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Abstract

We designed a new network architecture, the P-Mesh,

which combhres the scalabili_, and fault resilience of a

torus with the performance of a switch. We compare tire

scalability, performance, and cost of the hub, switch, torus,

tree, and P-Mesh architectures. Tire latter three are capa-

ble of scaling to thousands of nodes, however, the torus has

severe performance limitations with that many processors.

The tree and P-Mesh have similar latency, bandwidth, and

bisection bandwidth, but tire P-Mesh outperforms the

switch architecture (a lower bound for tree performance)

on 16-node NAS Parallel Benchmark tests by up to 23%,

and costs 40% less. Further, the P-Mesh has better fault

resilience characteristics. The P-Mesh architecture trades

increased management overhead for lower cost, and is a

good bridging technology while the price of tree uplinks is

expensive.

1.0. Commodity Supercomputing:

Beowulf Approach

The

A fundamental shift is taking place in the computer

marketplace: high-end scientific computing is disappear-

ing. Computer vendors are merging (SGI and Cray, HP and

Convex), and re-focusing on more lucrative mass markets

(e.g., business, Wall Street, databases). These markets do

not benefit from large systems, hence the motivation for

vendors to build these systems is rapidly disappearing.

The Whitney project has two goals: to ensure NASA

can maintain a high-performance scientific computing

capability in the face of this fundamental market shift, and

to push the limits of system and application scalability to

enable petaflops computing. Achieving these goals

requires new technology harnessing the power of tens of

thousands of mass-market commodity off-the-shelf

(M2COTS) components to build high-end systems targeted

at aerospace applications.

The Beowulf approach [8] provides a framework for

building M2COTS clusters. It couples commodity PCs and

LANs with a publicly available operating system and

application software, to produce distributed memory multi-

processing systems with excellent price/performance. To

date, systems up to a few hundred nodes in size have been

built. We are using this methodology to design Whitney-

500, a 500 node system for running scientific workloads,

with a goal of scaling up to several thousands of nodes.

The design of Whitney-500 is unique in that it combines

a "back-end computing" design philosophy with mass-

market technology. The design was directed by price/per-

formance on a small set of representative benchmarks (the

NAS Parallel Benchmarks [2]) much the way a back-end

array processor might be designed--tuning for the exact

application which it will support. In this case, Whitney-500

was designed to support the computational fluid dynamics

workload at NASA Ames Research Center.

The main focus of the Whitney project is in three areas:

• price-based performance modeling,

• extremely scalable systems software research

and development,

• architecture design, prototyping, and evalua-

tion.

The focus on price/performance on a specific set of

benchmarks rather than peak performance or general sys-

tem balance allowed us to make design choices which, at

first glance, appear counter to common wisdom, such as

using a relatively slow network despite cries that every-

one's application "needs" a fast network.



r'roceealngs or [ne jzna Mawall in[ernauonal L, onTerence on bys[em bclences - I_J

Both analytical models and empirical studies [3,5] show
that Fast Ethernet (100baseT) is the network of choice for

Whitney. It isn't the fastest, but it is very inexpensive, and

well balanced to the processing power of the Intel Pentium

processors.

The Whitney project is named after Eli Whitney, who,

in addition to inventing the cotton gin, was the first to use

interchangeable parts in manufacturing---he invented

"commodity" components.

I.I. Whitney Prototype Hardware

All performance results were run on the prototype Whit-

ney system. Each node of the system was running an iden-

tical copy of Red Hat Linux [6], release 4.1 using the
2.0.30 version of the Linux kernel, and the tulip (v0.76

4/22/97) driver. The kernel was configured with IP for-

warding on. During our analysis, newer versions of OS
software became available. However, to ensure consistency

of results, no upgrades were performed.
The nodes of the Whitney prototype consist of:

• Intel Pentium Pro 200 MHz processor with
256K cache

• ASUS P/I-P65UP5 motherboard w/P6ND CPU

board

• 128 MB 60ns DRAM

• 2.5 GB Western Digital AC2250 IDE disk

• 1-4 Cogent/Adaptec ANA-6911/TX Ethernet
cards

• Trident ISA graphics card (for diagnostic pur-

poses only)

The network tests were performed using

• 3 Bay Networks Netgear FE 516 (16-port) hubs

• 2 Bay Networks 350F-HD (24-port) switches

The Bay switches have a backplane bandwidth of 1.2
Gb/s (150 MB/s). A fully nonblocking 24-port switch

would need a 2.4 Gb/s (300 MB/s) fabric.

