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Abstract

This paper describes a series of stepwise refinements
of a biological model resulting in a high-performance
simulation system for individual-based models of the co-
evolutionary dynamics associated with spatially explicit
epidemic processes. Qur model includes two competing
host species, a macroparasite capable of serving as a
vector, and the vector-borne microparasite. Genetic al-
gorithms are used to simulate genetic change; we are
particularly interested in the evolution of pathogen vir-
ulence. The simulation system employs cellular au-
tomata to track individual organisms distributed over a
two-dimensional lattice. Our models are able to iden-
tify each individual’s parentage, and to account for both
biotic and abiotic spatial heterogeneity. Using the de-
veloped system we conducted a series of experiments
to demonstrate how individual-based modeling and ex-
plicit representation of space, although computationally
expensive, can produce qualitatively new biological re-
sults.

1 Introduction

Certain parasites evolve to impair their host’s sur-
vival and reproduction only minimally. The primate
lentiviruses offer an interesting example [17]. In older
coevolutionary associations, such as simian immunod-
eficiency virus and African green monkeys, infection
is essentially non-pathogenic, while in the recent as-
sociation between HIV and humans, infection leads to
serious disease. However, a long-standing coevolution-
ary association does not always imply reduced parasite
virulence [5]. In fact, virulence exhibits a great deal of
variation among host-parasite associations, and often
varies temporally within a particular association [9, 20].

Current theory for the evolution of virulence equates
virulence with extra host mortality due to parasite
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infection, and than assumes that selection should in-
crease a parasite’s rate of reproduction. As a parasite
exploits host resources at a greater rate, it increases
the rate of transmission to new hosts. But the host’s
mortality rate increases as a consequence, decreasing
the length of the period during which the parasite can
be transmitted. Depending on the functional relation-
ship between parasite transmission rate and virulence
(i-e., the trade-off between transmission rate and infec-
tious period), selection may favor low, intermediate or
increasing virulence [17].

A number of recent models address variations of the
trade- off just described. Important extensions include
analyses of

e interactions between virulence and host recovery
rate (”clearance” by the immune system [1]);

e competition between different parasite strains
infecting the same host individual (”coinfec-
tion” [20]);

e competition between parasites when a more viru-
lent strain excludes a less virulent strain infecting
the same host (”superinfection” [9, 17, 6]); and

o effects of mutation and relatedness among para-
sites infecting the same and different hosts [6].

This paper presents a series of computational mod-
els, each a stepwise refinement of the previous one, with
the final model including all listed above interactions.
All of these models are individually-based and spatially
explicit.

Ecological simulations show that spatial structure of
contacts between infectives and susceptibles strongly
influences a disease advance [16]. Limiting infectious
contacts to an interaction neighborhood around a dis-
eased host reduces the frequency of infection compared
to the standard assumption of a homogeneously mixing
population [2]. Increasing host spatial aggregation in a
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population of given density can increase the chance of
parasite extinction, and reduce the endemic frequency
of infection when the parasite advances [4].

Genetic algorithms define genetic data for each sim-
ulated individual and so offer an exceptionally powerful
(and computationally intensive) method for analyzing
evolutionary processes. Genetic algorithms have only
recently been applied to questions concerning coevolu-
tion [19].

2 A Spatially Explicit Four Species
Model with Genetic Information

We refer to a particular macroparasitic or micropar-
asitic genotype as a strain [10]. The virulence of a
strain reflects the strain’s capacity to exploit its host,
and so controls the rate at which it converts host re-
sources to its own reproduction.

A model that we proposed here is an extension
of the spatially explicit individual based cellular au-
tomata model that we developed for vector born dis-
eases [18]. The model enables the user to define an
interaction neighborhoods for each site. This neigh-
borhood, termed the ecological stencil, may extended
beyond the nearest neighbors of the site. When the
area of the ecological stencil approaches the environ-
ment size, the model tends to behave in a spatially ho-
mogeneous fashion, while small ecological stencil sizes
support greater spatial heterogeneity.

