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Although they appear deceptively simple, batteries embody a complex set of interacting physical and chemical 
processes. While the discrete engineering characteristics of a battery, such as the physical dimensions of the individual 
components, are relatively straightforward to define explicitly, their myriad chemical and physical processes, including 
interactions, are much more difficult to accurately represent. Within this category are the diffusive and solubility 
characteristics of individual species, reaction kinetics and mechanisms of primary chemical species as well as 
intermediates, and growth and morphology characteristics of reaction products as injuenced by environmental and 
operational use profiles. For this reason, development of analytical models that can consistently predict the 
perjormance of a battery has only been partially successful, even though significant resources have been applied to this 
problem. As an alternative approach, we have begun development of a non-phenomenological model for battey 
systems based on artificial neural networks. Both recurrent and non-recurrent forms of these networks have been 
successfully used to develop accurate representations of battey behavior. The connectionist normalized linear spline 
(CNLg network has been implemented with a self-organizing layer to model a battery system with the generalized 
radial basis function net. Concurrently, efforts are under way to use the feedforward back propagation network to map 
the “state of a banery system. Because of the complexity of battery system, accurate representation of the input and 
output parameters has proven to be v e y  important. This paper describes these initial feasibility studies as well as the 
current models and makes comparisons between predicted and actual pe$ormance. 

1. Introduction 
We have initiated an effort to reduce design and manufacturing defects, as well as the time and cost 
for product realization through the use of advanced design and production technologies. 
Historically, battery development has relied heavily on a very pragmatic “build and test” approach 
to demonstrate that a particular design can meet the requirements of an application. Due to the 
time-intensive nature of the testing that is needed, this point design approach is expensive and 
typically has difficulty responding to changing or divergent sets of requirements. Power source 
performance and manufacturing models will alleviate these problems, and provide enhanced 
capability for evaluating product performance, reliability, and life. The availability of advanced 
design tools will also facilitate product improvements by linking specific design features with 
desirable performance attributes. In order to accomplish this, an infi-astructure of proven models, 
tools, and processes will be necessary. Toward this end, we are implementing a model-based design 
approach for power sources, beginning with model development for some types of lithium ambient- 
temperature batteries. 

A battery comprises a complex set of interacting physical and chemical processes, the purpose of 
which is the conversion of chemical energy into electrical energy. For this conversion process to 
occur, chemical species must be physically present at the electrode surface. The transport of species 
to the surface can occur in several ways, including diffusion, migration, or convection. Once at the 
surface, or at least in the near-surface region of the electrode, these species interact at the atomic 
and/or molecular level. These interactions, which are controlled by the thermodynamics and 
kinetics of the reactions of chemical species present in the near surface region of the electrode, 
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ultimately result in the transfer of at least one electron at each electrode. Besides these two electron 
transfer reactions (the cell half reactions), the species can undergo other chemical reactions, or may 
precipitate from solution. After reaction, the products are often transported away fkom the 
electrode. There are also many other processes occurring that may affect battery behavior such as 
long-term decomposition or corrosion of the constituents and other non-Faradaic side reactions. 
The formation kinetics and morphology of the products are often strongly influenced by the battery 
environmental conditions and use profile. In fact, due to the shear number and complexity of the 
processes taking place, and our inability to accurately describe some of them, it was not clear that an 
accurate phenomenological battery model could be developed. 

In spite of these difficulties, there are countless papers describing various attempts to model cell 
behavior using a variety of computational approaches, including closed form, finite element, and 
finite difference. In fact, in our effort to develop useful engineering tools, we are also sponsoring 
development of a comprehensive parametric model of electrical performance for the lithidthionyl 
chloride battery. The strength of the parametric approach is in its ability to link calculations of 
performance with individual cell components or actual cell processes, and to be able to easily handle 
a variety of cell designs by simply changing the appropriate parameters. 

