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Abstract
Intelligent agents that participate in free-forming collabo-
rations choose strategies to maximize their effectiveness in
achieving goals. In a heterogeneous agent society where
each has no knowledge of the logic behind other’s motives
or real intentions, it is difficult to conceive how an algorithm
would provide an effective collaboration strategy. We pro-
pose a set of general, quantitative criteria for detecting col-
laboration situations leading to the duoagent collaboration
dilemma (DCD). We show that DCD is a widely applicable
collaboration scenario and it can take advantage of a class
of problems social scientists have studied extensively. Lastly,
we provide steps to developing practical computable strate-
gies for agents to avoid and resolve problems in a subclass
of DCD.

1. Introduction

Imagine the following situation: your intelligent agent Alice
finds agent Bob over the Internet, thinking that they needed
each other to achieve their goals. Knowing that Bob may
be intending to conceal facts or manipulate the communica-
tion so that he can be more effective in arriving at his own
goals (at the cost of compromising Alice’s competency), how
best should Alice devote her resources and carry through the
collaboration?

The obvious step towards solving the problem is probably
to design an agent architecture to completely eliminate the
possibility of “cheating.” Work in distributed AI often takes
this approach and designs frameworks to contain the behavior
of the intelligent agents. However, practical results have
been very limited [4] and it seems worthwhile to approach
the problem from a different direction.

1.1. Fundamental difficulties

Direct analysis on the constituents of an intelligent agent
community faces at least three major problems. Traditional
computer science approaches may be fundamentally ineffec-
tive in dealing with collaboration decisions [6]. We identify
three observations that complicate the situation.
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Computational imprecision The control logic behind each
intelligent agent can be completely opaque to one an-
other. This situation is unlike traditional studies of com-
puter systems where each component is fully described
by a clear set of algorithms. Agents in general, espe-
cially when having conflicting goals, have no interest
in exposing their own “bottomlines,” hence we cannot
compute the situations with the assumption that we al-
ways have accurate descriptions of them.

Membership imprecision Due to the asynchronous nature
of the Real World (where communication inevitably in-
curs a loss of undetermined time), there is no way we
can exactly label each agent to be in or out of a set. Try
to determine the number of web pages connected to the
Internet at a given instant, or the number of agents that
will eventually receive your next broadcast message, and
you should never be able to have an exact answer [3].

Thus even if each node can be specified with mathemat-
ical logic, we can hardly have an exact picture of all
the entities participating in a collaboration to carry out
a complete, overall analysis.

Goal conflict Each intelligent agent has its own set of goals
to achieve at any given moment. There need not be any
agreement among the agents on the goals, and agents
can be stepping on each other’s toes in the process of
carrying out their tasks [5]. If the environment tries to
set a “public standard” that interferes with an agent’s
goals (i.e., data encryption standard), we should expect
the agent to find ways to invalidate the constraints to
achieve its aims.

These three inevitable characteristics of intelligent agents
research—computational imprecision, membership impreci-
sion, and goal conflict—make our studies depart fundamen-
tally from traditional computer science.

1.2. Implementation difficulties

In addition to the fundamental differences, there are several
real problems when we choose to study agents that work over
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the Internet. The Internet has several peculiar qualities that
used to receive very little attention but can be a real threat
to enforcing multiagent policies or to protecting innocent
agents. Three of which are discussed below.

Intermittence The Internet is based on the TCP/IP proto-
col, a reliable, asynchronous message-passing mecha-
nism. When a network fault occurs, data packet trans-
mission is retried until target responds with a positive
acknowledgement. When an expected message is de-
layed, there is no way for the waiting agent to correctly
deduce whether it was because the sender went down,
the network caused transmission delay, or data became
corrupt during delivery and is being retransmitted.

Under this condition, when a request goes without a
response, we cannot decide whether the agent at the
other end should be held responsible for not providing
service. This makes it hard to enforce agreements over
the network.

Amorphism On the Internet, entities are named by their
IP addresses, a string of digits that allows parties to
be located, functionally resembling telephone numbers.
Imagine trying to determine the real identity of a stranger
behind a telephone handset. It is not an easy task, if
feasible at all. Worse yet, two voices coming from
two different telephone numbers cannot be determined
to have come from the same person or two different
entities.

