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Abstract 

This paper presents the comparison of the COMOPS benchmark performance in 

MPI and shared memory on three different shared memory platforms: the DEC 

Alphaserver 8400/300, the SGI Power Challenge, and the HP-Convex Exemplar 

SPP1600. The paper also qualitatively analyzes the obtained performance data based on 

an understanding of the corresponding architecture and the MPI implementations. Some 

conclustions are made for the inter-processor communication performance on these three 

shared memory platforms. 
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Introduction 

Introduction 

Parallel computing on shared memory multi-processors has become an effective 

method to solve large scale scientific and engineering computational problems. Both MPI 

and shared memory are available for data communication between processors on shared 

memory platforms. Normally, performing inter-processor data communication by copy- 

ing data into and out of an intermediate shared buffer seems natural on a shared memory 

platform. However, some vendors have recently claimed that their customized MPI imple- 

mentations performed better than the corresponding shared memory protocol on their 

shared memory platforms even though the MPI protocol was originally designed for dis- 

tributed memory multi-processor systems. This situation makes it hard for users to choose 

the best tool for inter-processor communication on those shared memory platforms on 

which both MPI and shared memory protocols are available. In order to clarify this confu- 

sion, a comparison experiment was conducted to illustrate the communication perfor- 

mance for the COMOPS operations on major shared memory platforms. This paper 

presents the experimental results and presents some qualitative analyses to interpret the 

results. 

This paper has four sections. In the first section, the architectures of three shared 

memory platforms are briefly described. The implementation details of the experiment are 

described in the second section. The second section also discusses the shared memory 

simulation of those communication patterns defined in the COMOPS benchmark set. The 
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third section presents the data and analyses. It graphically exhibits the collected commu- 

nication performance data and qualitatively interprets the performance behavior based on 

an understanding of underlying architectures. In the final section, some conclusions and 

recommendations are made regarding the interprocessor communication performance on 

the three shared memory platforms. 

Architectures 

Currently there are two types of shared memory connections for multi-processor 

systems. One is the bus-connected shared memory system as illustrated in Figure 1. The 

DEC AlphaServer 8400/300 and the SGI Power Challenge have this type of architecture. 

Figure 1. Bus-connected shared memory multiprocessors 

In this type of system every processor has equal access to the entire memory system 

through the same bus. Another type of shared memory multi-processor connection archi- 

Shared Memory vs. Message Passing 3 
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tecture is the crossbar switch. This crossbar connection is a typical connection mecha- 

nism within one hypernode of many distributed shared memory (DSM) systems such as 

HP-Convex Exemplar and NEC SX-4. The Exemplar SPP architecture is shown in Figure 

Figure 2. Convex Exemplar Hypernode Structure 

2. The Convex machine we have access to (courtesy of Convex) is a one-hypernode 8-pro- 

cessor machine. The inter-hypernode connection is irrelevant to this experiment and this 

paper focuses on the intra-hypernode structure only. 

The memory access pattern and the physical distance between two processors are 

different in bus-connected and distributed shared memory systems. In a bus-connected 

shared memory structure, the memory access for each processor is uniform. But in a dis- 
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tributed shared memory structure, the memory access is non-uniform. This structure is 

called a NUMA (Non-Uniform Memory Access) architecture. Also, the inter-processor 

communication in bus-connected shared memory systems is homogeneous and every pro- 

cessor is equi-distant to any other processor in the same system. On the other hand, in a 

NUMA system such as Convex SPP, a processor always has some neighbors electrically 

closer than the others in the system. As illustrated in Figure 2, even though the memory 

access is still uniform within one hypernode of the SPP1600, each processor is electrically 

closer to the one shared with the same agent because it does not need to go through the 

crossbar switch for the inter-processor communication. 

