefined model for parallel computing is required by the
POET object model. No a priori constraint is placed on the parallel numerical method.
The two methods from sExec: exec and createOverZap0, can be overridden to allow any
numerical method to coexist in the POET framework.

3. Interfaces for Parallel Algorithms
Broadly, numerical algorithms are categorized as either implicit or explicit. Implicit
methods, as the name implies, are treated as a black box: given the needed data, it
computes independent of user intervention and returns the answer. Examples of
implicit methods are an equation solver or matrix inverter. Explicit methods require the
needed data supplied to a user-created computation updating the data with the result.
Stencil problems are the most common explicit algorithms. Though the implicit
methods are usually difficult to implement in their own right, especially on parallel-
distributed systems, encapsulating and preserving implicit schemes as components is
relatively straightforward.
For example, the POET sparse conjugate-gradient solver component allows the user to
enter the coefficients row-wise via a method. It performs the solution and returns the
solution vector, with the same partitioning as the original matrix. For the explicit
ceZPkgExec component, user-specified data has to be marshalled to a user-specified
callback and images of the user-specified data existing on another processor (i.e. ghost
data) must be maintained. This rich interplay between component code and user code
is what makes the user interface to stencil methods difficult.

3. I Components for Implicit Methods
Though implicit methods present a straightforward user interface, often performance,
especially on parallel distributed systems, is lacking. The most significant feature of the
componentized equation solver is that it must accept a variety of data/processor
decompositions. Indeed all components in POET must be flexible to a wide range of
decompositions. The numerical method component might have an optimum
decomposition, and for an equation solver component on a distributed system, might
well force the decomposition. Each component however, cannot dictate the
decomposition. The interface for the POET bi-conjugate gradient (biCG) solver, CGExec,
looks like:
class CGExec : public sExec (
private :
\ \ ...
public:
/ / ...
CGExec (CGAnswerCallback *, proc *) ;
/ / ...
/ / execstatus is an enum type that provides success or failure information.
virtual execstatus exec(void);
virtual void createOverlap(partitionTable*);

1;

standAloneBB: i.e. allows a component to run by itself on a single processor.

7

/ / This interface is exported by CGExec, to sExec’s upstream from it.
class CGInput {
private :
/ / ...
public:
/ / a array are the coefficients, size is the number of coefficients (always the
/ / same), b is the RHS column vector.
void addRow(doub1e *a, int size, double *b);

/ / ...
1;
// This is used by CGExec to convey the answer to where it needs to go.
class CGAnswerCallback {
private :
/ / ...
public :
/ / Overridden by the user.

1;

Here CGInput is exported by CGExec and can be used by another component to load the
matrix into CGExec. When CGExec’s exec0 method is invoked, the linear system of
equations is solved. CGExec then uses CGAnswerCallback to convey the answer
through the user overridden useAnswer0 method.

Though many applications would benefit from equation solvers like CGExec, the high
latency of TCP networking on networked distributed systems prevents the solvers from
working well enough to be practical. Recent developments both in the networking7 and
algorithmic8 sides promise to improve equation solvers on distributed systems in the
future.

virtual void useAnswer(f1oat *) = 0;

3.2 Components for Explicit Methods
The celPkgExec class is derived from sExec and implements the notion of a generalized
stencil computation. It is so-named because it is designed to call a package of cells to
user code, dictated by the stencil. ceZPkgExec manages and interprets a stencil class.
The stencil implements the idea that, to advance the solution for a particular target cell,
a certain number of other cells, or parts of cells, are needed. It is used to encapsulate
data dependency information alone. POET regards a stencil to be an object that
encapsulates the answer to the question: “what data do you need to accomplish your
task?” The stencil class is given a target procCelPair from the current partitioning
scheme (partitionTuble) and is expected to produce a table of cells representing the
region required for the computation of that target. Note that this is a much broader
interpretation than the usual idea of a stencil as a template mask of cells moving over
grid. Here each cell on the entire distributed machine can have a different region
associated with its computation and there is no need for associated cells to be spatially
“close” to the target cell. Indeed the POET framework does not have any concept of lD,
2D or any dimensionality built-in, though many components are designed to suit a
particular dimensional grid.
The stencil class is a pure virtual class that can be user inherited but is more likely to
be used as a pre-made, inherited component that comes with POET. POET has many

UMyranet Fast Networking Hardware”, IEEE-Micro, pp. 29-36, 15, (1995)
8 Optimistic Active Messages: A mechanism for scheduling communication with computation, Deborah A.
Wallach, Wilson C. Hsieh, Kirk Johnson, M. Frans Kaashoek, and William E. Weihl, 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ‘95), Santa Barbara, California, July
17-22, 1995.

