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Abstract

Intelligent agents that participate in free-forming collabo-
rations choose strategies to maximize their effectiveness in
achieving goals. In a heterogeneous agent society where
each has no knowledge of the logic behind other’s motives
or real intentions, it is difficult to conceive how an algorithm
would provide an effective collaboration strategy. \\e pro-
pose a set of general, quantitative criteria for detecting col-
laboration situations leading to the duoagent collaboration
dilemma (DCD). We show that DCD is a widely applicable
collaboration scenario and it can take advantage of a class
of problemssocial scientists have studied extensively. Lastly,
we provide steps to developing practical computable strate-
gies for agentsto avoid and resolve problems in a subclass
of DCD.

1. Introduction

Imagine thefollowing situation: your intelligent agent Alice
finds agent Bob over the Internet, thinking that they needed
each other to achieve their goals. Knowing that Bob may
be intending to conceal facts or manipulate the communica-
tion so that he can be more effective in arriving a his own
goals(at the cost of compromising Alice'scompetency), how
best should Alice devote her resources and carry through the
collaboration?

The obvious step towards solving the problem is probably
to design an agent architecture to completely eliminate the
possibility of “cheating.” Work in distributed Al often takes
thisapproach and designsframeworksto contai nthe behavior
of the intelligent agents. However, practical results have
been very limited [4] and it seems worthwhileto approach
the problem from a different direction.

1.1. Fundamental difficulties

Direct analysis on the congtituents of an intelligent agent
community faces at least three major problems. Traditional
computer science approaches may be fundamentally ineffec-
tive in dealing with collaboration decisions [6]. We identify
three observationsthat complicate the situation.

Computational imprecision The control logic behind each
intelligent agent can be completely opague to one an-
other. Thissituationisunliketraditional studiesof com-
puter systems where each component is fully described
by a clear set of agorithms. Agentsin general, espe-
cialy when having conflicting goals, have no interest
in exposing their own “bottomlines,” hence we cannot
compute the situations with the assumption that we al-
ways have accurate descriptions of them.

Membership imprecision Due to the asynchronous nature
of the Real World (where communication inevitably in-
curs a loss of undetermined time), there is no way we
can exactly label each agent to bein or out of aset. Try
to determine the number of web pages connected to the
Internet at a given instant, or the number of agents that
will eventually receiveyour next broadcast message, and
you should never be able to have an exact answer [3].

Thuseven if each node can be specified with mathemat-
ica logic, we can hardly have an exact picture of al
the entities participating in a collaboration to carry out
acomplete, overall analysis.

Goal conflict Each intelligent agent hasits own set of goals
to achieve at any given moment. There need not be any
agreement among the agents on the goals, and agents
can be stepping on each other’s toes in the process of
carrying out their tasks [5]. If the environment triesto
set a “public standard” that interferes with an agent’s
gods (i.e., data encryption standard), we should expect
the agent to find ways to invalidate the constraints to
achieve itsaims.

These three inevitabl e characteristics of intelligent agents
research—computationa imprecision, membership impreci-
sion, and goa conflict—make our studies depart fundamen-
tally from traditional computer science.

1.2. Implementation difficulties

In addition to the fundamental differences, there are severa
real problemswhen we chooseto study agentsthat work over
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the Internet. The Internet has severa peculiar qualities that
used to receive very little attention but can be a red threat
to enforcing multiagent policies or to protecting innocent
agents. Three of which are discussed below.

Intermittence The Internet is based on the TCP/IP proto-
col, a reliable, asynchronous message-passing mecha-
nism. When a network fault occurs, data packet trans-
mission is retried until target responds with a positive
acknowledgement. When an expected message is de-
layed, there isno way for the waiting agent to correctly
deduce whether it was because the sender went down,
the network caused transmission delay, or data became
corrupt during delivery and is being retransmitted.

Under this condition, when a request goes without a
response, we cannot decide whether the agent at the
other end should be held responsible for not providing
service. This makes it hard to enforce agreements over
the network.

Amorphism On the Internet, entities are named by their

IP addresses, a string of digits that alows parties to
be located, functionally resembling tel ephone numbers.
Imaginetrying to determinethereal identity of astranger
behind a telephone handset. It is not an easy task, if
feasible at al. Worse yet, two voices coming from
two different telephone numbers cannot be determined
to have come from the same person or two different
entities.
Theunlimitedformsan entity can assume onthelnternet
make it a greater impossibility to enforce agreements.
Whenever it deems profitable to, an entity can instantly
disappear and re-emerge under a different identifier.