The unlimited forms an entity can assume on the Internet
make it a greater impossibility to enforce agreements.
Whenever it deems profitable to, an entity can instantly
disappear and re-emerge under a different identifier.

Suffocation Nothing in the world today prevents an agent
from blocking out another on the Internet. If anyone
wants to paralyze an information search service, he can
write a simple script to continuously feed the service
with dummy queries until the server becomes too busy
to usefully serve anyone else.

When threats are possible on the Internet, an agent can
effectively shut down another’s services or claim that
others are inhibiting it from completing its tasks. Again
responsibility for failing a contract becomes hard to de-
termine.

To be applicable in reality, we need new solutions that can
handle or avoid all these problems, and this is exactly what
we have set out to study. We start by a formulation of the
domain we wish to investigate, followed by specific strategies
agents can make use of to strive in collaborations on such a
domain. At all times we keep in mind the list of problems
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we have raised in this section and formulate our solutions to
avoid building our foundation on quick sand.

2. Problem formulation

We start by defining the process of multiagent collaboration.
We characterize a collaboration process with resources put
into it and payoffs derived as a result.

2.1. Native characteristics

Definition 1 (Collaboration payoff) Given R1; � � � ; Rn

over a scalar field F (e.g., real numbers) as resources in-
vested in a collaboration by agents�1; � � � ; �n, respectively,
the payoffs to agent �i, i = 1; � � � ; n, of the collaboration is
a function pi(R1; � � � ; Rn) 2 F .

In order to compute the exact payoff from a collaboration,
the above model would require we know the exact resources
invested by each agent in an n-agent collaboration. This can
be troublesome in situations involvingagents with the quality
of computational imprecision. Such agents may consume
resources from channels that escape monitoring, effectively
prohibiting an outsider to make a precise measurement of
the qualities. Human agents are of a particular class that
consume resources implicitly or in units difficult to measure
(i.e., environmental effects, emotional effects, etc.).

The model we wish to arrive at must be more tolerant on
the resource issue. As we will see, our formulation only
requires a relative ordering among the Ri’s which is in most
cases easier to identify than the actual values.

In collaborations, we wish to address the fact that two
agents working together may produce more or less than the
sum of each working individually, hence yielding a profit
or deficit (it is for this profit that agents collaborate). For
our model we will discuss only those payoff functions that
are linear combinations of the resources invested by each
participant.

Definition 2 (Linear payoff) A linear payoff to agent �i in
an n-agent collaboration has the form pi(R1; � � � ; Rn) =
�i(R1; � � � ; Rn)

Pn
j=1 cjRj , where �i(R1; � � � ; Rn) 2 F is

the profit share function with
Pn

i=1 �i(R1; � � � ; Rn) � 1:0

and cj 2 F the collaboration effectiveness factor on agent
�j’s contribution.

Linear payoff offers an arithmetic model that is easy to
compute. Perhaps more important, error ranges for linear
payoffs are bounded proportional to the magnitude of un-
certainty in Ri’s (recall computational and membership im-
precisions). In our formulation, a cj greater than 1:0 shows
that the effort spent by agent �j is indeed amplified through
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collaboration. A value less than 1:0 for cj would indicate
otherwise (probably due to incompatible working attitude,
habit, style, etc.).

The �i’s are fractions of the total payoff that goes to �i.
If �i = 1=n for all n agents, we say the payoff shares are
completely external. That is, the participating agents have
absolutely no influence over the distribution of collaboration
results. Fame and reputation are close examples to a com-
pletely external payoff in a collaboration. If �i =Ri=

P
j Rj ,

then the payoffs are completely internal. Distribution of pay-
ment and gains in experience are examples of completely
internal payoffs. There is a continuum of share ratios among
the two extremes as we formalize below.

Definition 3 (Quality of share) In a linear payoff, let the
payoff share function �i(R1; � � � ; Rn) be of the form

1

n
(1 + q

(n� 1)Ri �
P

j 6=iRj
Pn

j=1 Rj
)

then q 2 F is the quality of share factor.

It is easy to verify that q = 0.0 denotes the condition of
a completely external payoff share, and q = 1.0 denotes a
completely internal payoff share.

Definition 4 (Collaboration profit) Given collaboration
payoff function pi for agent �i, the collaboration profit for
the agent is defined as �i = pi � Ri. If pi is a linear payoff,
then the profit function �i is called a linear profit.