8

kinds of stencils: stenci2-1 d, for one-dimensional grids; stencil-2d for two-dimensional
grids, etc.
class stencil {
private :
/ / ...
public:
/ / ...
partitionTable *createRegionAbout(partitionTable *t, procCellPair *target) = 0;
/ / ...
1;

Recall the purtitionTubZe container class from Figure 1 that holds the global
cell/processor partitioning information for the entire distributed machine. It contains
procCelPuiJs that identify what processor a cell is on, whether that cell is a copy (ghost)
and what part of the cell’s contents that copy has. The createRegionAbout() method
returns a new partitionTable containing just the region the computation for target
requires. The partitionTable region output by the stencil can be used by sExec to
identify what ghost cells need to be freshened from other processors after the user
callback has been run. A sketch of a kind of cellPkgExec:
class cellPkgExec : public sExec {
private:
/ / ...
public :
/ / ...
cellPkgExec (scallback *, stencil *, proc *) ;
/ / ...
/ / execstatus is an enum type that provides success or failure information.
virtual execstatus exec(void);
virtual void createOverlap(partitionTable*);
1;
/ / *Not* derived from sExec. Provides hook for user code.
class sCallback {
private :
public:
/ / 1..

virtual execstatus exec(cel1Package *cP) = 0;
1;

Here the methods exec and createoverlap() override the ones from sExec. The
constructor for celPkgExec requires the user to supply a callback in the form of a class
derived from sCallback. The celPackage container class will have the data cells
identified by the stencil The proc type in the third argument to the celPkgExec
constructor contains processor configuration information. The user overrides
exec(ce2Puckage *cP) in sCaZlback class to do the work required by the explicit
algorithm. It should be emphasized that celPkgExec does not need to know anything
about the dimensionality of the computation. All of that is encapsulated in the stencil.
The stencil class provides a way to associate a target cell with other cells so the
framework can make provision for them in the decomposition of data cells across
processors. Stencils also provide finer control by allowing scoping of only parts of cells
to reduce communication further.

4. An Example: Chemically Reacting Flow
Many applications have been implemented in POET: Molecular Dynamics, Quantum
Monte Carlo, Seismic Ray Tracing, etc. Target users for POET can be described as
computer literate scientists that are expert in disciplines other than Computational
Science. These users are typically familiar with the concept of parallel computing and

9

already have an idea of how their problems can be mapped to a parallel environment.
They are unwilling however, to hand code the communication patterns and algorithms
necessary to implement their ideas. The focus here will be the mechanics of creating an
application in POET and as an example a Chemically Reacting Flow (CRF) application
will be used.

This CRF application models a turbulent fuel jet into stagnant air. Because realistic
chemistry is computationally demanding, implementations of this and similar models
on serial architectures require a drastically simplified and reduced chemistry. Usually
one to three chemical species is the practical limit for these models. Generally, serial
implementations for chemically reacting flow predict only gross and cumulative
properties accurately, such as temperature and &/fuel mixture fraction. With
increasing interest in pollutant formation in combustion systems, a need has developed
for detailed chemical calculations involving 50- 100 species. Because pollutants, such
as Oxides of Nitrogen, are present in only trace quantities in combustion effluent, even
minor species must be tracked in order to produce a credible prediction of pollutant
formation. Predicting pollutants created by flames necessitates a parallel approach to
the problem.