Suffocation Nothing in the world today prevents an agent
from blocking out another on the Internet. If anyone
wants to paralyze an information search service, he can
write a simple script to continuously feed the service
with dummy queries until the server becomes too busy
to usefully serve anyone else.

When threats are possible on the Internet, an agent can
effectively shut down another’s services or claim that
othersare inhibitingit from completing itstasks. Again
responsibility for failing a contract becomes hard to de-
termine.

To beapplicablein reality, we need new solutionsthat can
handle or avoid al these problems, and thisis exactly what
we have set out to study. We start by a formulation of the
domainwewishtoinvestigate, followed by specific strategies
agents can make use of to strivein collaborations on such a
domain. At al times we keep in mind the list of problems

we have raised in this section and formul ate our solutionsto
avoid building our foundation on quick sand.

2. Problem formulation

We start by defining the process of multiagent collaboration.
We characterize a collaboration process with resources put
into it and payoffs derived as aresult.

2.1. Nativecharacteristics

Definition 1 (Collaboration payoff) Given Ry, ---, Ry,
over a scalar field F (eg., real numbers) as resources in-
vested in a collaboration by agents«, - - -, oy, respectively,
the payoffstoagent «;, ¢ = 1, - - -, n, of the collaborationis
afunctionp;(Ry, -+, Rp) € F.

In order to compute the exact payoff from acollaboration,
the above model would require we know the exact resources
invested by each agent in an n-agent collaboration. This can
betroublesomein situationsinvolvingagentswith thequality
of computational imprecision. Such agents may consume
resources from channels that escape monitoring, effectively
prohibiting an outsider to make a precise measurement of
the qualities. Human agents are of a particular class that
consume resources implicitly or in units difficult to measure
(i.e., environmental effects, emotional effects, etc.).

The model we wish to arrive at must be more tolerant on
the resource issue. As we will see, our formulation only
requires arelative ordering among the R;’swhich isin most
cases easier to identify than the actual values.

In collaborations, we wish to address the fact that two
agents working together may produce more or less than the
sum of each working individually, hence yielding a profit
or deficit (it is for this profit that agents collaborate). For
our model we will discuss only those payoff functions that
are linear combinations of the resources invested by each
participant.

Definition 2 (Linear payoff) A linear payoff to agent «; in

an n-agent collaboration has the form p;(Ry, -+, R,) =
Ui(Rla sy Rn) Z?:l C]‘R]‘, Whereai(Rl, cey Rn) € Fis
the profit share function with "7 o;(Ry,- -+, Ry) < 1.0

and ¢; € F the collaboration effectiveness factor on agent
a;’s contribution.

Linear payoff offers an arithmetic model that is easy to
compute. Perhaps more important, error ranges for linear
payoffs are bounded proportiona to the magnitude of un-
certainty in R;’'s (recall computational and membership im-
precisions). In our formulation, ac; greater than 1.0 shows
that the effort spent by agent «; isindeed amplified through

1060-3425/98 $10.00 (c) 1998 IEEE



collaboration. A value less than 1.0 for ¢; would indicate
otherwise (probably due to incompatible working attitude,
habit, style, etc.).

The o;'s are fractions of the total payoff that goes to «;.
If o; = 1/n for al n agents, we say the payoff shares are
completely external. That is, the participating agents have
absolutely no influence over the distribution of collaboration
results. Fame and reputation are close examples to a com-
pletely external payoff inacollaboration. If o; = R;/ >~ R;,
then the payoffsare completely internal. Distribution of pay-
ment and gains in experience are examples of completely
internal payoffs. Thereisacontinuum of share ratios among
the two extremes as we formalize below.

Definition 3 (Quality of share) In a linear payoff, let the
payoff share function¢;( Ry, - - -, Ry,) be of theform

(n—1DR; =>4 Ry
2?21 R;

then ¢ € F isthe quality of share factor.

)

1
(1+¢q

n

It is easy to verify that ¢ = 0.0 denotes the condition of
a completely externa payoff share, and ¢ = 1.0 denotes a
completely interna payoff share.