The model represents space as a two-dimensional
lattice with J > 1 sites and eight nearest neighbor
connectivity with Lo, norm as a distance metrics. Sites
of a lattice can be empty or occupied by an individual
host organism of one or two competing species. In ad-
dition, we allow a macroparasite and/or microparasite
that infect hosts. If both marco- and micro-pathogens
are present, than macroparasite acts as a vector for
microparasite, so vector born diseases can be modeled.
The state of a site n at time ¢, denoted n(t), encodes the
species (or lack of them) present at the site at time ¢.
The global state space, N(t) = {n1(t),na(t),...,ns(t)}
is simply a collection of local states at time ¢. The eco-
logical stencil of a site n is denoted as §,. Intuitively,
the stencil of site n defines a “sphere of influence” of a
host residing at site n, that is all sites from which col-
onization or infection can reach site n. One version of
the model assumes that the time is discretized into uni-
form time steps of size At. For time steps small enough
so there are no sites which violate the Poisson single
transition rule, the model accurately approximates a
continuous time model. For larger values of At, the
model behaves in a discrete time fashion.

2.1 Modeling Mutation

We assume that there are two competing host
species h € {0,1} and two disease causing agents: a
macroparasite species that spread via direct contact,
and a vector-borne microparasite (pathogen) species.
The user can selectively remove some of the species
to perform controlled experiments for specific species
interactions like we have done it with the TEMPEST
model [11, 12, 13].

The model described here assumes haploid species.
We introduce genetic data to answer two biological
questions. First, we want to find out what is the prob-
ability that a host will be infected. Second, we want
to measure what impact does an infection have on the
host’s fecundity and mortality. The first question con-
cerns susceptibility; the second regards recovery and
its costs.

Let the macroparasite have kp; bits of genetic infor-
mation defining how it subverts the host’s resistance,
and let the host have the same number of bits of re-
sistance information. Likewise, let k,; represent the
number of bits of genetic information encoded by the
microparasite as well as the number of bits of resis-
tance information in the host. The k,; and k,; bits
of genetic information for the host as well as for the
macro- and microparasite are further partitioned based
on their role in immunity (probability of successful in-
fection and virulence).

After we describe the structure of the genotypes of
hosts, as well as the macro- and microparasite, we
consider many model subsets, each corresponding to
a particular genetic mechanism, and the related intra-
species effect, or inter-species interaction.

2.2 The Transmission Mechanisms of Ge-
netic Data

Genetic algorithms (cf. [7]), use the copying, cross-
over, and mutation operators. Each operator is anal-
ogous to a biological process. The initial step in the
production of an offspring requires the copying of (se-
lected) parental genetic information. Mutation oc-
curs when parental genetic information is copied im-
perfectly; a bit value of the offspring’s genotype is in-
verted. Cross-over takes genetic information from two
parents and recombines the information to specify the
offspring’s genotype. Fitness functions quantify an in-
dividual genotype’s success when it interacts with other
individuals.

Immunity is an acquired form of resistance to disease
which individual hosts may develop, as discussed be-
low. The host’s immunotype governs the host’s specific
resistance to infection, and the genotype of a strain is
subdivided into the part that triggers the immunotype
response, and the part which controls the strain’s viru-
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Figure 1: State information in the Host/Strain Coevolutionary Model

lence. To model virulence and infectiousness, we devel-
oped fitness measures that characterize a strain’s geno-
type interactions with a host’s genotype/immunotype.
These measures are uses in computing susceptibility,
recovery, host fecundity and host mortality probabili-
ties. The following bit patterns have one-to-one map-
pings between the hosts and the disease causing agents
as shown in Figure 1.

The bit patterns indicate the combined genotype
and immunotype of a particular host and the geno-
type of a strain of disease causing organism. The
combined genotype and immunotype of the hosts and
strains’ genotypes govern the outcome of competition
in the modeled system, by impacting fecundity and
mortality. For generality, suppose that bit string A =
agp,as, - - . ,an—1 represents a strain’s attack strategy en-
coded in a bit string, and D = dy,ds,...,d,—1 rep-
resents the corresponding host defense strategy (com-
bined immunotype/genotype) encoded in a bit string.
If bit a; = 1,4 € {0,1,...,n — 1}, then a particular
mode of attack is “turned on” or enabled, likewise if
d; = 1 the host’s resistance to such an attack is enabled.
Some fitness functions of the attack and/or defense bit
strings which can be easily computed and used to eval-
uate the relative strength of attack and the probability
of successful defense are described in Table 1.