2.0. Network Characteristics

Our design goal for the Whitney project is a system with

thousands of nodes. A system of this magnitude has unique

scalability requirements on the network architecture:

• Price/performance--the ultimate goal of
M2COTS clusters

• Simple packaging--short, robust cables, no

spaghetti

• Easy software configuration and manage-

ment--simple setup, easy problem diagnosis,

ability to expand on-the-fly, etc.

• Fault resilience--no single points of failure

2.1. Ethernet Technology

The building blocks of a commodity Ethernet network

consist of network interface cards (NICs), cables, hubs,

and switches. Further, commodity Ethernet is now avail-

able in three speeds: Ethernet (1.25 MB/s), Fast Ethernet

(12.5 MB/s) and Gigabit Ethernet (125 MB/s). Note that

we always report bandwidth in megabytes per second

(MB/s). The peak speed of Fast Ethernet is 100 Mb/s

(megabits per second); 100 Mb/s divided by 8 bits per byte

equals 12.5 MB/s. Fast Ethernet is currently the leader in

price/performance, delivering adequate performance for

approximately 1/10th the cost of a typical cluster node (see

Table 1 for rough pricing as of Spring 1998). As the cost of

a cable is negligible (about $5), we have omitted it from

our analysis.

These prices are averages. Prices vary depending on

vendor, actual performance of the component, and expand-

ability. For example, 24-port Fast Ethernet switches are

particularly inexpensive as of the writing of this paper (less

than $100 per port).

TABLE 1. Ethernet technology prices

(Spring 1998)

Cost Available

Item ($) Sizes

Fast (100Mb) NIC SNIC = 30

Fast hub port $hub = 50 4 - 100

Fast switch port $sw = 150 16 - 100

Gigabit NIC $G_NJC= 1200

Gigabit switch port $G_sw= 2500 6 - 32

Finally, design considerations limit the maximum size

of Fast Ethernet hubs and switches to about 100 ports; and

the largest Gigabit Ethernet switches currently available

have about 30 ports.

3.0. Network Architecture

Network architecture defines how the building blocks

are assembled. Figure 1 shows several possible architec-

tures. The simplest network architecture consists of two

nodes, two NICs (one in each node), and one cable con-

necting the two NICs (Figure 1 (a)). Obviously, this archi-

tecture has severe limitations (scaling to at most 2 nodes),

but it is useful for illustration purposes.
There are three network characteristics which, when

taken together, have proved to be a valuable measure of

network performance:
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- point-to-point latency--the minimum amount

of time to pass a message between two pro-
cesses

• point-to-point bandwidth--the maximum data

rate that can be achieved transferring messages

between two processes

• bisection bandwidth--the worst-case aggregate

bandwidth among all bisections of the nodes

We used the following techniques to measure these

quantities.

Message latency is measured by sending M messages

from A to B and back (ping-pong) and dividing the total

time by 2 - M. This ping-pong test is repeated for a variety

of message sizes. The minimum time is reported as latency.

We call this the base latency or L. The measured latency of

this architecture (using the Whitney prototype) was 175
microseconds.

Bandwidth is reported similarly. For each message size,

we computed the message size divided by the time as a

candidate bandwidth. The base bandwidth B. is the largest
candidate bandwidth. The base bandwidth was 8.5 MB/s.

As bisection bandwidth is somewhat more difficult to

measure, we report "peak" bisection bandwidth (a property
of the architecture itself). Bisection bandwidth is the sum

of rated bandwidths along the minimum network cut which

separates the compute nodes into two equal sized groups.
In the example above, the bisection bandwidth would be

2B (each node can send data at a rate of B MB/s to the

other. Using Fast Ethernet, the bisection bandwidth works

out to 25 MB/s, or 12.5 MB/s per node.