As an alternative to this approach, we have completed initial studies of artificial neural networks 
( A N N s )  to simulate battery system behavior. Modeling of power source behavior with A N N s  has 
not been previously demonstrated, but this approach clearly has benefits, for example enhanced 
computational efficiency. An ANN learns about system behavior by being trained with a set of data 
that gives examples of measured output for different sets of input conditions. In the power source 
case, the inputs can include many factors, such as the chemistry, state-of-charge, load profile, size, 
temperature, and possibly the previous use and environmental history, while the outputs are voltage, 
current, and deliverable capacity. When modeling with A N N s ,  time consuming and difficult 
measurements of the fundamental cell parameters are not necessary since only electrical 
performance data under the conditions of interest are used for training. The connectionist 
normalized linear spline (CNLS) network has successfully modeled constant load discharges with a 
generalized radial basis function set and a feedforward back propagation network is being evaluated 
for simulation of battery voltages and capacity under variable load and temperature conditions. 
Although future battery performance is often highly dependent on past behavior and treatment, both 
recurrent and non-recurrent forms of these networks have been investigated in this study for 
representing the discharge behavior of primary lithium batteries. 

2. Neural Networks Used to Simulate Electrochemical Systems 
The ANN is an inductive, or data-based model for the simulation of input/output mappings. The 
ANN can be used in numerous fkameworks to simulate many types of system behavior including 
physical, financial, and, as will be shown here, electrochemical systems. A N N s  require training 
data to learn patterns of input/output behavior, and once trained, can be used to simulate system 
behavior within that training space. They do this by interpolating specified inputs among the 
training inputs to yield outputs that are interpolations of training outputs. The reason for using 
A N N s  to simulate system behavior is that they provide accurate approximations of system behavior 
and are typically much more computationally efficient than phenomenological models. This 
efficiency is very important in situations where multiple response or prediction computations are 
required. Some examples of computationally intensive applications are: (1) optimization of system 
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performance, (2) system identification, (3) system design, and (4) Monte Carlo analysis of 
probabilistic system response. 

Our ultimate objective is to simulate complex electrochemical systems for both optimization of 
system performance and system design. A N N s  are able to efficiently accomplish this simulation 
without extensive identification of physical parameters such as cell impedance or diffusion 
characteristics that are required in parametric models. There are a number of ANN architectures 
available to facilitate our electrochemical simulation. The structure, rules of operation, and 
environment for general A N N s  have been discussed in detail, for example, in Rumelhart and 
McClelland [ 13 and Vanluchene and Sun [2]. Though there are many types of A N N s  to accomplish 
our task, the two used to model battery behavior are the feedforward back propagation network 
(BPN) and the connectionist normalized linear spline (CNLS) network. The BPN is the most 
widely used ANN and it is described in detail in many texts and papers, for example Freeman and 
Skapura [3], and Haykin [4]. The BPN is very general in the sense that it can approximate 
mappings over a wide range of input dimension. It has been shown that, given sufficient training 
data, a BPN with at least one hidden layer and sufficient neurons can approximate a mapping to 
arbitrary accuracy (Hornik, Stinchcombe, and White [5]) .  The CNLS network is an extension of the 
radial basis function neural network (Moody and Darken, [6 ] )  and is described in detail in Jones, et. 
al., [7]. The CNLS net is designed to approximate a functional mapping by superimposing the 
effects of basis functions that approximate the mapping in local regions of the input space. Because 
the CNLS net is a local approximation network, it is inefficient for this network to be used in 
applications involving systems with high dimensional input spaces. 

The objective of any mapping ANN can be expressed mathematically using the following 
inputloutput notation and terminology. Let {x} represent a vector of inputs presented to a system. 
The system to be simulated operates on the data in {x}, yielding an output vector {z}. There is a 
functional relationship, {z} = g((x}), for (z} and {XI where the function g(.) is assumed to be 
deterministic but unknown. An ANN is constructed so that it can also be used to operate on the 
inputs {x} to yield @)=A( {x}). The function h(.) is deterministic, has a pre-established framework, 
and parameters (p}. The function h(.) will be an approximation to the system function g(.). Given 
a sequence of inputloutput exemplars (xj} and {zj}, j=l, ..., R, we seek to adjust the parameters (p> 
of the ANN to minimize the error between the actual system output {z} and the ANN output o/>, 
when presented with the same input {x}. This is accomplished through a training process that 
involves error minimization through variation of the parameters (p} . The error minimization can be 
performed using a local search (for example, gradient search, least mean square, Newton's method) 
or global search (for example, simulated annealing, genetic algorithm). Once training is complete, 
it is hoped that, given an input {x} different from those used during training, an ANN will yield 
outputs Cy}, that are accurate approximations of the outputs {z }  produced by the system being 
modeled. The ANN serves as an interpolator of output vectors among the output exemplars as a 
function of the position of the input vector among the input exemplars. A diagram of this process is 
shown in Figure 1. 
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Figure 1. Diagram showing error of ANN model simulating system. 