In this experiment, none of the three shared memory machines has a physical 

implementation for CPU-private or thread-private memory. In a bus-connected multi- 

processor system, such as the SGI Power Challenge and the DEC Alphaserver 8400/300 

(nickname Turbolaser), the memory system is purely homogeneous. Therefore, there is 

no physical distinction between a logically-private memory space and a logically-shared 

memory space. For the NUMA system SPP1600, although it is a DSM system, its CPU- 

private or thread-private memory is not physically implemented (HP-Convex, 1994). 

Instead, the operating system partitions hypernode-private memory (memory modules 

within one hypernode) used as CPU-private memory for each of the processors in the 

hypernode. The reason for this is that implementation of a physical CPU-private memory 

Shared Memory vs. Message Passing 5 
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would not result in substantially lower CPU-to-memory latency, and the latency from a 

processor to hypemode-private memory would be increased (HP-Convex, 1994). 

The Experimental Method 

The direct objective of this experiment is to clarify the difference in the perfor- 

mance of inter-processor communication between the shared memory protocol and the 

message passing protocol on a shared memory platform. To achieve this goal, the com- 

mon inter-processor communication operations specified in the LANL COMOPS bench- 

mark set are used to perform the comparison. The point-to-point communication 

operation actually used in this experiment is ping-pong. The tested collective operations 

include broadcast, reduction, gather, and scatter. 

The COMOPS benchmark set is designed to measure the performance of inter-pro- 

cessor point-to-point and collective communication in MPI. It measures the communica- 

tion bandwidth and message transfer time for different message sizes. The set includes 

ping-pong, broadcast, reduction, and gatherhcatter operations. The MPI performance 

measurement can be directly performed on the three platforms with the corresponding best 

available MPI implementation. Both SGI and HP-Convex have their own customized MPI 

implementations on their shared memory platforms. Although the current version of MPI 

implementation on our DEC Alphaserver 8400/300 Turbolaser is a public-domain 

MPICH version, according to the information from DEC, this MPICH implementation 
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performs no worse than the DEC customized version MPI within one shared memory 

multi-processor box. The main effort of this experiment is to write a shared memory ver- 

sion of the COMOPS benchmark set. The shared memory version of these communica- 

tion operations is illustrated in the following pseudo-code. 

ing-pong : 
call timer 
do ntimes 

if (my-thread .eq. 0) then 

endif 
barrier !! synchronization 
if (my-thread .eq. 1) then 
private-val=shared-tmp 
shared-tmp2=private-recv 

endif 
barrier ! ! synchronization 
if (my-thread .eq. 0) then 
private-val=shared-tmp2 

endif 

shared-temp=private-send ! ! Thread 0 sends out message 

! ! Thread 1 receives the message 
! ! Thread 1 sends out the message 

! !Thread 0 receives back the message 

enddo 
call timer 

roadcast: 
call timer 
do ntimes 

if (my-thread .eq. 0) then 

endif 
barrier ! ! synchronization 
if (my-thread .ne. 0) then 

endif 
barrier ! ! synchronization 

shared-temp=privated-send ! ! Thread 0 sends out message 

!! Other threads receives the 
private-recv=shared-tmp ! ! message simultaneously 

enddo 
call timer 
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teduction (global max): 
call timer 
do ntimes 

critical section 
shared-tmp=max(shared-tmp, private-send) 
end critical section 

barrier !! synchronization 
if (my-thread .eq. 0) then 

endif 

!! Thread 0 collects the final 
private-recv=shared-tmp ! ! result 

enddo 
call timer 

;ather: 
. call timer 

do ntimes 
shared-tmp(j+my-thread*N-size)=private-send(j) 

barrier ! ! synchronization 
if (my-thread .eq. 0) then 

endif 

! ! Thread 0 collects the final 
private-recv=shared-tmp ! ! result 

enddo 
call timer 

lcatter: 
call timer 
do ntimes 

if (my-thread .eq. 0) then 

endif 
shared-tmp=private-send ! ! Thread 0 sends out the message 

barrier ! ! synchronization 

barrier ! ! synchronization 
private-recv(j )=shared-tmp(j+my -thread*N-size) 