3.1. Hub

A hub, Figure 1 (d), is a generalization of this example

architecture, providing the logical equivalent of many

nodes sharing a single cable. A hub has a cost per node of

($NIC + Shub), or about $80.

The performance of a hub is nearly identical to that of

directly connected nodes (a latency of L and a bandwidth

of B ). However, bisection bandwidth is particularly poor,

as all nodes logically share a single network cable. The per

2B
node bisection bandwidth for N nodes is -_-. In other

words, as N grows, per node bisection bandwidth shrinks

dramatically. A Fast Ethernet hub with 24 nodes would

have a bisection bandwidth of about 1 MB/s per node.

(a) direct connection

( )
(b) fully-connected network

)

)

(c) two-dimensional torus

I I

(d) hub

[

(e) switch

I I

I I I I

(0 tree of switches

LEGEND:

i Hub 1._------ 100baseTx cable

] Switch _ Compute node

FIGURE 1. Network topologies
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3.2. Switch 3.3. Torus

A switch, Figure 1 (e), goes further, and provides the

logical equivalent of (N/2) cables which automatically con-

nect pairs of nodes when they want to send messages.

Another way to look at a switch is as a "fully connected

network", Figure 1 (b), where each node only has a single
cable connected to the network fabric.

The defacto Ethernet network architecture for cluster

computing is to connect all nodes to a single Fast Ethernet

switch. Few larger clusters have been proposed, hence little

work has been done evaluating alternatives to this de-facto
standard.

The switch architecture has three main advantages:

• Switches are mass-market commodity off-the-
shelf items, and as such benefit from brutal

cost-competitiveness.

• Switches deliver good network performance

(latency, bandwidth, and bisection bandwidth).

• Switch architectures are easy to build (all wires

can be short) and simple to configure (just plug

nodes in and go).
However, this architecture is not without drawbacks:

• Switches don't scale--mass-market pressures

only force down the price of "small" switches

(supporting about 24 ports), and "large"

switches (greater than about 100 ports) don't
exist.

• Switch architectures lack hardware fault resil-

ience- a single point of failure (the switch) can

bring down the entire system.

A Fast Ethernet switch is relatively inexpensive, with a

per node cost of ($NIC + $sw), or about $180. Gigabit

Ethernet, however, is quite expensive, with a per node cost

of about $3700 (20 times more expensive for minimally

better latency and 10 times better bandwidth). With the

cost of a typical cluster node around $2000, Gigabit Ether-

net is not yet in the M2COTS commodity range. However,

Gigabit technology is on the commodity curve, and we

expect it to supplant Fast Ethernet as the network of choice

in the next few years. For now, Gigabit Ethernet is a useful

bridging technology for aggregating Fast Ethernet devices

(for the tree architecture below).

Switches perform nearly as well as directly connected

nodes, but do add a small amount of latency (which we call

L+sw), and slow bandwidth by a small amount (which we

call B.sw). The Bay 350F-HD added L+s w of about 5

microseconds, and reduced B_sw by about 0.5 MB/s.

Our requirement to design a system capable of scaling

to thousands of nodes led us to investigate alternative net-
work architectures. Two architectures stood out as obvious

candidates: the torus and the tree, see Figure 1 (c) and (f).

The torus architecture uses the direct connect approach,

eliminating the need for using switches (which have lim-

ited hardware scalability), but adding the need to route

messages (up to _ hops for a d-dimensional torus of N

nodes). The torus is interesting because it is quite inexpen-

sive, costing (2d $NIC) per node, or about $120 per node

for a 2-dimensional torus. Further, the torus has particu-

larly good hardware fault resilience. Up to d- 1 failed

cables or NICs can be tolerated (by re-routing messages),

and, if all d links to a node fail, only that node becomes
inaccessible.