Again for simplicity, we will analyze only linear profits.
Having defined profit for an agent in a collaboraion, we de-
fine the generic agent collaboration problem (ACP) as the
following.

Definition 5 (Agent collaboration problem) Given a set of
agents about to participate in a (possibly infinite) sequence of
collaborations, a solution to the agent collaboration problem
(ACP) for each participating agent is an algorithm that de-
cides a sequence of resource contribution decisions to max-
imize the agent’s accumulated profit during the collabora-
tions.

2.2. Modeling duoagent collaborations with linear
profits

The solution to an ACP depends on the nature of the inter-
action among the agents. We need to determine a class of
interactions for which interesting solutions exist and can be
found.

The case we investigate in this study is a class that includes
exactly two agents, �1 and �2 where agent �i has the ability
1060-3425/98 $10.
to make a choice between investing resources of magnitude
Ri and ri, and that Ri > ri, then for agent �1, equations (1)
through (4) follow directly from definitions in the previous
section.

�T1 = �1(r1; R2)

=
1

2
(1 + q

r1 �R2

r1 +R2
)(c1r1 + c2R2) � r1 (1)

�R1 = �1(R1; R2)

=
1

2
(1 + q

R1 � R2

R1 + R2
)(c1R1 + c2R2)� R1 (2)

�P1 = �1(r1; r2)

=
1

2
(1 + q

r1 � r2

r1 + r2
)(c1r1 + c2r2)� r1 (3)

�S1 = �1(R1; r2)

=
1

2
(1 + q

R1 � r2

R1 + r2
)(c1R1 + c2r2) �R1 (4)

Payoffs for �2 are symmetrically defined.
For each agent, �T can be interpreted as the temptation

to defect, or the profit for cheating on a cooperating partner.
�R is the reward for cooperation, the profit when both agents
cooperate. �P is the penalty for defection when both agents
defect. Lastly �S is the sucker’s payoff for the agent that is
being cheated for cooperating.

Four quantities form six inequalities. We are to determine
which are the conditions that describe the case we wish to
investigate.

Reward for cooperation vs. penalty for defection This is
probably the easiest inequality to decide. Unless the
situation requires �R > �P , both agents will look for-
ward to cheating on each other rather than to trying to
achieve mutual cooperation. Usually it is not the case
that both agents devoting less would guarantee better a
return.

Temptation to defect vs. reward for cooperation We dis-
cuss the case of �T > �R, where the agent is tempted
to do less for a greater profit (by making the other party
do the work). In a society where cheating off a well-
intended partner does not yield any extra profit, it is easy
to reach an agreement to cooperate where neither agent
has the motive to defect. More interesting is the case
�T > �R observed in many situations where we have a
dilemma.

Penalty for defection vs. sucker’s payoff With its partner
not putting effort into a collaboration, we should agree
to have an agent be better off stand clear from the collab-
oration. Usually an agent who conserves its resources
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in this situation should do better than one that spends
them unconditionally. That is to say, �P > �S .

These three inequalities are actually all that’s needed to
decide the remaining three conditions, namely �T > �S ,
�T > �P , and �R > �S .

We impose one more set of conditions to limit our scope
of study, and that is the requirement of �R

1
+�R

2
> �T

1
+�S

2

and �R
1
+ �R

2
> �T

2
+ �S

1
. This requires that the two agents

would wish to develop mutual cooperation rather than victim-
izing each other in alternation. This is often favored in real
situations where if for nothing else, we would like to promote
a peaceful atmosphere rather than a strictly competitive one.

Definition 6 (Duoagent collaboration dilemma) An agent
collaboration problem with exactly two agents for whom the
profit functions obey the inequalities �Ti > �Ri > �Pi > �Si
for i = 1; 2, �R

1
+�R

2
> �T

1
+�S

2
and �R

1
+�R

2
> �T

2
+�S

1
,

is a duoagent collaboration dilemma (DCD).

Once these inequalities hold, our problem domain covers
a well-studied social problem: the prisoner’s dilemma game
(PDG) [2]. In one interpretation of PDG, two criminals are
arrested for a crime. If they both cooperate and conceal
the evidence, they would both be acquitted (both receive the
score of �R). If exactly one of them defects and discloses
the evidence, he is acquitted and given an reward (score
of �T ), while the one who conceals the evidence gets an
especially heavy punishment (score of �S ). If both disclose
in a mutual defection, they would both be convicted with
a typical sentence (score of �P ). The scores are required
to follow the same inequality relationships we derived for a
DCD.