enddo 
call timer 

~~~~ ~~ - ~ 
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This experiment actually involves two versions of shared memory codes because 

of the different shared memory programming environments. The shared memory pro- 

gramming environment on both the DEC Alphaserver and SGI Power Challenge systems 

is compatible with PCF (Parallel Computing Forum) standard. Therefore, only one ver- 

sion of code is needed for these two machines. The Convex shared memory programming 

feature in Fortran is slightly different. In particular, in the operation of ping-pong, a lock- 

and-wait mechanism, instead of the general synchronization barrier, can be used for the 

synchronization between Processor 0 and Processor 1. 

As shown in the pseudocode list, only one pair of processors participate in the 

operation of ping-pong, regardless of the total number of processors involved. The collec- 

tive communication operations involves all the processors in the run. The shared memory 

version accomplishes the same operations performed in the original MPI version of the 

COMOPS benchmark. 

Performance Data and Analysis 

The original MPI COMOPS benchmark set and the equivalent multi-thread shared 

memory version have been run on three platforms outlined in Table 1 (SGI, 1995, DEC, 

1995 & Reed, 1996). On both SGI and Convex machines, vendor’s customized version of 
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DEC 
Turbolaser 

MPI are used in this experiment. On the DEC Alpha machine, a public-domain MPI 

Convex 
SPP1600 

implementation (MPICH) is used. 

CPUklock 

Data Cache 

Memory 

TABLE 1 .Three Tested Shared Memory System Configurations 

8 * MIPS RlOW 
194MHz 
L1:32KB L2: 
2MB 

2304MB 1-way 
interleaved 

SGI Power 
Challenge 

10 * Alpha 211641 
300MHz 
L1: 8KB 
L2: 96KB 
L3: 4MB 
4GB 8-way inter- 
leaved 

8 * HP 7200 / 
120MHz 
L1: 1MB 
(plus 2KB on-chip 
cache) 

1Gb 4-way inter- 
leaved 

Peak Connecting 
Bandwidth 

1.2GB/sec 

The collected performance data are illustrated in Figures 3 through 17. Figures 3 

through 5 ,  Figure 7, and Figure 8 exhibit the cross-platform bandwidth comparison and 

the comparison between the shared memory communication protocol as well as the mes- 

sage passing communication protocol. These performance data are all obtained using four 

processors with different message sizes. It is clear that the performance of the SGI MPI is 

generally superior to the other ones (except for pingpong performance). The SGI MPI is 

also better than its corresponding shared memory performance on all 5 communication 

operations (ping-pong, broadcast, reduction, gather, and scatter). 

More specifically, on the SGI Power Challenge, MPI is about three times faster 

than shared memory for the performance ping-pong. The broadcast performance on this 

SGI shared memory machine is about the same for MPI and shared memory. Scatter 
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operations in the SGI MPI are nearly 10 times faster than shared memory for medium and 

big message sizes. As for gather operations, MPI bandwidth is nearly five times higher 

than shared memory bandwidth for medium message size. For a message size of 800KB, 

this MPI performance still holds at the level of twice as fast as the shared memory. 

The DEC Alphaserver 8400/300 has comparable MPI and shared memory perfor- 

mance for the ping-pong operation. But for all the tested collective operations (broadcast, 

reduction, gather, and scatter), its shared memory bandwidth is considerably higher than 

the MPI bandwidth. 

On the Convex Exemplar SPP1600, the Convex-customized MPI performs eight 

times faster than its shared memory does for the ping-pong operation. The Convex MPI is 

also the best one in terms of pingpong performance. For the other four collective opera- 

tions, the performance of MPI is just slightly better than that of shared memory method. 

Figure 6 demonstrates the ping-pong round trip transfer time for small message 

sizes (8 Bytes to 80 Bytes). This performance typically reflects the communication 

latency. It is clear that the shared memory method on the DEC AlphaServer8400 has the 

lowest ping-pong latency. In Figures 9 through 17, the performance behaviors for ping- 

pong, broadcast, and reduction are respectively shown on each platform for a fixed mes- 

sage size (800K.B) with different number of processors. It should be noted that the band- 

width calculation of ping-pong in COMOPS is what some people called “ping-pong rate = 
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message-size / round-trip-time”. So, it’s only half of the “one-way” ping-pong band- 

width as other benchmark reported. 
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Figure 7 and Figure 8 reflect a big difference between the gather and the scatter 

bandwidth in the SGI MPI. According to Eric Sal0 (1996), a SGI MPI expert, for scatter 

operations, the root processor essentially sends a pointer and a length of the targeted data 

block to each of the slave processors, which then copy the data in parallel. This turns out 

to be the situation in which every slave processor directly reads the corresponding block of 

data from the space owned by the root processor. Since in scatter operations, every slave 

processor reads a different block of data, virtually no memory conflicts exist, and all pro- 

cessors can read the data at full bandwidth. But for gather operations, the situation is 

reversed. The root processor has to move the data from different locations all by itself. 

So, the gather bandwidth is limited by this implementation at the level of about 70MB/sec. 

Turbolaser Pingpong ( S O O K B )  Time 

4 0 -  

35 - 
3Q - 
2 5 -  

2 0 -  

15 - 
1 0  - 
5 -  

0 -  
2 4 6 

Number of Processors 
Figure 9. mrbolaser ping-pong Time 

8 