2.3 Host Mortality Cost for Excessive Im-
munity

Consider how susceptibles’ mortality is impacted by
resistance to infection. The presented model assumes
that resistance to infection is indicative of a more com-
plex organism, which has reduced mortality rate, re-

| Fitness Function | Counts:

Raw Attacks
Raw Defenses
Blocked Attacks
Subverted Defenses
Wasted Defenses
Unused Attacks
Defense efficiency
Attack efficiency

Fra(A) = Y1 a;
Frp(D) = Y17, d;
Fpa(A,D) = Y05 aiNd;
Fsp(A,D) = Y a; A —d;
Fwp(A,D) =1 —a; Ad;
Fya(A,D) = 7 —a; A —d;
Fur=3Y"" a; & d;
Fgp(A,D) = Z?;ol a; ®d;

Table 1: Fitness Functions Used

duced fecundity, and reduced probability for selection
at time of mating. This is in agreement with the clas-
sic ecological models of life span vs. fecundity. Let
its represent the probability of death during a single
time step, At, for a host in state s. In the absence
of infection, a host more resistant to infection might
have a different average life span than a less resistant
one. This gives a rise to either a penalty or reward
function for immunity. Let an uninfected host have a
base mortality rate ppp, h € {0,1}. Based on the host
genetic information describing its resistance to disease,
the host mortality rate can be adjusted to values de-
noted as ppq. These values span the interval [0, upp] as
a nonincreasing function to Frp(Rp;) of the immunity
and virulence resistance of the hosts (see Table 1).



2.4 Evolution of Disease Causing Organ-
isms

Consider an evolving asexual disease causing
species. The strains, also called clones, arise due to mu-
tation. Selection via competition may be immediate or
gradual, depending on the mechanism of competition.

When comparing two strains, a partial ordering can
be imposed based on ecological fitness, with a dom-
inant strain being more ecologically fit (i.e., having
a greater value for the fitness function in the cor-
responding optimization problem) and a suppressed
strain being less ecologically fit. Fitness functions
rely on some combination of the strain’s attack and
host’s defense capabilities as indicated by their respec-
tive genotype/immunotype information. The resources
used to “fuel” the competition are derived from their
host via the virulence measure, and attacker/defender
string pairs are shown in Figure 1. Let A denote the
bit string of the attacking strain and D denote the
bit string encoding the defending host’s genotype. Let
V (A, D) be the fitness function (virulence), of a partic-
ular strain/host genotype pair. Some candidate func-
tions are found in Table 1.

The strain’s virulence is important; increased viru-
lence increases the probability that the pathogen will
infect any available susceptibles during the next time
period. This enhances the strain’s fitness unless the
greater virulence kills the host so quickly that a less
virulent strain infects more susceptibles per infection.
Hence a pathogenic clone’s success can depend on its
genotype, genotypes of its competitors and population
density of host genotypes.

2.5 Structure of the Intra-host Competi-
tion

Both the macro- and microparasite are assumed to
have asexual reproduction in this model (meaning that
their genetic information is subject to the operations of
copying and mutation). A strain (also called clone) on
a host is entrenched if the host organism in question
is infected by it. We begin by treating both macro-
and microparasite as being asexual, and model infec-
tion with similar mechanisms. In this model, infection
arises from the following events: (i) ezposure, the con-
tact mechanism which transmits parasites between the
hosts, (ii) #noculation, the method by which parasites
are introduced into the hosts to make the host immune
to future attacks, (iii) immediate competition, which
occurs when the number of attacking strains exceeds
the capacity of a host to support them, so some strains
will be removed from the host, either by superinfec-
tion (the new strain is dominant) or by competitive
failure of the newly arrived strain, (iv) gradual com-
petition, that happens when the strain gains access to

the hosts’ resources and (if other strains are present)
coinfection occurs, (v) mutation, the resident strains
reproduce at regular (frequent) intervals (every time
step) and create offspring, some of which may have al-
tered genotypes due to mutation, (vi) recovery, a host
survives diseases caused by a strain, with (possibly)
acquired immunity.

2.6 Inoculation Mechanisms and Spread
of Disease

Consider the following sequence of events assuming
that the hosts acquired immunity. A host is born with
no congenital immunity. Suppose that this host is later
infected by a strain, having an antigenic genotype A,
and then recovers. As a result, this host becomes im-
mune to strain A,. If in the future this host is exposed
to A, the host’s immunological system will “recognize”
the antigens associated with the strain and antibod-
ies will be generated, initiating a rapid (near instanta-
neous) recovery from infection. Suppose that the same
host is later exposed to another strain, with antigens
represented via genotype A,. The immune response
to A, depends on the similarities between A, and A,
which decide whether the hosts acquired immunity al-
lows it to resist infection.