This expanded scalability comes at a high price in per-

formance. All messages except nearest neighbor communi-

cation must be routed by the nodes. Every hop a message

travels adds routing latency (L+r) and reduces bandwidth

(B r). For a medium sized torus, this adds up quickly. In a

2-dimensional, N-node torus, the worst case route between

nodes traverses through _ - 1 router nodes, resulting in

a worst-case latency of L + (,fN - l)L+r and a worst case

bandwidth of B- (,,_ - l)B+r. Our measurements show

L+r is about 40 microseconds and B. r is about 1.5 MB/s.

The bisection bandwidth, however, is quite good, maintain-

ing B MB/s per node independent of dimension or size.

Finally, the torus requires a non-trivial amount of setup

and configuration management to connect all the necessary

cables and create all the necessary routing tables.

All in all, what is gained in architectural scalability is

lost in performance and management scalability. For a

small number of nodes, this architecture may be O.K.--but
for a small number of nodes, a switch does not have a scal-

ability problem, and requires less management.

3.4. Tree

The tree architecture is the most natural design from the

LAN perspective. (In fact, all vendors to which we outlined

our project suggested this architecture.) The tree architec-

ture is constructed by connecting switches together using a

higher performance network (e.g., connecting Fast Ether-

net together with Gigabit uplinks). In order to maintain

bisection bandwidth, the higher levels in the tree use either

more links or higher bandwidth links and switches.
The bisection bandwidth for this architecture is a maxi-

mum of 12.5 MB/s per node (as each node has a single

bidirectional 12.5 MB/s link connecting it to the network).

In practice, however, the bisection bandwidth will be lim-

ited further by: Fast Ethernet switch fabric capacity, the
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number of gigabit links connecting Fast Ethernet switches

to the gigabit switch, or the gigabit switch fabric capacity.

In this architecture, base latency and bandwidth are
affected little. For a two-level tree, the worst case latency

would be L + 3L+s W, and the worst-case bandwidth would

be B - 3B.sw. Given our measurement of additional switch

latency and reduced bandwidth, we conjecture that this

would yield a latency of 190 microseconds and a band-
width of 7 MB/s. However, we believe these numbers are

quite conservative, and would expect better performance

(certainly in terms of bandwidth) due to the pipelined

nature of the way large messages are sent. We were unable

to test a tree architecture, as Gigabit switches were just

becoming available at the time ofthis writing.

Using currently available Ethernet technology, the tree
architecture trades bisection bandwidth for scalability

beyond 100 nodes. (Cost is also directly correlated with
bisection bandwidth.) Most Fast Ethernet switches with

gigabit ports and gigabit switches have sufficient switch
fabric capacity to supply non-blocking service. For this

reason, the gigabit links connecting switches are likely to

be the bottleneck. A system with 768 nodes can be con-

structed using 24-port Fast Ethernet switches, each with

two Gigabit uplinks, all connected to 2 32-port Gigabit

switches. This would give a per node bisection bandwidth

of 2BGB]T/24, or 250/24 = 10.4 MB/s. Cost, however, is

significantly greater than Ibr the switch, costing

$NiC+$sw+(4/24)$G_sw, or about $597 per node. Reducing

bisection bandwidth to 5.2 MB/s by using a single Gigabit

uplink per 24 nodes reduces the cost to

$NiC+$sw+(2/24)$G_sw, or about $388 per node.

Although the tree architecture is currently not scalable

to tens of thousands of nodes (our target), we expect tech-

nology improvements in both switch density and backplane
bandwidth. However, even the tree architecture suffers

from a lack of failure resilience--the failure of the top

level Gigabit switch would render the entire system use-
less.

4.0. P-Mesh Architecture

Our detailed network comparison led us to design a

hybrid architecture, the P-Mesh, with the architecture scal-

ability and hardware fault resilience of the toms, but with-

out the loss of performance scalability. We replace the

direct connections along a line of processors in a given
dimension of the torus with a switch. Meanwhile, nodes

continue to route messages that traverse more than one
dimension.(see Figure 3).