Table 1: Payoff structure for a PDG
Player B

Cooperate Defect

Cooperate �
R
1 ,�R2 �

S
1 ,�T2

Player A
Defect �

T
1 ,�S2 �

P
1 ,�P2

If we examine Table 1 with the inequalities in mind, we
realize that for each agent, choosing defection (choosing ri
over Ri where Ri > ri) is the “safest” strategy irrespective
of what the other does (in game theory lingo, the dominant
strategy). Since we rule out the possibility of agents reach-
ing an enforceable contract before making its choice (due to
intermittence, amorphism, etc.), choosing cooperation runs
the risk of receiving the lower score (�R or �S ) than that
defection yields (�T or �P , respectively). Consequently it
makes sense to defect unconditionally, in which case there is
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a possibilityof receiving the highest score �T and at the same
time avoiding getting the worst outcome �S . Of course, the
dilemma is that by doing so, the agents miss the opportunity
of scoring the sum of �R

1
+ �R

2
which is better than either

�T
1
+ �S

2
or �T

2
+ �S

1
, and is also greater than �P

1
+ �P

2
that

mutual defection yields.
Axelrod [1] examines this intriguing situation in repeated

PDGs and gathers contests for experts in game theory, eco-
nomics, etc., to design software subroutines to compute the
most favorable strategy during encounters of this type. The
results convey great insights: while there is no one strategy
that outperforms all its opponents, those that are nice (coop-
erate until partner defects), retaliatory (punish by defection
if partner defects voluntarily), forgiving (cooperative as soon
as partner bends and starts cooperating), and clear (easy for
partner to anticipate) have an advantage. In fact the most
successful strategy “TIT FOR TAT” does nothing but repeat
what its partner did in the previous encounter, whereas some
of the less successful went as far as developing statistical
models trying to find opportunities to take advantage of their
partner.

PDGs are interesting but rarely applicable in a computa-
tionally imprecise domain. PDGs require the precise values
of the payoffs be written in a table and each agent’s decision
be truthfullyannounced to the public. This is by far too much
to ask for among intelligent agents that we can at best treat as
black boxes. Later on we will analyze strategic implications
of DCDs and see how we can make results of the PDG useful
in our domain.

We need to look further and see what are required of the
individual agents to fall into a DCD when they join. For ex-
ample, you might insist that, even if partner sits around and
does nothing towards the collaboration, there are still situa-
tions where an agent’s increased effort can lead to positive
profit gains. That is to say, �S > �P is also a plausible case.
This can happen if an agent’s effort is at least doubled during
a collaboration (with a collaboration effectiveness factor over
2.0), in which case after giving half of the share (when q is
0.0) to the partner and taking away its original resource costs,
the agent still makes a profit. In the next section, we will do
detailed analysis to see how the collaboration parameters,
namely the Ri’s, ri’s, ci’s and q’s, will force the situation to
be an instance of the DCD.

2.3. Characteristics of agents in the DCD

It is delightful to find that we have located a sub-problem
of the ACP where we are able to take advantage of results
from game theory. In this section we continue to look at
this particular situation and see how it maps to the optimal
strategy for the agents.
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The characteristic inequalities �T > �R > �P > �S ,
�R
1

+ �R
2

> �T
1
+ �S

2
and �R

1
+ �R

2
> �T

2
+ �S

1
yield

relationships among the most basic collaboration variables,
namely theRi’s, ri’s, ci’s and q’s. We first define a number of
shorthand notations to simplify the conditional expressions
and help develop our intuition towards the inequalities.

Definition 7 (Net impact, gross impact) Given an agent�i
participating in a collaboration with an effectiveness factor
ci and the freedom to choose between investing resources
Ri and ri with Ri > ri, the net impact of the agent is
neti = (1� (ci � 1))(Ri � ri) = (2� ci)(Ri � ri) and the
gross impact grsi = (1+ (ci � 1))(Ri � ri) = ci(Ri � ri).