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Now, based on an understanding of architectures and the underlying MPI imple- 

mentations, the qualitative performance analysis of ping-pong, broadcast, and reduction 

operations on each platform is presented here. Figure 9 shows the ping-pong time on the 

DEC Alphaserver for a fixed message size (SOOKB) with different number of processors 

involved. On this DEC machine, MPI is built on top of its shared memory communication 

protocol. Therefore, MPI performance is always slightly worse than shared memory 

because of the overhead involved in the MPI implementation. Also, MPI processes seem 

to be “heavy”. Although only two processors participate in the ping-pong operation, the 

time slightly grows up when the number of ME)I processes increases. This is probably due 

to the interruption from the operating system and the other MPI processes, which are sup- 

posed to be idle. On the other hand, the time for the shared memory ping-pong operation 

remains constant, regardless of the number of processors in the run. This is because the 

cache coherence caused by invalidating the shared cache line on each processor is per- 

formed by broadcasting the message on the bus, instead of sending it to each processor 

separately. 

The broadcast performance on the DEC Alphaserver (Figure 10) is easy to under- 

stand. The increase of the shared memory broadcast time with more processors is caused 

by the increasing queue length of the slave processors. In MPI, the synchronization cost 

causes the broadcast time to increase more significantly with more processors. The same 

situation holds for reduction (Figure 11). However, because the shared memory reduction 
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involves a critical section (as listed in the pseudocode), the reduction time increases more 

as more processors are waiting to enter the critical section. 

Similarly, the ping-pong operation has a flat performance on the SGI Power Chal- 

lenge (Figure 12). The difference from the situation of the DEC Alphaserver is that the 

MPI ping-pong time does not grow up with more processors. It looks like the MPI pro- 

cesses are “light” on the SGI Power Challenge because the OS interruption does not steal 

the effective bandwidth even if all processors are in the run. The SGI implementation of 

MPI is based on the global memory copy function BcopyO (Salo, 1996). Thus, the ping- 

pong operation is accomplished by directly copying data from the space owned by the 

source processor to the destination processor, without going through an intermediate 

SGI Pingpong (800KB) P d o m m c e  
7-2 
i z h  = 
iBll MPI 

2 3 4 6 8 

Number of Processors 

Figure 12. SGI ping-pong Time 
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7 0  

m 

10 

0 
2 4 6 8 

Number of Processors 
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SGI Broadcast ( S O O K B )  Performance 
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Figure 14. SGI Reduction Time 
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shared space (Gropp, Lusk, Doss & Skjellum, 1996). Therefore, the shared memory 

scheme, which uses an intermediate shared space as an interim, takes more than twice as 

long as MPI does. 

The performance of shared memory broadcast and reduction on the SGI machine 

(Figure 13 and 14) is similar to what is observed on the DEC Alphaserver because of the 

identical architecture and the same version of shared memory code. The time for broad- 

cast grows up with more processors because of the increasing queue length for reading the 

shared space. For reduction, the cost from the critical section increases with more proces- 

sors involved. The MPI performance behaviors for broadcast and reduction on the SGI 

Power Challenge are interesting. In fact, the MPI performance illustrated in Figure 13 and 

14 reflect the underlying implementation of the SGI MPI. The MPI operation for broad- 
._ 

cast is implemented as a fan-out tree on the top of the Bcopy() point-to-point mechanism 

(Salo, 1996). For reduction operations, it is in the reversed order as a fan-in tree. Both of 

them have some parallelism as each pair of processors can perform fan-in or fan-out inde- 

pendently. Since the algorithm of fan-idfan-out tree requires a synchronization at each 

tree-forlu'join stage, the cost of broadcastheduction will grow up with more forlu'join syn- 

chronizations as more processors participate into the operation. Therefore, the time for 

reduction on eight processors is nearly the same as that for six processors because they 

both involve the same number of join synchronization stages. The big growth in the time 

for broadcast on eight processors (Figure 13) in fact is caused by the synchronization at 
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the completion of broadcast. With all the processors in the system being synchronized at 

certain point, the OS overhead can be significant. On the other hand, there is no need for 

such a synchronization in reduction. 

The ping-pong performance on the Convex SPP1600 (Figure 15) is very similar to 

that on the SGI Power Challenge. From the phenomenon that the MPI takes nearly half 

time of what the shared memory scheme takes to perform the ping-pong operation, it is 

reasonable to anticipate that the MPI implementation on the SPP1600 may be also based 

on the direct memory copy, instead of going through an intermediate shared space (Gropp, 

et al, 1996). Also, some special manipulations must have done to achieve nearly 8 times 

faster pingpong speed in the Convex implementation of MPI. 

SPPl600 Ping-pong (800KB) Time 

Number of Processors 

Figure 15. SPP1600 ping-pong Time 
~~~~~~ ~~~ 
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The performance of shared memory broadcast and reduction on this SPP1600 