In general, a d-dimensional P-Mesh with M, nodes in

a

dimension i has N = HMi nodes and requires dN net-
i=1

d

work interfaces, dN network cables, and _ M, switches.
i=1

In particular, the j-th dimension requires 1_(_ = l)(i _ j) Mi

switches, each capable of handling M i ports. An N-node

"square" P-Mesh is denoted as n a P-Mesh (each dimen-

sion is of size n and nd = N).

The cost of a P-Mesh is more than a single switch, but

less than the tree. Each P-Mesh node costs d($NiC+$sw), or

about $360 per node for a 2-dimensional P-Mesh.
The network characteristics of the P-Mesh are a combi-

nation of switch characteristics and torus characteristics.

Assuming switches are non-blocking (i.e., bisection band-

width equal to 12.5 MB/s per node), then a P-Mesh has

worst-case latency of L+(d-1)L+r+dL+s w, and worst-case

bandwidth of B-(d-1)B_r-dB_sw. For a 2-dimensional P-

Mesh, the worst-case routing would add a single hop, and

should result in about 225 microseconds latency (we mea-
sured 230 microseconds), and about 6 MB/s bandwidth

(exactly as measured).

The P-Mesh inherits the good bisection bandwidth of

the torus, delivering a constant B MB/s per node indepen-

dent of the number of nodes or dimension (assuming non-

blocking switches). If the individual switches provide less

than 12.5 MB/s per node bisection bandwidth then the

bisection bandwidth of the whole system will be this lesser

amount (e.g., 9.4 MB/s per node for a 162 P-Mesh based on

the Bay 350 series which has a backplane bandwidth of 1.2

Gb/s).
However, as the dimension of the P-Mesh increases, the

latency gets worse. For the system sizes we are interested

in (approximately 500 nodes) the degenerate one-dimen-

sional P-Mesh (a single switch) is not available, but a 2-

dimensional P-Mesh can be built using 24-port M2COTS

parts supporting up to 576 nodes.
The fault resilience of the P-Mesh is similar to that of

the torus. A single switch failure can be tolerated by updat-

ing the routing tables, and two switch failures will, at most,
result in the loss of a single node.

The P-Mesh does suffer from increased packaging com-

plexity (a number of cables must be "long"), as well as

increased configuration and management overhead (to set

up routing tables). The regular nature of the P-Mesh archi-
tecture, however, allows most of the configuration and

management to be easily handled by a single setup script.
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A slight modification of the P-Mesh architecture allows

switches to cover multiple dimensions (e.g., one switch for

every two rows rather than one switch per row). This can

reduce the parts count by allowing higher density (more

ports) switches to be used at a cost of reduced bisection
bandwidth.

4.1. P-Mesh IPv4 Addressing

Although the P-Mesh architecture is general, and can be

used with any underlying protocol, the most common,

hence, most commodity, protocol is the Internet Protocol

(IP) [9]. IP version 4 (IPv4) uses 32-bit addresses which

are broken up into a network part, a subnet part, and a host

part. P-Mesh IPv4 addressing further breaks up the subnet

portion of the address into dimension and P-Mesh "subnet

vector". (IP version 6 will allow multiple levels of subnet,

making the addressing and routing in a P-Mesh somewhat

less complicated--however, IPv6 is still under develop-

ment [41).

The design of the P-Mesh IPv4 addressing scheme had

three goals:

• Compact encoding: a minimal number of

address bits are required to encode a P-Mesh of

a particular size
• Ease of growth: the addressing for an nd P-

Mesh can be used to assign addresses for all
smaller m d P-meshes (m<n). In other words,

once an upper bound is chosen for the size,
individual nodes do not have to have their

addresses changed to grow the system.

• Ease of routing: a simple script can be used to

generate all routes for any size P-Mesh

The method chosen is to break up bits into: dimension,

subnet vector, and host (written "d.[n].h').