The impact of an agent is intuitively its range of perfor-
mance dynamics, or the difference between the most and least
possible resource devotions. Impact indicates the ability of
an agent in dictating the outcome of a collaboration. The
gross impact takes collaboration effectiveness into account,
hence is the real impact perceived by the agents during col-
laboration. The net impact on the other hand indicates an
agent’s dynamic range taken away effects due to collabora-
tion. Gross impact and net impact together gives an agent a
sense of the real inner capability (the true range of resource
devotion) it possesses.

Another expression that frequently appears among the in-
equalities is shorthanded below as the “differential share.”
It indicates the perceived difference between the payoff that
goes to the agent and that to its partner. Dependence on dif-
ferential share indicates the agent’s need to look at “if I am
doing better/worse than my partner.”

Definition 8 (Differential share) In a duoagent collabora-
tion problem where agents�1 and �2 contributeR1 and R2,
respectively, the differential share to agent �i is the function

dshi(R1; R2) =
Ri�Rj

R1+R2
(c1R1+c2R2), i 6= j, where c1 and

c2 are the corresponding collaboration effectiveness factors
for �1 and �2.

Figure 1 shows the shape of the coefficient R1�R2

R1+R2

of a
differential share function for R1 and R2 in the range of 0.0
to 10.0. It can be seen as a bias of share towards the partner
with greater contributions.

Solving inequalities for �1 in a duoagent collaboration
dilemma (DCD) and we obtain the following simplified in-
equalities.

�T1 > �R1 :

net1 > q(dsh1(R1; R2) � dsh1(r1; R2)) (5)

�P1 > �S1 :

net1 > q(dsh1(R1; r2) � dsh1(r1; r2)) (6)
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Figure 1: A plot of the coefficient R1�R2

R1+R2
(with dis-

continuity at R1 = R2 = 0:0).

Inequalities (5) and (6) explain that in a DCD, an agent’s
net impact on the collaboration must be greater than the fair
share gained by contributing more. For completely exter-
nal payoff shares where q = 0:0, this leads to the above-
mentioned requirement that c1 < 2:0. The intuition can be
obtained by plugging in various values for c1 back into in-
equalities (1) through (4) with q = 0:0. We see that for c1
greater than 2.0, the agent unconditionally receives more as it
devotes greater investment. In that case the agent never feels
being cheated or has a temptation to defect, and we do not
have a dilemma to solve.

In reality, most likely we are not in a situation where
our efforts double just by participating in a collaboration,
regardless partner’s actions. That is to say that we usually
find equations (5) and (6) automatically satisfied in interesting
cases. Situations where q 6= 0:0 are slightly more tricky
and we will leave the interpretation to the interested reader
(possibly with the aid of Figure 1).

�R1 > �P1 :

grs2 � net1 > q(dsh1(R1; R2)� dsh1(r1; r2)) (7)

Inequality (7) basically says that the difference between
the real impact partner has and my own net impact (the latter
being my impact taken away the benefits of collaboration),
should be proportional to the differential share resulted from
turning into mutual cooperation. Roughly, if partner does not
have more power than I do in improving the situation, then
there is no incentive for me to expect to benefit from turning
mutual defection into mutual cooperation. Solving (7) with
(5) and (6) actually yields ci > 0:0 if q = 0:0.

�R1 + �R2 > �T1 + �S2 : grs1 > net1 (8)
.00 (c) 1998 IEEE



�R1 + �R2 > �T2 + �S1 : grs2 > net2 (9)

Inequalities (8) and (9) require that the gross impact be
greater than the net impact. This leads to ci > 1:0 regardless
what value q takes. It can be interpreted that the collabo-
ration must have an incentive for each agent to devote more
effort, since ci > 1:0 indicates that the collaboration in nature
expands the value of the resources an agent puts into it.

Given agents whose range of resource dedication can be
identified, and a collaboration where the effectiveness factors
are in a plausible range (greater than 1.0 and under 2.0 when
the share is completely external), we have determined the
quality of share necessary for the collaboration to be a DCD.

3. Collaboration strategies

In the previous section we looked at the DCD from an omni-
scient eye to get a clear view of the situation. However, an
agent can only determine the nature of the situation from its
profits and deficits. In this section we will study strategies
that allow an agent to perform “well” in DCD scenarios.