. Error 

A N N s  can be used simply to map inputs to outputs without reference to their temporal ordering, or 
they can be used to map system characteristics at time index tj to the same characteristics at time 
index $+,. The latter form of ANN is called recurrent. We mention this fi-amework for use of k s  
because we have briefly used them to model some aspects of battery behavior with the CNLS 
network. In addition, these recurrent nets may prove useful in the modeling of the temporal 
evolution of electrochemical system behavior under both constant and pulsed conditions. 

3. Modeling of Electrochemical Systems with ANNs 
As mentioned previously, many attempts have been made in different frameworks to model 
electrochemical systems. Because these systems are so complex, the ability to develop an accurate 
parametric model that can be used for both optimization of performance and system design has been 
limited; therefore, time-consuming build and test procedures remain the norm. Therefore, using 
A N N s  to efficiently simulate and predict the behavior of these systems could prove to be extremely 
cost and time effective while improving system performance. The electrochemical system used for 
these studies of ANN modeling is the lithiwtdthionyl chloride battery. The challenge in this 
investigation is to use relatively simple but specialized experimental results to build a model that 
accurately and efficiently reflects real battery behavior under complex use profiles. Simulations of 
this battery system progressed fi-om simple constant load discharges to more complex and practical 
simulations including temperature variation and load pulses. Recurrent and non-recurrent forms of 
neural networks were used in this study. Results of a sequence of model developments are 
presented in the following discussion. 

Initial feasibility studies began by simply trylng to replicate a discharge curve of the lithiwtdthionyl 
chloride battery with the CNLS network. Figure 2 shows a non-recurrent simulation of the battery 
voltage under a constant discharge load of 50 ohms at 25°C. As can be seen in the figure, the 
simulation approximates the experimental data very well. Because one of the major interests in this 
feasibility study is to determine if A N N s  are able to predict the amount of capacity delivered by a 
battery, it is important that the nets be able to simulate the discharge curve near the "knee", i.e., 
where the voltage begins to drop. In this case, that is near 200 hours of discharge. Although the 
exemplars used to train the CNLS network are largely concentrated at about 3.5 volts (0 hours - 200 
hours), the network was still able to capture the dynamics of the discharge at the knee. This is due 
to the local approximation capability of the radial basis functions used in the CNLS network. 
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Figure 2. Non-recurrent CNLS simulation of battery voltage data (50 ohm discharge load, 25°C) 

The next practical test was to simulate this curve with a recurrent form of the CNLS net. The 
recurrent simulation is shown in Figure 3. This simulation predicts voltage (vj) using time (tj) and 
only one delayed network prediction of voltage (vjJ as inputs. The recurrent CNLS net simulated 
the experimental data very well with some minor degradation of predictions at the knee of the 
voltage-time curve compared to the non-recurrent case. The main source of error in this application 
arises fiom the iterated nature of the simulation. When the simulated voltage departs from the 
experimental curve, the error tends to persist because the predicted voltage at time tj is based on a 
predicted voltage at time tj-l. In order to diminish the chance of instability in response prediction, 
we added noise to the input exemplars to develop additional training sets, and used these in the 
training process. This provided robustness in the ANN predictions that diminished the potential for 
instability. 

Figure 3. Recurrent CNLS simulation of battery voltage data (50 ohm discharge load, 25°C). 