Suppose the strain’s antigen regulating portion of
its genotype and the host’s immunotype have |D| =
|A| = kr bits of strategy information in their genotype.
Let D = dy,ds,...,dy, represent the immunotype of
the host that are represented by the hosts bits Rp; and
R,;. Let A = ag,a1,...,a, represent the antigenic
genotype of the strain, that is Bp; for macroparasite
and C,; for microparasite. Assuming that congenital
immunity is disallowed, the initial state of D is assumed
to be 0 (all defense bits disabled) upon birth of the
host. After recovery from a disease, a host’s defense
bits (for immunity) are set to d; = d; V a;,0 < i <
kr conferring immunity to inoculation to the strain.
An inoculation’s probability of success is a function of
the attackers fitness with respect to the defender (see
Table 1.

Now consider the complementary case where hosts
do not acquire immunity during their lifetimes. The
inoculation process becomes certain and |[A| = |D| =
kr=0.

An attack on the host can arise also from muta-
tion of the resident strain reproducing at every time
step. Let A, denote resident strain. If a copying er-
ror occurs in reproducing the genotype, then a new
strain, A, # A, will be introduced to the host. This
results in an inoculation with 4,. The rate of mutation
is determined by the user-specified per-bit copy error
probability.



2.7 Mortality Cost of Virulence

There is a penalty to a macro(micro)-parasites that
are overly aggressive in resource acquisition which rep-
resents an optimization constraint for virulence. One
mechanism of introducing such penalty is to increase
host mortality in proportion to the virulence of the
disease causing agent, thereby killing its “meal ticket”.
The infection of the host of type h € {0,1} occurs in
states s € {h+4,h +6,h + 8}.

Assume that the base host mortality probability
over a time step for a given infection is denoted by
Wsp- An adjusted mortality, pis o is based on the fitness
measure of the disease and satisfies pgsp < prsq < 1.

In simple attack the host, is attacked by just the
macroparasite and the state is h + 4, or solely by the
microparasite in which case the state is h + 6. If both
macro- and microparasite infect the host, then a com-
plez attack occurs and the state is h + 8. The resulting
cumulative virulence can be expressed as an additive
function of the simple attack virulences.

2.8 Host Species Evolution

In this section we consider host reproduction and
its impact on host evolution. Letting mortality (and
infection) reflect the relative fitness of the host organ-
isms, the reproduction will be (indirectly) impacted by
host’s ability to survive until reproduction occurs, see
Sections 2.3 and 2.7. Hosts may have an immunotype
which records acquired post-recovery immunity to a
strain.

We want to apply genetic crossover in the repro-
duction of hosts. Without assigning individual hosts
a gender, we can do so by having hosts “mate” and
then reproduce. The host selects the mate within its
neighborhood assigning the same probability of selec-
tion to all eligible organisms. If there is none in the
neighborhood, the host is unable to reproduce.

After mating, a host reproduces by distributing
its offspring/propagules to unoccupied sites within its
stencil. The corresponding computation is broken into
three stages: (i) determining the local rate of propagule
creation/dispersal (see Section 2.9), (ii) computing the
probability of a particular host propagating, i.e. plac-
ing its offspring at an empty site (see Section 2.10), and
(iii) calculating the genotype and lineage of offsprings
(see Section 2.11).

2.9 Local Fecundity Computations

Let ppp represent the base (maximum) intensity with
which a host of species h can produce propagules and
Pra represent the adjusted (or actual) intensity of a
single host propagating. Note that ppp is homogeneous
across time and space, and is a user defined parame-
ter of the model, while pp, varies over time and space
based on the occupant of a site k at time ¢ (i.e., k

and t are implicit parameters for the sake of brevity).
Conferring high levels of congenital immunity to an off-
spring taxes the hosts resources and can dampen host
reproductive intensity. Likewise infected hosts may re-
produce at a reduced rate in response to their infected
condition.

2.10 Site Propagation Probability Com-
putations

Given the individual rate of propagule/offspring cre-
ation at each site, the formulas given in [18] can be
modified to take into account the reproduction (now
heterogeneous). To account for the interactions be-
tween the competing species, we consider also the post
dispersal competition [18].