Definition 4 (Collaboration profit) Given  collaboration
payoff function p, for agent «;, the collaboration profit for
the agent isdefined as r; = p; — R;. If p; isalinear payoff,
then the profit function =; is called a linear profit.

Again for simplicity, we will analyze only linear profits.
Having defined profit for an agent in a collaboraion, we de-
fine the generic agent collaboration problem (ACP) as the
following.

Definition 5 (Agent collaboration problem) Given a set of
agentsabout to participatein a (possiblyinfinite) sequence of
collaborations, a solution to the agent collaboration problem
(ACP) for each participating agent is an algorithmthat de-
cides a sequence of resource contribution decisions to max-
imize the agent’s accumulated profit during the collabora-
tions.

2.2. Modding duoagent collaborationswith linear
profits

The solution to an ACP depends on the nature of the inter-
action among the agents. We need to determine a class of
interactions for which interesting solutions exist and can be
found.

Thecaseweinvestigatein thisstudy isaclassthat includes
exactly two agents, «y and oy where agent «; hasthe ability

to make a choice between investing resources of magnitude
R; and r;, and that R; > r;, thenfor agent o1, equations (1)
through (4) follow directly from definitions in the previous
section.

7 = mi(r, Ra)

= %( q:i I_gz)(cﬂﬁ +ealy) =1 (1)
it = 7 (R, Ra)

= SR k) - B @)
= m(ry,r2)

= S0+ D antan) -0 @
= mi(Ry, 7o)

= %(14-(121;2)(6131-1-627“2)—Rl (4)

Payoffs for oy are symmetrically defined.

For each agent, 7! can be interpreted as the temptation
to defect, or the profit for cheating on a cooperating partner.
71 isthereward for cooperation, the profit when both agents
cooperate. 7! is the penalty for defection when both agents
defect. Lastly 7° isthe sucker’s payoff for the agent that is
being cheated for cooperating.

Four quantitiesform six inequalities. We areto determine
which are the conditions that describe the case we wish to
investigate.

Reward for cooperation vs. penalty for defection This is
probably the easiest inequality to decide. Unless the
situation requires 7 > 7!, both agents will look for-
ward to cheating on each other rather than to trying to
achieve mutual cooperation. Usually it is not the case
that both agents devoting less would guarantee better a
return.

Temptation to defect vs. reward for cooperation We dis-
cuss the case of 7! > =F, where the agent is tempted
to do lessfor a greater profit (by making the other party
do the work). In a society where cheating off a well-
intended partner does not yield any extraprofit, itiseasy
to reach an agreement to cooperate where neither agent
has the motive to defect. More interesting is the case
71 > 7 observed in many situationswhere we have a
dilemma

Penalty for defection vs. sucker’s payoff With its partner
not putting effort into a collaboration, we should agree
to have an agent be better off stand clear fromthecollab-
oration. Usualy an agent who conserves its resources
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in this situation should do better than one that spends
them unconditionally. That isto say, 7/ > =5,

These three inequalities are actually al that's needed to
decide the remaining three conditions, namely =% > =%,
al > 7P and P > 7%,

We impose one more set of conditionsto limit our scope
of study, and that isthe requirement of 7f* + 7 > 7T + 73
and 7t 4+ 7t > 71" 4 =7, Thisrequiresthat the two agents
wouldwishtodevel op mutual cooperation rather than victim-
izing each other in alternation. Thisis often favored in real
situationswhereif for nothing el se, wewouldliketo promote
a peaceful atmosphere rather than a strictly competitive one.

Definition 6 (Duoagent collaboration dilemma) An agent
collaboration problem with exactly two agents for whomthe
profit functions obey the inequalities 7/ > 7f* > #F > =%
for¢ = 1,2,71'{%—1—71'5 > 71'?—1—71'*; aﬂdﬂ'{%—l—ﬂ'%% > Fg+ﬂf,
isa duoagent collaboration dilemma (DCD).

Once these inequalities hold, our problem domain covers
awell-studied social problem: the prisoner’s dilemma game
(PDG) [2]. In oneinterpretation of PDG, two criminas are
arrested for a crime. If they both cooperate and conceal
the evidence, they would both be acquitted (both receive the
score of 71%). If exactly one of them defects and discloses
the evidence, he is acquitted and given an reward (score
of #1), while the one who concedls the evidence gets an
especially heavy punishment (score of 7). If both disclose
in a mutual defection, they would both be convicted with
atypical sentence (score of 7!’). The scores are required
to follow the same inequality relationships we derived for a
DCD.