129.99.208-215 d n h

I

I,l,l,I, ,j,l,l,l,l,l,I, ,I,l,l,I
x 0-29 1-30

Y

FIGURE 2. Example 302 P-Mesh addressing for

Whitney design. Multiple subnets on the NAS

IPv4 class B network support the proposed

12 x 24 P-Mesh. This addressing scheme would

support up to a 30 x 30 P-Mesh.

Given N = n d nodes, an nd P-Mesh has:

• I-log(d)-] dimension bits

• (d- I)[-log(n)] subnet bits

* rlog(n + 2)] host bits
A two-dimensional P-Mesh uses one bit for dimension

(X vs. Y), I-log(n))-] bits for the subnet number in that

dimension, and [log(n + 2)'] bits for the host number on

that subnet. The largest two-dimensional P-Mesh that can

be constructed using IPv4 addressing (using a class A

address such as 10.0.0.0) would support up to a 20482 P-

Mesh. However, given the M2COTS technology with the

best price/performance in May '98 (24-port Fast Ethernet

Switches are under $100 per port), the most reasonable

architecture would be a 242 P-Mesh. This size requires | 1

bits for IPv4 addressing: 1 dimension bit, 5 subnet bits

(representing 0 - 23), and 5 host bits (representing 1 - 24).
In a d-dimensional P-Mesh, each node has d addresses.

For example, node n_ = (m0,m I ..... md- l) would have one

IP address for each dimension:

O.[md_ 1""mk'"m2 ml ]'m0

1 .[m d_ l...mk...mznto]'ml

k. [md - I "" m k + Imk - 1"'" nl 1tttO]" tllk

...

d- l.[ma_ 2...mk...mlnlo].m a_ l

where the notation [abc] represents the concatenation of

the l-log(n)-] bits representing a + I followed by those rep-

resenting b + 1 then c + 1 .

Note that P-Mesh subnet address are numbered starting

from 0, while the P-Mesh host portion is numbered starting

at 1. This saves one bit per dimension in the IP address for
d

an n P-Mesh, where n is a power of2--if n is not a

power of 2, the subnets can be numbered more sensibly

starting at 1. The "[]" notation hides this for convenience.

4.2. P-Mesh IPv4 Routing

We decided to use X-Y routing due to its simplicity and

semantic properties. In X-Y routing, a message from one

node to another first travels along dimension 0, then

dimension 1, etc. In a 2-dimensional mesh, a message

would first travel along the X dimension, then the Y dimen-

sion (hence the name X-Y routing). Commercial mesh-

based highly parallel systems (e.g., the Intel Paragon and

Cray T3E) also use X-Y routing. However, the commercial

systems use proprietary (non-commodity) technology

which also allows them to implement fancy routing tech-

niques such as worm-hole and cut-through routing.

We designed a routing scheme using IPv4 subnet routes.

In an nd P-Mesh, each node has dn c/- i routing entries. In
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particular, the routing table for node

r_ = (m0,m _..... .td_t) could be generated by the follow- 2o_

ing pseudocode:
for k = 0..d-i

for sO = i..n, s t = i..n .....

Sd_ 2 = i..n

for i : O..d-2

if (mi:/:s i ) {

add route to net k.[so...sd_2l.O

through node

i[md- I'"mt + Imi- l'"mlmo]'Si

break

E

E

c-

. I .02

1.0.1ML_'

.I.l .2

H.z<.y

.3.1 .2

I.1.4\7,..5,'

.0.3 .4

1,3.P,Z_>'

.1.3 .4

13.,-,_.>'

2.3 .2.4

.3.3 .4

1.3._%L>'

/_2 4------ x address (d.n.h)r-'-------3 Switch
-__a,m------- node name.

LL__.__'''" e.g., "whil-2-4"

- y address (d.n.h)

FIGURE 3. Generic 4 2 P-Mesh

For example, on our proposed Whitney system, a 24 z P-

Mesh. Node (x, y) has two network interfaces, addressed

0.[y].x and 1.[x].y. The routing table would be constructed

using a simplified version of the above:
for k = 0..i

for s = I..24

if (x != s)

add route to k. [s].0

through 0. [y] .s

else if (y != s)

/* interface i. [x] .y is used */

else

/* no route needed to self! */

E

whit01 whit02

whit05 whit06

.33

.147K_J
whit29 whit30

7,' :7=:: C

.49

.148q.._'
whit33 whit34

.3

whit03

whir07

.35

whit31

.51

whit35

whit04

.20

whit08

I ......