We use a Probability Distribution Function (PDF) approach9 that models species in
terms of an ensemble of statistical instances. Since our intention is to use a
workstation cluster where equation solvers function poorly, we chose to compute the
explicit chemistry and transport in parallel only, leaving the implicit fluid mechanics to
a single node. Because the fluid mechanics deals only with averaged quantities
(density, and velocity) the extra communication caused by this host/worker
arrangement is kept to a minimum. These presuppositions are born out in the resulting
model: for a typical run on 10 SGI Indigo10 workstations, 3.5 days are needed for the
chemistry and during this time only 15 minutes of CPU time are required for the fluid
mechanics running on a single processor. At present there exists both steady and
unsteady versions of this model. In what follows, the framing operations necessary to
create the CRF application in POET will be sketched.

4.1 Framing the Chemically Reacting Flow Problem
The task is to reduce what needs to be done into components. Components must be
linked together by means provided by the framework and by the components
themselves. During this framing phase no calculation is done, or rather no exec
method is called. Here only the “script” for what will be done at execution time is laid
out.
First, the data for the grid must be initialized with the starting values of chemical
species, velocities, etc.
/ / PVM identifies the message-passing library
/ / PVM requires the name of the executable
char *name = “crf”;
proc *p = new proc (numProcs, PVM, name) ;
I B P Callback* cbO = new initcallback;

/ / n s C e l l s is the number of cells in the x-direction
/ / numYCells is the number of cells in the y direction
partitioner* part = new Partitioner-2d(pI numXCells, numYCells);
sExec *iBP = new initByPieces(p, part, cbl);

The above code fragment is how the CRF application is framed for initialization and is
concerned with instantiating an initI3yPiece.s object. The initByI3ece.s class initializes

9 “An Improved Turbulent Mixing Model“. S.B.Pope, Comb. Sci. & Technol., 28, 131-135, (1982)
10 Silicon Graphics Indigo 1’s with R4000 processor, 64Mb memory.

10

the two-dimensional grid cells in small pieces to reduce memory usage on a user-
designated host machine and sends the cells out to worker machines. This code
fragment is included for completeness and is not important to a discussion of the POET
object model. Briefly, the proc class, instantiated frst, holds the information defining
the distributed machine resources and is needed by the various components (see Figure
1). Here initCuZZback is derived from a pure virtual class IBP-Callback that is needed by
the initialization sExec initByPieces, similar to the case for sCaZZback above. Created by
the user, initCaZZback~' inserts initial velocities, densities, concentrations, etc. into the
cells that form the grid. This also introduces a new (pure virtual) class called
partitioner. The derived Partitioner-2d class understands that the problem is 2D and
will provide the initial partitioning scheme for the problem. Note that the InitByPieces
sExec is aloof from the dimensionality of the problem: only the initCaZZbuck needs to be
coordinated with the Partitioner-2D.
Now that things are initialized, the stencil operations must be framed into components:
Stencil-t is[91 = { Pt-St-NotNeeded, Pt-St-Needed, Pt-St-NotNeeded,

Pt St-Needed, Pt-St-Target, Pt-St-Needed,
PtrSt-NotNeeded, Pt-St-Needed, Pt - - St NotNeeded } ;

sCallback *cbl = new diffCB;
/ / stencil2d requires a vector of Needed/NotNeeded's and the x and y dimension
/ / of that vector

stencil *thestencil = new stencil2d(isI 3, 3, numXCells, numYCells);
sExec *cPXl = new cellPkgExec(cb1, p, thestencil);

Here diffCB is derived from sCaZZback and does a diffusion step. The stenciZ2d defines a
5 point star (using the Needed's and Not-Needed's). Both of these are used by
ceZZPkgExec and are given to its constructor. Similar to the above a chemistry/post-
processing callback, cb2 is created by the user (not shown) and a second CeZPkgExec
instantiated with the same stencil:

sExec *cPX2 = new cellPkgExec(cb2, p, thestencil);

Now that the chemistry and transport operations are done, the fluid mechanics
calculation has to be framed for a single host processor. Recall that this requires data
from the grid, residing on the workers, to compute and is to be done on a single
processor.

standAloneBB *sABBO = new standAloneBB(p); / / Special gather/scatter BB.
sExec *dCFD = new doCFD;
sABBO->addExec(dCFD);

/ / A derived sExec does CFD over the entire grid.
//Add the CFD sExec to the bulletinBoard.