Table 1: Payoff structure for a PDG

Player B
Cooperate  Defect
Cooperate 7l plt 7wl
Player A Defect P afwf

If we examine Table 1 with the inequalities in mind, we
realize that for each agent, choosing defection (choosing r;
over R; where R; > r;) isthe“safest” strategy irrespective
of what the other does (in game theory lingo, the dominant
strategy). Since we rule out the possibility of agents reach-
ing an enforceable contract before making its choice (due to
intermittence, amorphism, etc.), choosing cooperation runs
the risk of receiving the lower score (7't or =) than that
defection yields (=1 or =f’, respectively). Consequently it
makes sense to defect unconditionally, in which case thereis

apossibility of receivingthehighest scorex! and at thesame
time avoiding getting the worst outcome 7. Of course, the
dilemmaisthat by doing so, the agents miss the opportunity
of scoring the sum of 71t + 74 which is better than either
i+ 73 orrl + 7, andisaso greater than 7t + 7 that
mutual defection yields.

Axerod [1] examines thisintriguing situation in repeated
PDGs and gathers contests for experts in game theory, eco-
nomics, etc., to design software subroutines to compute the
most favorable strategy during encounters of thistype. The
results convey great insights: while there is no one strategy
that outperforms al its opponents, those that are nice (coop-
erate until partner defects), retaliatory (punish by defection
if partner defects voluntarily), forgiving (cooperative as soon
as partner bends and starts cooperating), and clear (easy for
partner to anticipate) have an advantage. In fact the most
successful strategy “TIT FOR TAT” does nothing but repeat
what its partner did in the previous encounter, whereas some
of the less successful went as far as developing statistical
model s trying to find opportunitiesto take advantage of their
partner.

PDGs are interesting but rarely applicable in a computa-
tionally imprecise domain. PDGs require the precise values
of the payoffs be written in atable and each agent’s decision
betruthfully announced to the public. Thisisby far too much
to ask for among intelligent agentsthat we can at best treat as
black boxes. Later on we will analyze strategic implications
of DCDsand see how we can make results of the PDG useful
in our domain.

We need to look further and see what are required of the
individual agentsto fall into a DCD when they join. For ex-
ample, you might insist that, even if partner sits around and
does nothing towards the collaboration, there are till situa
tions where an agent’s increased effort can lead to positive
profit gains. That istosay, 7° > = isalso aplausiblecase.
This can happen if an agent’s effort isat least doubled during
acollaboration (with a collaboration effectiveness factor over
2.0), in which case after giving half of the share (when ¢ is
0.0) to the partner and taking away itsoriginal resource costs,
the agent still makes a profit. In the next section, we will do
detailed analysis to see how the collaboration parameters,
namely the R;’s, r;'s, ¢;’sand ¢'s, will force the situationto
be an instance of the DCD.

2.3. Characteristicsof agentsin the DCD

It is delightful to find that we have located a sub-problem
of the ACP where we are able to take advantage of results
from game theory. In this section we continue to look at
this particular situation and see how it maps to the optimal
strategy for the agents.
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The characteristic inequaities /> 7% > #F' > =9,
71'{%—1—71'5 > 71'?—1—71'*; aﬂdﬂ'{%—l—ﬂ'%% > ﬂ%+ﬂ'f yield
rel ationships among the most basic collaboration variabl es,
namely the R;’s, r;'s, ¢;'sand ¢’s. Wefirst defineanumber of
shorthand notations to simplify the conditional expressions
and help devel op our intuition towards the inequalities.

Definition 7 (Net impact, grossimpact) Given an agent a;
participating in a collaboration with an effectiveness factor
¢; and the freedom to choose between investing resources
R; and r; with R; > r;, the net impact of the agent is
net; = (1= (¢; = 1))(R; —r;) = (2—¢;)(R; — r;) and the
grossimpact grs; = (1 + (¢; — 1))(R; — ;) = ¢; (R — 7r5).