.36

whit32

.52

whit36

[------"---] whitsw-I

whitsw-2
x hosmame: "v,.hit-2-4-x'.

h._, ...... • "_hit 9 _t v'" K '_'"t IP address: 129.99.209.50
-' ................. -" "-'-' "_ I 5,q
IP address: 129.99.209.148"-_., t_ _ "_----4_ __a,_-------- base name: "whit-,-4"

Canonical hosmame-.,.,_ .148_2/'.148'_.._"

(IP addr 129.99.208.34) _ whit34

FIGURE 4, Whitney 42 P-Mesh test configuration

(two Bay 350F-HD 24-port switches were used to
create 8 logical 4-port 100baseT switches,)

5.0. Architecture Summary

Of the architectures we evaluated, only the torus, tree,

and P-Mesh are capable of scaling to thousands of nodes.

Although the torus hardware is scalable, the performance

degrades proportional to the number of processors by a sig-
nificant amount. For this reason, we do not consider the

torus a viable architecture for use with more than a few

dozen processors--and at this small size, a switch is

clearly the winner.

The worst case latency and bandwidth of both the tree

and P-Mesh are fixed. The tree is slightly better in both

regards, as performance loss due to a node router is gener-

ally greater than that due to a switch. However, the P-Mesh

gives better bisection bandwidth (especially if only a single

uplink is used to construct the tree to save money).
The P-Mesh has better fault resilience characteristics, as

the tree cannot sustain a single point of failure, while the P-

Mesh is highly redundant. However, the P-Mesh requires

substantially more packing and configuration management
overhead.
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Note that our estimates of tree performance are proba- analysis, we compare the P-Mesh results to the single

bly pessimistic. We expect actual performance to be closer switch results.

to that of a single "big" switch. For this reason, in our

TABLE 2. Network architecture characteristics

Bisection

Scalability Cost Latency Bandwidth Bandwidth
Architecture (max nodes) ($ per node) (usecs) (MBIs) (MB/s/node)

Direct Connect 2 SNIC L B B

Hub 100 $NiC+$hub L B 2B/N

Fully Connected oo (N- I)$NIC L B (BN)/4

Switch 100 SNIC+$sw L+L+s w B-B_sw B

2D Torus oo 45N1C L+( ,_ - l)L+r B-( ,J-N- 1)B. r B

Tree a 768 $Nif+$sw+(4/24)$G_sw L+3L+s w B-3B_sw (20/24)B

2D P-Mesh b 10,000 2($NlC+$sw) L+2L+sw+L÷r B-2B_sw-B_ r B

a. 32 24-port Fast Ethernet Switches each with 2 uplinks to 2 32-port Gigabit switches

b, 1002 P-Mesh (maximum sized Fast Ethernet switches are about 100 ports)

Comparing the cost of the Tree and 2D P-Mesh, and

solving for $G-sw, shows that the tree architecture will cost

less as soon as a Gigabit Ethernet switch port costs less

than (24/4)($NiC+$sw), or, if we ignore the cost of the NIC,

TABLE 3.

the two will be equivalent when 65NI C = $G-sw- At current

prices ($NiC+$sw = $180) the tree would cost less than the

P-Mesh, if $G_sw is less than $1080.

Network comparison for 16 nodes (Spring 1998)

Network
Architecture

Direct

Hub

Switch

Cost

($ per node)

30

80

180

2D Torus 120

Tree 597

2D P-Mesh 360

Latency (usec)

best-case worst-case

175

175

180

175 295

190 a

180 230

a. Tree latency

A summary of measured network characteristics

appears in Table 3. The predicted latency of the P-Mesh,

L+2L+sw+L+r, works out to 175 + 2(5) + 40 = 225 (we

measured 230). Similarly, the P-Mesh bandwidth was pre-

dicted to be B-2B_sw-B r, or 8.5 - 2(0.5) - 1.5 = 6.0 (as mea-

sured).