The standAZoneBB is a buZletinBoardExec that has a user-designated host processor
that: (1) has a built-in sExec component that does a gather operation to the host; (2)
runs exec() it's constituent sExec components on the host alone; (3) has another built-in
sExec that does a scatter operation back to the workers. New sExec's are added to any
bulletinBoard by the addExec() method. Exec doCFD is derived directly off of sExec and
operates on the entire grid, prepared for it by standAZoneBB.
The diffusion, chemistry and CFD constitute the main iterate for advancing the solution
in unsteady or steady modes. These will be contained in their own buZ2etinBoardloop
(see Figure 3) with a predicate that decides step sizes and returns false when the
calculation is over:

11 All of the user-derived class are written by combustion scientists noted in the acknowledgments and are
actually encapsulated FORTRAN subroutines and functions. The number of lines of FORTRAN in the
application actually exceeds that of POET itself.

11

loopPredicate *1P = new stopOrGo; / / user-derived predicate class.
bulletinBoardLoop *loopBoard = new bulletinBoardLoop(1P);
1oopBoard->addExec(cPXl);
loopBoard->addExec(cPX2);
1oopBoard->addExec(sABBO);

Here stopOrGo is a predicate class user-derived off of the pure virtual loopPredicate.
bulletinBoardLaop uses loopPredicate to tell it when to stop iterating.
Finally, something that outputs the computed results must be framed:
sExec *dIO = new doIO; / / Derived directly from sExec to write results on host.
standAloneBB *sABB1 = new standAloneBB(p) / / Gather data host for output.
sABB1->addExec ((sExec*) dIO) ;

The sABBl component makes sure that the results are written on a known machine in
a known place.

At this point we have three main components: for initialization, iBp, computing the
chemically reacting flow, loopBoard; and post-processing and filing the results, StLBBl.
All of these are a polymorphized sExec’s. They can be tied together to make the entire
application by putting them into a standard buZletinBoardExec.
bulletinBoardExec *mainBoard = new bulletinBoardExec; / / Runs constituent

mainBoard->addExec ((sExec*) iBP) ;
mainBoard->addExec((sExec*)loopBoard);
mainBoard->addExec((sExec*)sABBl);

/ / sExec’s once.

A plain bulZetinBoardExec does just one iteration of its constituents and returns.
mainBoard is the entire application and encapsulates everything the CRF code will do.
It is important to remember that at this point no calculation has been done. In this
framing phase, components have been instantiated, particularized to the CRF
application, and linked together, but nothing has actually been computed. The
execution phase is begun by calling the top-level exec0 method:
mainBoard.exec0; / / End the framing phase, begin the execution phase.

Here all that is to be done by the application is accomplished.

12

Note that the form of the POET framework is largely dictated by the limitations of C++.
We might prefer that the final call to exec0 be automatic. We might prefer, for example,
a Java-like language where mainBoard is implicit and created by the framework-where
the user “extends” a system-provided, top-level component. C++ has be chosen mainly
for portability reasons. POET applications must run on the latest parallel hardware,
such as the 9000 processor Intel TFLOPSTM machine, where interpreters or compilers for
less-used languages may be absent. Because POET scrupulously avoids using C++
built-in classes, all that is required is an ANSI C compiler and a C++ interpreter
available somewhere in close proximity.

I bulletinBoardExec 1

b u I I et i n B oa cd Loop ’

Figure 4
A block diagram of the framing process sketched in Section 4.1. Rectangular elements denote POET system
components and ovals denote user-created classes. To orient this diagram to the code fragments given in
Section 4.1, names of classes appear as titles for the components and class instance names appear in
parenthesis.

13

A

7

-*--I.
100%
90%

*. 4

80% --.
Perfect
Speedup

-4 -Load Balanced
\

& A
50% 4 14 Non-Balanced I
40% ’ I

I 1 i

1 2 4 8

Number of Processors

Figure 5
’erformance results for the CRF model on a cluster of 8
vorkstations12. Combustion calculations often require load-balancing
)ecause CPU work is usually localized to the flame position in motion
in the grid. Here a load-balancer component is added to the framing
iperation of Section 4.1 and comparison is made between load-
danced and non-load-balanced case of Figure 4. Though the load-
mlancer component is specific to the dimensionality of the problem, it
ias been reused for an unrelated molecular dynamics application.