The impact of an agent is intuitively its range of perfor-
mance dynamics, or the difference between themost and | east
possible resource devotions. Impact indicates the ability of
an agent in dictating the outcome of a collaboration. The
gross impact takes collaboration effectiveness into account,
hence is the real impact perceived by the agents during col-
laboration. The net impact on the other hand indicates an
agent’s dynamic range taken away effects due to collabora
tion. Gross impact and net impact together gives an agent a
sense of the real inner capability (the true range of resource
devotion) it possesses.

Another expression that frequently appears among thein-
equalities is shorthanded below as the “differentia share”
It indicates the perceived difference between the payoff that
goes to the agent and that to its partner. Dependence on dif-
ferential share indicates the agent’s need to look at “if | am
doing better/worse than my partner.”

Definition 8 (Differential share) In a duoagent collabora-
tion problemwhere agentsa; and « contribute Ry and Ry,
respectively, the differential share to agent «; isthe function
dShi(Rl, RQ) = %(ClRl +62R2), ] ;ﬁ j, wheree; and
9 are the corresponding collaboration effectiveness factors
for ay and as.

Figure 1 shows the shape of the coefficient g;—gi of a

differentia share function for 21 and R, in therange of 0.0
to 10.0. It can be seen as a bias of share towards the partner
with greater contributions.

Solving inequalities for «; in a duoagent collaboration
dilemma (DCD) and we obtain the following simplified in-
equalities.

71'? > 71'{% :

nety > q(dshi(Ry, Ry) —dshy(r1, R2)) (5)
71'{3 > 7T‘1§:

nety > q(dshi(Ry,r2) —dshy(r1,r2)) (6)

Figure 1: A plot of the coefficient g;g; (with dis-
continuity at Ry = Ry = 0.0).

Inequalities (5) and (6) explain that in a DCD, an agent’s
net impact on the collaboration must be greater than the fair
share gained by contributing more. For completely exter-
nal payoff shares where ¢ = 0.0, this leads to the above-
mentioned requirement that ¢; < 2.0. The intuition can be
obtained by plugging in various values for ¢y back into in-
equalities (1) through (4) with ¢ = 0.0. We see that for ¢
greater than 2.0, the agent unconditionally receives more asit
devotes greater investment. In that case the agent never feels
being cheated or has a temptation to defect, and we do not
have adilemmato solve.

In redity, most likely we are not in a situation where
our efforts double just by participating in a collaboration,
regardless partner’s actions. That is to say that we usualy
find equations(5) and (6) automatically satisfiedininteresting
cases. Situations where ¢ # 0.0 are dlightly more tricky
and we will leave the interpretation to the interested reader
(possibly with the aid of Figure 1).

F{%>7T{DZ

grsg —nety > q(dshi(Ry, Rg) — dshy(r1,r2)) (7)

Inequality (7) basically says that the difference between
the real impact partner has and my own net impact (the latter
being my impact taken away the benefits of collaboration),
should be proportional to the differential share resulted from
turninginto mutual cooperation. Roughly, if partner does not
have more power than | do in improving the situation, then
there is no incentive for me to expect to benefit from turning
mutual defection into mutual cooperation. Solving (7) with
(5) and (6) actually yields¢; > 0.0 if ¢ = 0.0.

71'{% + 71'%% > 71'? + 71"2g : grsy > nety (8
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71'{% + 71'%% > 7r2T + 7Ti§ : grsg > nety (9)
Inequalities (8) and (9) require that the gross impact be
greater than the net impact. Thisleadstoe¢; > 1.0 regardless
what value ¢ takes. It can be interpreted that the collabo-
ration must have an incentive for each agent to devote more
effort, sincec; > 1.0indicatesthat thecollaborationinnature
expands the value of the resources an agent putsinto it.
Given agents whose range of resource dedication can be
identified, and acollaborationwhere the effectivenessfactors
areinaplausiblerange (greater than 1.0 and under 2.0 when
the share is completely external), we have determined the
quality of share necessary for the collaborationto beaDCD.

3. Collaboration strategies

In the previous section we looked at the DCD from an omni-
scient eye to get a clear view of the situation. However, an
agent can only determine the nature of the situation from its
profits and deficits. In this section we will study strategies
that allow an agent to perform “well” in DCD scenarios.

3.1. Roundsin collaboration sequences

Proposition 1 (Destined defection) An agent participating
in a DCD equipped with prior knowledge about the (finite)
number of rounds to collaborate is guaranteed the best ac-
cumulated profit if it always defects.