2.11 Determining a host offspring’s geno-
type

The first step in computing a host offspring’s geno-
type is to uniquely determine the lineage to determine
the parent’s genotypes. A way to do this (not necessar-
ily computationally efficient) is to partition the interval
[0, ics, Pan(i)] according to an ordering of the sites
in the stencil, with the host at site ¢ having a partition
of size pon (i) of the interval (zero size, when the site
is not occupied by the host h). Then, by generating
a uniformly distributed random number on this inter-
val, the identity of the parents is selected according to
the ownership of a partition into which the generated
random number falls.

At this point the exact genotype of the offspring
should be computed using the cross-over, copy, and
mutation operators. In nature, copying is assumed to
be done first (via mitosis and meiosis), and at this stage
mutation occurs (i.e., failure to create a perfect gamete
due to copying error). Rather than modeling the copy-
ing operation directly, we merge it with the cross-over
operation, invoking mutation in a probabilistic fashion.
We assume that mutation is modeled by a Bernoulli
trial for each bit copied.

3 Model’s Design and Implementation

We have implemented two stepwise refinement of the
TEMPEST system [13]. First we allowed competition
between two, genetically different strains in the system
called STORM [14], next we refined STORM by allow-
ing genetic drift of the hosts and parasites in the system
called GALE. Below we compare the implementation
of GALE with that of STORM and TEMPEST.

The GALE model was implemented using C++ and
MPI. Placement of data and operations executed on a
distributed-memory machine can significantly impact
the total computation time. Hence, the partitioning of
the simulation domain among the processors is crucial
to running simulations efficiently in parallel.
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The underlying model of GALE has localized inter-
actions, so a static block data decomposition was se-
lected (much like in TEMPEST and STORM [13, 14])
as shown in Figure 2. To compute state transition
probabilities, GALE must traverse the set of sites
within the interaction neighborhood, rather than to
count the number of sites in each state as TEMPEST
and STORM do [13]. To model reproduction, all geno-
types that can reach a given site must be known, so
GALE has to maintain a dynamic multiset of eligible
genotypes. Multiset union, intersection and difference
operations have a cost proportional to the cardinality
of the sets being merged. In contrast, TEMPEST and
STORM use additions and reuse partial results from
neighboring computations to evaluate state transition
probabilities independently of the size of the interac-
tion neighborhood [13]. Consequently, the state transi-
tion function computed at each simulation step is costly
in GALE, compared with TEMPEST and STORM.
This results in linear dependence of GALE’s perfor-
mance on the area of the interaction neighborhood.
Possible improvements include use of segmentation of
the environment according to sites genotypes or classes
of genotypes.

The processor which “owns” the partition in which a
particular site resides is responsible for computing its
next state, and therefore requires information about
the current state of boundary sites on neighboring pro-
cessors (since some stencils can span partitions). State
information which can be computed locally and does
not need to be computed across partition boundaries
is maintained for each site. This information is re-
computed first, concurrently with communication that
exchanges boundary information with the neighbors,

thereby improving the speedup of parallel computa-
tion. Data exchange across partition boundaries was
done using MPI directly on the SGI, rather than al-
lowing a direct read of data owned by neighboring
processors. This avoided race conditions, and makes
the software portable to networks of workstations and
loosely coupled architectures We used the shared mem-
ory chameleon (mpich) implementation.

4 Experiments with Model of Selection
between Competing Strains

To verify that the spatial effects are important for
evolution in epidemics, we simulated competition be-
tween two microparasite strains. The simplest case of
such competition arise when there are just two compet-
ing strains transmitted via direct contact and a host is
infected by at most one strain at a time [9].

For simplicity, we assume the selection on virulence.
The reward function for increased virulence is defined
by the primary effect of increased pathogen reproduc-
tive rate (as is manifested by infecting nearby hosts).
The penalty function for increased virulence (i.e., a
constraint) is defined by the increased mortality rate
for hosts in presence of a more virulent pathogen.

Let sg, and s; denote two pathogen strains that dif-
fer in virulence. Superinfection is a disease preemption
during which a host infected with s becomes infected
by strain s; via exposure from a nearby host. Coin-
fection occurs when multiple strains infect a host and
order of infection matters. To denote coinfection when
so arrives first, we adopt the notation for the “pseudo-
strain” sg1, but when s; arrives first then we introduce
a pseudo-strain s1¢ (coinfective systems in which order
of infection does not matter can be modeled by treat-
ing states with infection by either strain as equivalent
which corresponds to merging the two defined above
strains into one).