Both the non-recurrent and recurrent CNLS simulations of the battery data under constant load 
conditions were accurate. Our next step in increasing the complexity of ANN simulations was to 
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model a system with different loads. This was done, and the results are shown in Figure 4. The 
results indicate that the CNLS network can accurately simulate battery discharge curves with this 
additional dimension to the input space. Again, the accuracy with which this network predicts the 
discharge voltage is largely due to the local approximation capability of the CNLS network. 
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Figure 4. Non-recurrent CNLS simulation with load as an input (T=25"C). 

A recurrent simulation using load as an ANN input variable was not possible using the experimental 
data shown in Figure 4 due to the variation in sample rate used for each individual load discharge. 

The CNLS network uses a self-organizing layer on input exemplars to determine the center 
locations for its radial basis functions. This contributes to the accuracy for local approximations of 
the network. The advantages of the local approximation, however, were not conducive to the 
interpolation characteristics desired at this phase of our feasibility study. Therefore, the 
feedforward back propagation network (BPN) was used to further our investigation of ANN 
interpolation on battery data. Figure 5 shows the simulation of a constant load discharge at 300 
ohms. The BPN was trained with 25°C constant load discharge data at 50,250, and 400 ohms and 
an interpolated time series at 300 ohms is presented. The BPN provided very good interpolation 
characteristics for loads between 50 and 400 ohms. 

At this point, we had generated some interpolation results for constant load discharge data (Figure 
5) .  Our next objective was to extend our predictions to pulsed loads and variable temperature. 
Because little pulsed data were available at this point to use in our training sets, the isothermal, 
constant load discharge data were used to train the BPN in order to determine whether their use 
could be extended to pulsed load or pulsed temperature conditions. Specifically, the constant load 
discharge data available for training are outlined in Table I. 
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J interpolation of a constant load discharge at 300 ohms (T= 2). 

Table I. Constant load, constant temperature data available for ANN simulations. 
Load (ohms) Temperatures (“C) 

50 -40,25,49 
250 -40,25,49 
400 -40,25,49 

With these data, we would be able to simulate pulsed loads between 50 and 400 ohms, and 
temperature variation between -40°C and 49”C, or a combination of both. A load pulse could be 
simulated if we could determine the rule for an isothermal transition from one constant load 
discharge curve to another. Figure 6 shows a simulation developed by training the BPN with 
constant load discharge data at 50 and 250 ohms at 25°C. Once trained, the network was used to 
simulate a pulsed load condition between these two loads with 3-Amp hour capacity dwells at each 
load. Note that we have converted the independent temporal variable from time to current capacity 
used; this introduced a more convenient normalization of the temporal variable. With the pulsed 
load simulation, we were trying to identify how the deliverable capacity might vary depending on 
the pulsed load conditions. Because the measured capacity of these battery cells is known to change 
with load, a critical question is how to map the battery capacity “state” from one load to the other 
during a pulse. Specifically, the transition could be based on the “fraction of capacity delivered”, 
the “absolute capacity used”, or some other rule. One might expect the fraction of capacity 
delivered to give a better transition between the two loads, but it turned out that absolute capacity 
used seemed to perform a better mapping in this case. Therefore, this is the transition rule used in 
the sequel. Further investigation of this mapping rule needs to be done to determine the best forms 
of transition for all situations. 
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6.  Isothermal pulsed load simulation between 50 and 250 ohms at 25°C. 

As mentioned above, the simulation shown in Figure 6 is based on the network being trained with 
constant load discharge data. The experimental pulse displayed in Figure 6 is based on data that 
were gathered later. A slight difference is noticeable between the experimental voltage curve and 
the simulated curve at 50 ohms. The constant load discharge data at 50 ohms that were used to train 
the BPN had a slightly higher voltage level than the actual pulsed data at that load, which is 
reflected in this simulation. The simulated pulse also seems to approach failure (voltage < 2V) 
slightly before the experimental pulse, causing a more rapid drop-off at the knee. Currently, we are 
testing other batteries with varied load pulse profiles in attempts to fully understand the transition 
between load curves during pulse discharge and to determine if observed differences between actual 
and predicted behavior are a result of cell-to-cell variability. Likewise, tests are being run on 
batteries in which only the temperature is varied so we can identify a rule for the transition fi-om one 
temperature to another under constant load. In this case, it may be more likely that the "fraction of 
capacity delivered" rule will be followed for transition as there are greater fluctuations in measured 
capacity when moving from one temperature to another (especially to low temperatures) than occur 
over this range of loads. Once further tests are performed and the rules for moving between loads 
and temperatures are more completely understood, we intend to simulate a profile in which both the 
load and temperature are pulsed. We currently have experimental data taken under this type of 
condition. Specifically, the temperature cycle consisted of a cold, an ambient, and a hot level while 
the load was pulsed between a very low current background and a moderate on-pulse level. 
Constant load discharge curves are still being developed for the load range that corresponds to this 
test. Because our constant load discharge data were available at three different temperatures, an 
arbitrary simulation was done to predict the battery voltage using a BPN network trained with 
capacity, load, and temperature inputs. Figure 7 shows this arbitrary simulation of a load and 
temperature pulse (the three solid lines at each load represent the three temperatures used in 
training). 
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Figure 7. ANN simulation of arbitrary load and temperature pulse. 