The propositioncan be proved by induction on the number
of rounds. If there is exactly one round of collaboration
(that the agents will never meet again afterwards), an agent
choosing defectionisinaposition whereanother agent cannot
make it “lose” That is, for any given choice of the partner,
an agent can only score lower if it chooses cooperation (since
o < 7T and #% < 7). Assuming destined defection
holdsfor fixed £-round DCDs, then for a (k + 1)-round game,
all except thefirst move are bound to be defections. Knowing
it cannot change the subsequent choices of the partner, an
agent would defect a so on thefirst round following the same
logic for exactly one round.

The result from mathematical induction does not apply
when the number of rounds is not fixed (e.g. when a dice
toss decides whether there will be a next round), with the
possibility that the sequence of encountersisinfinite. The
fact that (x'* > #'’) in a DCD makes it enticing for agents
to finding mutual cooperation possibilitiesrather than falling
into the less desirable state of mutual defection if none of
of the two converts. The prospects of mutual cooperation
is non-existent in the case of fixed rounds (see the inductive
step). Since we have adready ruled out the possibility of
having an enforceable contract among intelligent agents (due

to intermittence and amorphism), the only way an agent can
find the signs to establish mutual cooperation is by knowing
the results of its partner’s previous collaborations. Actually
for some interesting cases (in fact, those that coincide with
the PDG) thisrequirement can be relaxed as we shall see.

We need a public, neutral and unmistakable service that
faithfully records the profits for each agent in every collabo-
ration (in apublicly known measurement such as market cur-
rency). Monthly bank statements and the U.S. government’s
Internal Revenue Service are examples of such services in
human terms. Such a service would prevent an agent from
running avay from its previous encounters since al future
partners will see the agent’s past. Once an agent commits
to its first collaboration endeavor, it has effectively started
interacting with all other agents. The only way an agent can
quit from its history is by applying amorphism, trashing all
its past relationships with itsdecision.

3.2. DDCD strategieswith binary history

One way an agent can look for signs of cooperation pos-
sihilities is by looking a partner’s actions during previous
encounters. In PDG, thisis done by having the participants
publicly state their choice of C (for cooperation) or D (for
defection). However, in DCDs usudly thisis not possible.
Computational imprecision again kicksinand preventsothers
from determining the actual amount of resources the partner
invested during encounters, especially when the difference
between R; and r; issmall.

The discernable DCD (DDCD) is a subclass of the DCD
domain we can prove correspondence with the PDG in apply-
ing collaboration strategies. InaDDCD, the two agents have
sufficiently equal ability ininvesting resourcesand attract suf-
ficiently equa collaboration effectiveness factors, denoted as
Ry & Rg, 7 =& 19 and ¢y & ¢g, dthough the exact numbers
may be undetermined. In addition, the R;’s must be discern-
ably greater than 0.0 whichisinturn discernably greater than
the r;’s, denoted as R; > 0.0 (R; is discernably positive)
and 0.0 > r; (r; isdiscernably negative). Wesay A > B
if thefact A > B isrecognized by all participating agents
based on their perception of their profitsearned. A ~ B if
and only if neither A > B nor B > A. The > relation
satisfiestrangitivity. Consequently R; > r; inaDDCD.

The DDCD isusualy the domain that human beings pre-
fer to work on. People who collaborate on one task usually
have comparable capabilities and expectations towards the
collaboration. When professiona skills are unmatched, for
example, monetary compensation (in the form of payments)
or psychological rewards (as socia recognition or fulfilled
sympathy) is induced to make the resource investments as
much matched as possible. In addition, when either one de-
cides to cheat in collaboration, usually the partner can detect

1060-3425/98 $10.00 (c) 1998 IEEE



the situation. It is under these condition that humans feel
comfortable working since means are available to measure
the contribution the partner has committed. Now our intel-
ligent agents are enabled to base their decisions on similar
terms.