Typically, coinfection and superinfection are mod-
eled exclusively of each other, so our model provides a
mechanism for disabling these events (although, as can
be seen below, we permit the user to enable both as
well). The state diagram of this simple model is shown
in Figure 3. The parameters for the system are as fol-
lows. «; denotes probability of exposure to strain s;
within J whereas o ; is the probability of coinfection
by strain s; of the host infected with strain s;. A; de-
notes the probability of a susceptible avoiding exposure
to s;. -y stands for the competitive advantage of sqg over
$1. p; is the host mortality rate at state ¢ whereas ps;,
denotes probability of recovery from strain s;. pjk,;
stands for the probability of recovery of a coinfected
host from strain s; assuming previous infection with s;
and si. psr is the probability of superinfection when
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Figure 3: State Diagram of Coinfection/Competition
Model

a host infected with s; is exposed to sg. p;; denotes
the probability of coinfection with s; after infection by
si;- p; is the probability of host in state ¢ placing a
propagule at a single site within its stencil. Finally,
o;(k) denotes the number of hosts in state ¢ about site
k.

Let p(z,y) be the probability of going from state
x to state y in a single time step. An empty site
will remain unpopulated with probability p(0,0) =
[T, [(1 — ps)7¢], otherwise, it is colonized by an off-
spring from a nearby populated site. Since congenital
immunity is disallowed: p(0,1) =1 — p(0, 0).

Consider next a site occupied by a susceptible (i.e.,
an uninfected host). It may either die with probability
p(1,0) = py or be infected by a strain from its neigh-
bors. The probability of a host in state 1 avoiding
exposure to each of the strains is:

4 =
A =

(1—ap)”(1 — ai,0)”
(1—=0a1)”(1 - ap1,1)*

The Poisson single transition rule implies that if a sus-
ceptible is exposed to both strains, only one of them
will be successful in infecting the host, so the probabil-
ity of catching strain 0is p(1,2) = (1—p1)(1—Ao) [A1+
(1 — A4;)] and the probability of catching strain 1 is
then: p(1,3) = (1 — ) (1 — A) [Ag + (1 — 7)(1 — Ag)]

A host infected with strain so will die (i.e., be re-
moved) with probability p(2,0) = ps, and will re-
cover (without immunity) with probability p(2,1) =
(1 — po2)ps,- It will become coinfected with strain s;
after being infected by so with probability p(2,4) =
(1 — p2)(1 — psy)(1 — Ag) and will remain in the same
state otherwise.

Finally, consider the case of a host infected with
strain s1. The probability that it dies is p(3,0) = us.
It will recover with probability p(3,1) = (1 — u3)us,,
and superinfection by so will occur with probability
p(3,2) = (L — p3)(1 — pis,)psr (1 = po1)(1 — Ai). Coin-
fection by sg will occur with probability p(3,5) =
(1= p3)(1 — psy ) (1 — psr)por (1 — Ao).

Consider a coinfected host, where sy infected the
host first. The host can die with probability p(4,0) =
[t4, Or it can recover from strain sg with probability
p(4,3) = (1 — pa)(1 — po1,1) 01,0 The host can recover
from strain s; with probability p(4,2) = (1 — p4)(1 —
Ho1,0) o1 ,1, otherwise, the host will remain in its cur-
rent state (we assume that simultaneous recovery from
both strains is impossible).

Consider the complementary coinfected host, where
s1 infected the host first. The host can die with
probability p(5,0) = us. It can recover from strain
so with probability p(5,3) = (1 — us)(1 — p10,1)H10,0-
The host could recover from strain s; with probability
p(5,2) = (1 — pus)(1 — p10,0) 10,1, otherwise the host
will remain in its current state (again, we assume that
simultaneous recovery from both strains is impossible).

Similar reasoning can be used to extend this model
to vector-borne pathogenic strains.

We implemented a tool, called STORM, to simu-
late the simplified model. In the simulation runs, we
varied the spatial parameters governing host fecundity,
pi,i € {1,2,3} and rate of disease exposure from local
infectives aj,j € {0,1} so that the intensity of these
processes would not be unduly impacted by variations
in the area of the ecological stencil of each site.