3.1. Rounds in collaboration sequences

Proposition 1 (Destined defection) An agent participating
in a DCD equipped with prior knowledge about the (finite)
number of rounds to collaborate is guaranteed the best ac-
cumulated profit if it always defects.

The propositioncan be proved by inductionon the number
of rounds. If there is exactly one round of collaboration
(that the agents will never meet again afterwards), an agent
choosing defection is in a position where another agent cannot
make it “lose.” That is, for any given choice of the partner,
an agent can only score lower if it chooses cooperation (since
�R < �T and �S < �P ). Assuming destined defection
holds for fixed k-round DCDs, then for a (k+1)-round game,
all except the first move are bound to be defections. Knowing
it cannot change the subsequent choices of the partner, an
agent would defect also on the first round following the same
logic for exactly one round.

The result from mathematical induction does not apply
when the number of rounds is not fixed (e.g. when a dice
toss decides whether there will be a next round), with the
possibility that the sequence of encounters is infinite. The
fact that (�R > �P ) in a DCD makes it enticing for agents
to finding mutual cooperation possibilities rather than falling
into the less desirable state of mutual defection if none of
of the two converts. The prospects of mutual cooperation
is non-existent in the case of fixed rounds (see the inductive
step). Since we have already ruled out the possibility of
having an enforceable contract among intelligent agents (due
1060-3425/98 $10.
to intermittence and amorphism), the only way an agent can
find the signs to establish mutual cooperation is by knowing
the results of its partner’s previous collaborations. Actually
for some interesting cases (in fact, those that coincide with
the PDG) this requirement can be relaxed as we shall see.

We need a public, neutral and unmistakable service that
faithfully records the profits for each agent in every collabo-
ration (in a publicly known measurement such as market cur-
rency). Monthly bank statements and the U.S. government’s
Internal Revenue Service are examples of such services in
human terms. Such a service would prevent an agent from
running away from its previous encounters since all future
partners will see the agent’s past. Once an agent commits
to its first collaboration endeavor, it has effectively started
interacting with all other agents. The only way an agent can
quit from its history is by applying amorphism, trashing all
its past relationships with its decision.

3.2. DDCD strategies with binary history

One way an agent can look for signs of cooperation pos-
sibilities is by looking at partner’s actions during previous
encounters. In PDG, this is done by having the participants
publicly state their choice of C (for cooperation) or D (for
defection). However, in DCDs usually this is not possible.
Computational imprecision again kicks in and prevents others
from determining the actual amount of resources the partner
invested during encounters, especially when the difference
between Ri and ri is small.

The discernable DCD (DDCD) is a subclass of the DCD
domain we can prove correspondence with the PDG in apply-
ing collaboration strategies. In a DDCD, the two agents have
sufficiently equal ability in investing resources and attract suf-
ficiently equal collaboration effectiveness factors, denoted as
R1 � R2, r1 � r2 and c1 � c2, although the exact numbers
may be undetermined. In addition, the Ri’s must be discern-
ably greater than 0.0 which is in turn discernably greater than
the ri’s, denoted as Ri � 0:0 (Ri is discernably positive)
and 0:0 � ri (ri is discernably negative). We say A � B

if the fact A > B is recognized by all participating agents
based on their perception of their profits earned. A � B if
and only if neither A � B nor B � A. The � relation
satisfies transitivity. Consequently Ri � ri in a DDCD.

The DDCD is usually the domain that human beings pre-
fer to work on. People who collaborate on one task usually
have comparable capabilities and expectations towards the
collaboration. When professional skills are unmatched, for
example, monetary compensation (in the form of payments)
or psychological rewards (as social recognition or fulfilled
sympathy) is induced to make the resource investments as
much matched as possible. In addition, when either one de-
cides to cheat in collaboration, usually the partner can detect
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the situation. It is under these condition that humans feel
comfortable working since means are available to measure
the contribution the partner has committed. Now our intel-
ligent agents are enabled to base their decisions on similar
terms.