Proposition 2 (DDCD-PDG correspondence) Given

agents a¥’, o in DDCD and agents of’, of" in repeated
PDG, where o invests R; for every a!”’s choice of C and
r; for the choice of D. Define payoff structure for of’, o} as

the following

1 R—r
= ﬂg:§(CR—(2—c)r—qr+R(cr—|—cR))
71'{% = F?Z(C—l)R
71'{3 = 75 =(c—1)r
1 R—
71"1g = 71";:§(cr—(2—c)R—|—qr+};(cr+cR))

then for every strategy of af” and o that depends on part-
ner’s choice between C and D, there exist a corresponding
decision rulefor o and % that depends on a discernably
positive or negative collaboration profit such that af scores
higher than 4 if and only if o’ ismore profitablethan o).

For every strategy in PDG that depends on partner choos-
ing C in the previous round, the corresponding strategy in
DDCD depends on a profit gain; for every strategy in PDG
that depends on D, that in DDCD depends on a profit loss, or
adeficit.

Thepayoff structurefollowsnaturally from the profit func-
tionsinaDCD where Ry = Ry, 71 = ro and ¢y = ¢o. In
DDCD, this is exactly how agents perceive their partner’'s
resource investments. There cannot be any profit gain or loss
due to unequal collaboration parameters or else the required
sufficient equaity Ry ~ Rg, 11 & 79, and ¢; &~ ¢o would
fail. Therefore the payoffs truthfully reflect the profitability
of the agents.

Given 2.0 > ¢ > 1.0 and R; > 0.0 and 0.0 >> r;, we
easily seethat 7/ > 0.0, 7f* > 0.0 (adiscernably positive
profit), and 0.0 >> «¥, 0.0 > =7 (a discernably negative
profit). The former correspondsto partner’s choice of R (C
in PDG) and the latter corresponds to » (D in PDG). Thisis
all it isrequired to establish DDCD-PDG correspondence.

There is one additional requirement before coding a PDG
strategy into a decision program in DDCD. There must be
the aforementioned global information service that supplies
a binary history of an agent’s collaborations: if a previous
partner has made a profit with this agent, then agent receives
a‘l’ bit; otherwiseitisstamped a‘0’ bit. Recal “TIT-FOR-
TAT” which Axelrod found effective in histournaments. An
agent in DDCD implementing TIT-FOR-TAT would simply

look at the last bit in its partner’s history and devote R if it
findsan ‘1, rifitfindsa‘0'.

It follows from here that a DDCD agent with access to
global binary history can implement all gametheoretic strate-
giesfor solving PDGsthat are computable, beit finite, regu-
lar (for agents based on finite-state automata), or context-free
(for those based on the Turing machines).

4. Conclusion

We have identified the requirement for multiagent collabo-
ration scenarios where strategies for the prisoner’s dilemma
game (PDG) can apply. For this domain, caled the dis-
cernable duoagent collaboration dilemma (DDCD), we have
developed mechanisms for programming intelligent agents
to implement any computable game theoretic strategy found
for the PDG, all without violating the assumption of compu-
tational imprecision. The agents base their decisions purely
on profits or deficits for other agents, which are recorded in
binary history by some neutral referral agency. Thisisin
contrast against game theoretic results which depend on the
decisions of the agentsthat are difficult to recognize by other
agentsin practical terms.

We havea so, onageneral basis, introduced theformal no-
tion of collaboration efforts, effectiveness, profits, and profit
share. Based on these structures we can define payoffs that
are linear in nature, which are simple to evaluate arithmeti-
caly and have error ranges bound within a multiple of the
sampling precision. This may serve as a promising frame-
work for future investigations.

5. Futureresearch

We have dug into a small pit in the universe of all agent
collaboration problems, even though we must admit this pit
contains agreat deal of interesting intelligent agent interac-
tions. Thisis not to say that other situations are not worthy
of further investigation.

For DDCDs we have devised a scheme for leveraging the
best PDG strategies socia scientists have found or will find
in the future. We would be eager to relax DDCDs to perhaps
categorica DCDs: those where agents can perceive multiple
categories of profitsrather than just the binary profit/deficit.
It would be curious to see whether the ability to discern the
degree of profitability allows an agent be more efficient in a
search for profit, or if thetwo DCDs are actually equivalent.

A vast portion of the problem space we have not touched
on isthat with more than two partici pating agents during each
collaboration encounter. New problems surface when we
consider the possibility of intelligent agent alliances and vot-
ing processes. We might again find game theoretical results,
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especialy those involving multiple players, to be insightful
inleading us towards practical solutionsin interesting multi-
agent ACPs.
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