The important characteristics to note in this pulse profile are the ability of the network to predict the 
change in voltage fkom one temperature to another and that more capacity can be delivered when 
moving fkom a low temperature to a high temperature. An example of the network predicting a 
reduction in voltage moving from a higher to a lower temperature is shown above near 4 Amp hours 
of capacity removed (circled in the figure). Here, the network predicts a reduction of about 0.5 volts 
as the temperature is changed from 25°C to -40°C. Near 12 Amp hours removed, the simulation 
suggests no voltage output from the cell as the temperature is lowered from 25°C to -40°C, but 
shows capacity still exists when the temperature is returned to ambient. These types of responses 
shown in the simulation are clearly representative of the battery behavior seen in laboratory 
experiments and further analysis with A N N s  will increase our understanding of discharge behavior 
under both constant and pulsed conditions. 

4. Conclusions 
Initial modeling efforts of electrochemical battery systems with artificial neural networks has 
proven to be very successful. Our feasibility study for this form of non-phenomenological modeling 
began by looking at single load constant discharge data. Both recurrent and non-recurrent forms of 
the CNLS network were utilized in simulating these curves. The CNLS network was able to 
accurately simulate these discharge curves and the local approximation capability of this network 
allowed excellent representation of the area surrounding the "knee" of the discharge curve. 
Although the CNLS network performed very well in the input space where training exemplars were 
located, the interpolation characteristics between load values were not expected to be as good. 
Efforts to improve the interpolation capabilities of the CNLS net are currently under way. At some 
point, the CNLS net may be combined with the BPN for battery simulation. 

The parameters of the BPN do not explicitly depend on the training exemplars like the centers of the 
radial basis functions do in our C N L S  network. Therefore, the BPN was used to investigate 
interpolation characteristics of battery data. Specifically, a 300 ohm constant load discharge 
simulation was performed with the BPN and the results compared very well to what is expected in 
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the laboratory. The BPN has also been used to simulate pulsed load conditions at constant 
temperature. The BPN was trained with constant load discharge data as no pulsed data were 
available. A pulsed load experiment matching the profile of the simulation has now been completed 
and the ANN prediction compares well to these experimental results (Figure 6) .  The ability of the 
BPN network to simulate battery pulsed discharge data when trained with the constant load 
exemplars is a significant finding of our work. 

Our current efforts involve completing a similar experiment with variable temperature under 
constant load conditions. Once this information is available, we will be able to simulate a battery 
discharge in which both the temperature and load are arbitrarily changed. With additional 
experimental pulse data being generated, ANN architecture and training can be optimized to further 
increase the accuracy of our battery simulations. This will involve ANN training using 
experimental battery data where temperature and load are varied simultaneously. It is not clear that 
any simple rule or combination of rules will suffice to generate accurate ANN simulations of-real 
battery behavior. Additional tools like genetic algorithms and/or genetic programming may be used 
to establish more accurate transition rules. 

These initial efforts on battery modeling have proven to be very effective, and more complex 
simulations of battery behavior can likely be performed. With advanced study of ANN modeling, 
and the parametric model being developed, it is our hope that an advanced hybrid model can soon 
be constructed that will help design, optimize, and produce more efficient and robust battery 
systems. 
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