SPP1600 Broadcast (800KB) 
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Figure 16. SPP1600 Broadcast Time 
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Figure 17. SPP1600 Reduction Time 
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(Figure 16 and 17) is similar to the other two machines. The queue length for reading the 

shared block and the cost from the critical section are the major effects in broadcast and 

reduction respectively. 

Since the details of broadcast and reduction implementation in the Convex version 

of MPI are unclear at this moment, it is anticipated that the MPI broadcast involves regular 

synchronizations, just like the situation on the DEC Alphaserver. As for reduction opera- 

tions, the slightly higher cost on six processors is probably because two of the six proces- 

sors may not be on the same agent (Figure 2). Therefore, the interaction between these 

two processors has to go through the crossbar switch. 

Conclusions 

From the COMOPS benchmark results measured on three shared memory 

machines, the following conclusions can be made. 

1. The MPI implementation on the SGI Power Challenge is generally 

superior to the others, at least for COMOPS operations. 

2. In general, the communication performance for COMOPS operations is 

better in two customized versions of MPI, the Convex MPI and the SG 

MPI, than in their corresponding shared memory schemes. 
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3. On the DEC Turbolaser, the communication performance in the shared 

memory scheme is slightly better than that in the MPI because of the MPI 

overhead. 

It is clear that customizing the MPI implementation based on the specific hardware 

architecture is a good way to achieve high performance for message passing operations on 

a shared memory platform. Also, using direct memory copy, instead of going through an 

intermediate shared space, is critical to the improvement of the communication perfor- 

mance. 
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