Proposition 2 (DDCD-PDG correspondence) Given
agents �D

1
, �D

2
in DDCD and agents �P

1
, �P

2
in repeated

PDG, where �Di invests Ri for every �Pi ’s choice of C and
ri for the choice of D. Define payoff structure for �P

1
, �P

2
as

the following

�T1 = �T2 =
1

2
(cR� (2� c)r � q

R� r

r + R
(cr + cR))

�R1 = �R2 = (c� 1)R

�P1 = �P2 = (c � 1)r

�S1 = �S2 =
1

2
(cr � (2� c)R+ q

R� r

r + R
(cr + cR))

then for every strategy of �P
1

and �P
2

that depends on part-
ner’s choice between C and D, there exist a corresponding
decision rule for �D

1
and �D

2
that depends on a discernably

positive or negative collaboration profit such that �P
1

scores
higher than �P

2
if and only if �D

1
is more profitable than �D

2
.

For every strategy in PDG that depends on partner choos-
ing C in the previous round, the corresponding strategy in
DDCD depends on a profit gain; for every strategy in PDG
that depends on D, that in DDCD depends on a profit loss, or
a deficit.

The payoff structure follows naturally from the profit func-
tions in a DCD where R1 = R2, r1 = r2 and c1 = c2. In
DDCD, this is exactly how agents perceive their partner’s
resource investments. There cannot be any profit gain or loss
due to unequal collaboration parameters or else the required
sufficient equality R1 � R2, r1 � r2, and c1 � c2 would
fail. Therefore the payoffs truthfully reflect the profitability
of the agents.

Given 2:0 > c > 1:0 and Ri � 0:0 and 0:0 � ri, we
easily see that �Ti � 0:0, �Ri � 0:0 (a discernably positive
profit), and 0:0 � �Pi , 0:0 � �Si (a discernably negative
profit). The former corresponds to partner’s choice of R (C
in PDG) and the latter corresponds to r (D in PDG). This is
all it is required to establish DDCD-PDG correspondence.

There is one additional requirement before coding a PDG
strategy into a decision program in DDCD. There must be
the aforementioned global information service that supplies
a binary history of an agent’s collaborations: if a previous
partner has made a profit with this agent, then agent receives
a ‘1’ bit; otherwise it is stamped a ‘0’ bit. Recall “TIT-FOR-
TAT” which Axelrod found effective in his tournaments. An
agent in DDCD implementing TIT-FOR-TAT would simply
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look at the last bit in its partner’s history and devote R if it
finds an ‘1’, r if it finds a ‘0’.

It follows from here that a DDCD agent with access to
global binary history can implement all game theoretic strate-
gies for solving PDGs that are computable, be it finite, regu-
lar (for agents based on finite-state automata), or context-free
(for those based on the Turing machines).

4. Conclusion

We have identified the requirement for multiagent collabo-
ration scenarios where strategies for the prisoner’s dilemma
game (PDG) can apply. For this domain, called the dis-
cernable duoagent collaboration dilemma (DDCD), we have
developed mechanisms for programming intelligent agents
to implement any computable game theoretic strategy found
for the PDG, all without violating the assumption of compu-
tational imprecision. The agents base their decisions purely
on profits or deficits for other agents, which are recorded in
binary history by some neutral referral agency. This is in
contrast against game theoretic results which depend on the
decisions of the agents that are difficult to recognize by other
agents in practical terms.

We have also, on a general basis, introduced the formal no-
tion of collaboration efforts, effectiveness, profits, and profit
share. Based on these structures we can define payoffs that
are linear in nature, which are simple to evaluate arithmeti-
cally and have error ranges bound within a multiple of the
sampling precision. This may serve as a promising frame-
work for future investigations.

5. Future research

We have dug into a small pit in the universe of all agent
collaboration problems, even though we must admit this pit
contains a great deal of interesting intelligent agent interac-
tions. This is not to say that other situations are not worthy
of further investigation.

For DDCDs we have devised a scheme for leveraging the
best PDG strategies social scientists have found or will find
in the future. We would be eager to relax DDCDs to perhaps
categorical DCDs: those where agents can perceive multiple
categories of profits rather than just the binary profit/deficit.
It would be curious to see whether the ability to discern the
degree of profitability allows an agent be more efficient in a
search for profit, or if the two DCDs are actually equivalent.

A vast portion of the problem space we have not touched
on is that with more than two participating agents during each
collaboration encounter. New problems surface when we
consider the possibility of intelligent agent alliances and vot-
ing processes. We might again find game theoretical results,
0 (c) 1998 IEEE



especially those involving multiple players, to be insightful
in leading us towards practical solutions in interesting multi-
agent ACPs.
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