The space was toroidally wrapped to avoid impact
of boundaries on the simulation results. Initially 25%
of the sites were populated by susceptible hosts with
a spatially uniform density. Small clusters of infective
hosts (0.25% of the sites) were placed in the initial en-
vironment, with maximum spatial separation to avoid
premature extinctions induced by local superinfection
events. The experiments used a region of 100 x 100
sites, however STORM has capacity for much larger
simulations. STORM was run using the fixed spatial
configuration for 2000 generations for each parameter
combination.

The results of the experiment have shown a remark-
able richness in the range of outcomes generated. First
consider a case with two competing strains which are
equal except for (i) a small difference in their viru-
lence induced mortality and (ii) the possibility of su-
perinfection by the more virulent strain, sq. We ob-
served that the the more virulent strain, sq can drive
the less virulent strain, s1, to extinction via superinfec-
tion. The rise and decline of s; is governed by the rate



at which the epidemic can spread through the environ-
ment, which is in turn correlated to the stencil’s area,
6. With larger § values, both so and s; infection dis-
perse more quickly so that the superinfection induced
extinction occurs earlier.

Now consider a similar case, except that the viru-
lence induced mortality difference is large. In this case,
even the competitive advantage of superinfection is not
sufficient to prevent extinction of sg. The rise and de-
cline of sg in this case reflects expansion of sq infection
from its original small cluster and later a denial of ac-
cess to susceptibles occurs due to the prevalence of s;
infection.

Finally consider an intermediate level of virulence
induced mortality. For a small stencil (e.g., the 3 x 3
case), the more virulent strain, sq, drives the less vir-
ulent strain, sy, extinct by gradually excluding it from
susceptible hosts. For intermediate sized interaction
neighborhoods (e.g., the 11 x 11 case), the less virulent
strain, s;, drives the more virulent strain, so extinct
because of rapid death of hosts infected by sq. For
large stencils (e.g., 33 x 33) so and s; coexist, the first
thanks to superinfection and the second because of in-
creased access to susceptibles.

Such range of results can only be found in spa-
tially explicit models and cannot be generated by spa-
tially homogeneous models. The stepwise refinement
of STORM calls for allowing the genetic mutation of
strains and hosts, creating a framework for simula-
tion of coevolution dynamics. We implemented a tool,
called GALE, to simulate such extended model. The
performance of GALE is the subject of the next section.

5 Performance of GALE

In this section, we compare and contrast the perfor-
mance of GALE with that of STORM and TEMPEST.

The stochastic nature of the model (state transitions
are selected randomly according to predefined distri-
bution) require many runs of the same model with dif-
ferent parameters, initial configurations and random
number generator seeds to obtain meaningful results
(this process resembles sampling the state space with
Monte Carlo methods in numerical analysis). Hence,
the speed of computation is of utmost importance. We
ran simulations for 100 time steps for an environment
of 120 x 120 sites using stencil sizes of 3x 3, 11 x 11 and
33x33on1,4,9and 12 processors. The run times were
sensitive to variation of the interaction neighborhood’s
area as shown in Figure 4. We got a small “super-
linear” speedup for small (nearest neighbor) stencils,
which we attribute to the high locality of reference re-
sulting in a high cache hit ratio. The speedup curves
dependent strongly on the stencil area. We believe that
the large slowdown observed at 12 processors for the

33 x 33 interaction neighborhood was caused by the
large ratio of communication to computation resulting
from the stencil area approaching the partition size.
Additionally, the system software was also degrading
performance by stealing cycles (because we utilized all
12 processors available in our configuration).

To measure the machine’s ability to run large scale
simulations, in the following experiment, we assigned a
fixed number of sites to each processor, and then timed
the execution of increasingly large problem sizes by in-
creasing the number of processors used. Per processor
allocation was one of the following: 1002, 1502, 2002 or
250 sites for 100 time steps on 1,4, 9 or 12 processors
on the SGI Origin 2000. The interaction neighborhood
size was fixed at 11 x 11. The speedups (see Figure 4)
demonstrate some slowdown when going from single
processor to multiprocessor runs (due to copying of
boundary information) and another slowdown when all
12 processors were utilized. The latter slowdown was
most pronounced for large per processor allocations.
This might reflect increased contention for the cache
coherent memory, and the overhead of system software
stealing cycles to execute during the simulations. We
noted that the scaled speedup curves looked remark-
ably similar as problem size varied, but had some per-
formance degradation when all 12 processors were used
(achieving a speedup of about 11), which is within 92%
of an optimal speedup.