The previous is meant to be just a sketch of a real application that produces usable
results in the combustion field of research. As time progresses more components are
added and existing ones tuned. Improvements can be made in the bare-bones
application of Figure 4 by introducing a load-balancing component. The load-balancer
is added to ZoopBoard and extracts timings from the ceZlPkgExec’s already in ZoopBoard.
When the load-balancer is exec()’ed it rearranges the cell/processor decomposition to
optimize performance (see Figure 5).

5. Conclusions
The purpose of a parallel framework is ease-of-use and code reuse. Although many
applications implemented in POET share the same components, code reuse can best be
seen within the CRF example (Figure 4). In the same application components are
reused to perform different parallel tasks. The ease-of-use question is better addressed
by a previous paper13 that goes through an actual user experience. Here we are
concerned with the mechanics of what components attributes must be in order to
cooperate with other components for parallel computing. No single component can
dictate the processor/data decomposition. The framework is the arbitrator of the
decomposition, must take the needs of all the components into account. The parallel
framework must come to a decision that attempts to optimize performance.
The advantage that frameworks have is two-fold:
1. Reusable code. One can afford to invest time on components that you wouldn’t

normally do for one application alone.

l2 DEC ALPHA 3000/600 workstations running DEC OSF/1 V3.2 kernel.
13 R.C. Armstrong, Frameworksfor Parallel Computing, Proceedings Of Parallel Object Oriented Methods and
Applications (POOMA), December 5-7, 1994, Santa Fe, NM.

14

2. Control and monitoring the entire calculation. Can monitor progress of individual
components in relation to the entire application and make changes on the fly,
similar to the load-balancer component previously.

Frameworks permit parallel code reuse by arbitrating the processor/ data decomposition
and providing uniform services to components, allowing communication and
cooperation. Without inter-component cooperation, parallel algorithms cannot be
modular, and without modularity there can be no code reuse. Without this framework
environment, persisting into the application’s execution phase, cooperation would not
be possible. The user need only be aware of the interface to a component not the details
of the parallel algorithm it represents, nor the data decomposition it requires. This
property is shared by all of the frameworks mentioned in Section 1.2. Note that the use
of frameworks is a fundamentally different approach than using a compiler; parallelizing
or otherwise. The framework participates both in the creative, framing phase as well as
the execution phase. Compilers are not involved in what happens during the execution
of the programs they compile.

The POET framework introduces an sExec class (see Figure 2) that is the embodiment of
a component implementing a parallel algorithm. The sExec has two methods:

1. exec0 which says go do what your component is designed to do-presumably a
parallel algorithm. By itself exec0 admits only the imperative style of programming
that frameworks seek to supplant.

2 . createOverZup0 which conveys data dependency information needed by the exec0 to
accomplish its function. This allows sExec components to cooperate over the same
data/ processor decomposition.

Ghost overlap data communications, for example, can be piggybacked with among
components are unaware of the each other’s existence. All of the POET framework is
built on this single idea. This one extra concept however, allows for a rich expression of
most commonly used implicit and explicit numerical algorithms.
This extra bit of functionality though, is about the minimum that could be done and
still have a functioning framework for parallel numerics. The current POET framework
can know little or nothing about what communication pattern is produced by the sExec
component. For load balancing and scheduling purposes, it is necessary for the
framework to query, not only data dependencies, but the entire communication and
computation graph for the component. Container sExec’s, like buZZetinBourd would then
be able to sew together constituent sExec graphs into its own graph, and so on
recursively. This should provide enough information to create much better load
balancing components than that of Figure 5. A design that will accomplish this for the
POET tool-kit is currently underway.
Frameworks for parallel computing are a promising avenue to reusable parallel code.
This is ultimately because the framework is ‘‘aware14” of what it has been framed to do
and can query components as to what their individual requirements are, making
provision for them in the most efficient manner possible.

14 The authors are mindful that computer “awareness” is a topic in the popular media and they use the term
in only its mildest sense.

15

M97051376
I1iilii11llIlilllliilliililillll11iiillllllliliilllliil

Report N umber

Publ. Date (1 1)

Sponsor Code (1 8)
UC Category (19)

- Y713//5 - -