5.1. NAS Parallel Benchmarks

Bandwidth (MB/s)

best-case worst-case

8.5

8.5

8.0

Bisection Bandwidth

(MB/s per node)

12.5

1.6

9.4

8.5 4.0 12.5

7.0 a 10.4

8.0 6.0 9.4

and bandwidth performance are predicted (not measured) using architectural characteristics.

We use the application benchmarks LU, BT and SP
from the NAS Parallel benchmark suite [21, version 2.2 in

order to compare network performance. These code are

written using the MPI (message passing interface) library,

and are representative of the computation fluid dynamics

workload typically run at our facility. All three benchmarks

compute the solution of a system of five partial differential

equations. LU uses the symmetric successive over-relax-

ation (SSOR) algorithm, while BT and SP respectively

implement block tridiagonal, and scalar pentadiagonal

variants of an alternating direction implicit (ADI)
solver.The benchmarks have 3 different classes: A (small-

est), B and C (largest), depending on the problem size

(number of grid points) and number of iterations.
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TABLE 4. NAS Parallel Benchmarks class A

performance on 16 nodes

Network
Architecture

NPB-A 2.2 (MFLOPS)

LU BT SP

Hub 210.53 235.28 105.54

Switch 338.55 228.14 121.89

Torus 355.37 255.79 133.11

P-Mesh 398.56 247.11 117.16

TABLE 5. NAS Parallel Benchmarks class B

performance on 16 nodes

Network
Architecture

NPB-B 2.2 (MFLOPS)

LU BT SP

Hub 328.1 282.25 152.36

Switch 327.22 256.46 162.89

Torus 402.22 323.31 191.82

P-Mesh 404.20 309.96 174.93
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NAS Parallel Benchmark performance (version 2.2) comparing various
Fast Ethernet architectures on 16 nodes

Tables 4 and 5 and Figure 5 show the results of class A

and B performance for the hub, switch, torus, and P-Mesh

architectures on 16 nodes (a 4 by 4 mesh is used for the

torus, and P-Mesh tests). The hub and torus numbers are

taken from [5]. Surprisingly, the switch is better than the

hub architecture in only half the cases. The torus is better
than both the switch and the hub, as is the P-mesh (except

for SP class A).The P-mesh is better than the torus on LU
class A and B, and is 3-12% slower on BT and SP.

6.0. Related Work

The main contribution of this work is two fold: the ana-

lytical and empirical evaluation of networking topologies
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for MeCOTS clusters, and the design of a new topology,

the P-Mesh. Some of the early work on the Beowulf

project also focused on evaluation of networking topolo-

gies [7]. The Beowulf project experimented with hubs as

the interconnect for each row and column of a four by four

mesh of PCs--at the time, switching technology was not a

"commodity". The idea of using bridging hardware to

interconnect rows and columns of a mesh of processors

dates back as far as the mid-1980s, with the DAP [1],

which used buses for the interconnect mechanism.

7.0. Summary

We designed a new network architecture for M2COTS

clusters: the P-Mesh. The P-Mesh combines the scalability

and fault resilience of a torus with the performance of a

switch.

We compared the scalability, performance, and cost of

the hub, switch, torus, tree, and P-Mesh architectures. The

latter three are capable of scaling to thousands of nodes,

however, the torus has severe performance limitations with

that many processors. The tree and P-Mesh have similar

latency, bandwidth, and bisection bandwidth, but the P-

Mesh outperforms the switch architecture (a lower bound

for tree performance) on 16-node NAS Parallel Benchmark

tests by up to 23%, and costs 40% less. Further, the P-

Mesh has better fault resilience characteristics, able to tol-

erate multiple failures. The P-Mesh architecture trades

increased management overhead for lower cost, and is a

good bridging technology while the price of tree uplinks is

expensive.
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