Measuring the per processor throughput of the SGI
Origin 2000 (denoted T's¢r) for the largest problem size
yields:

100timesteps x 7.5 x 1(° Lransitions
imestep

T =
sal 12processors x 600 sec.

1.04x10%transitions

Hence, Tsgr =~ o STORM’s perfor-
mance on the SGI Origin 2000’s processors [14] was
1.56 x 106ransibions or ahout 150 times faster than
GALE. Based on the size of interaction neighborhood,
we estimate that GALE takes about 150 times more
work to update a site per time step than the STORM
or TEMPEST do. Hence, from the point of view of
parallel performance, GALE results are comparable to
those achieved by STORM.

For comparison between architectures, we can use
measurements for TEMPEST presented in [13] which
show that the per processor throughput of a Mas-
Par MP-1 was Typ_y A~ 44iransitions - while the per
processor throughput of an SP2 was Tgps = 1.2 x
105 transitions  The departmental network of worksta-

S€EcC.

tions achieved Tvow = 2.7 x 10*iransiftons = Gince the
work per transition is similar in STORM and TEM-
PEST, we conclude that in the discussed application

an SGI 2000 node was doing the work of over 35000



Speedup vs. Number of processors Size=600x600
T T

T T
3x3 Stencil ——
11x11 Stencil --->---
33x33 Stencil ----*---
Optimal Speedup

Speedup
o
T

6 10 12
Number of Processors

(a) Fixed Workload

Scaled Speedup Vs. Number of Processors
12 T T T

T
Optimal Speedup
100x100 sites ---+
150x150 sites - L
200x200 sites ¥
8

0 250x250 sites &

[
T
N\
L

Scaled Speedup
=)
T
R
|

6 10 12
Number of Processors

(b) Scaled Workload

Figure 4: Speedups on an SGI Origin 2000

MasPar MP-1 processors, 13 SP2 nodes and 57 NOW
Processors.

6 Conclusions and Future Directions

We presented a series of stepwise refinements lead-
ing to a computationally feasible and biologically in-
teresting model of epidemics with evolving strains of
pathogens. Evolution is the result of the combined ef-
fects of selection and mutation. By isolating and mod-
eling the impact of selection on simple non-evolving
systems, we provide a platform for validating and in-
terpreting results when the complexity of evolution is
added.

Efficiency and fidelity concerns motivate the consid-
eration of whether a synchronous cellular automata or
discrete event simulation engine is better for the simu-
lation kernel. In both cases the space is partitioned into
a two-dimensional lattice whose vertices are occupied
by the simulated hosts. Cellular automata implemen-
tation inspects each point of this mesh in each discrete
time step increment. The advantages of this approach
are:

e High level of parallelism. Each point of the lat-
tice can be inspected independently of others and
require information about the state of the sites
within its stencil only.

e Simple implementation thanks to the synchronous
nature of the simulation.

e Nearly constant computational load on each pro-
cessor during execution. The load is largely pro-
portional to the the amount of space allocated to

each processor, Hence, there is little need for dy-
namic load balance.

The disadvantage is that the time step of the simula-
tion, i.e., the speed with the simulation progresses, has
to be selected as the smallest time difference between
any two events happening in the system. As a result
in each simulation step many points in the lattice are
inspected and left without a change. The more diver-
sified the event structure and their inter-arrival times,
the less efficient is this approach. It is also inefficient if
there is a large cost incurred computing the local state
transition probabilities at each time step. In view of
the different costs of calculating state transitions in
GALE versus TEMPEST and STORM, the optimal
approaches may differ in these related systems.

The second approach does not need discrete time
steps to progress. Instead, each event in the system
has its time selected independently of the others, based
on the distribution of inter-arrival time for this kind of
event. As a result, the points of the lattices are visited
only whenever there is a change to be performed there,
S0 the minimum number of points are visited over the
entire simulation. However, the disadvantages are:

e Heterogeneous computational load in space. De-
pending on the density of hosts, macro- and mi-
croparasites, there is different speed with which
events happens in different parts of space and
therefore different amount of computations needed
to process those events. As a result, the dynamic
load balance must be performed which is difficult
because partitions must preserve continuity of the



space allocation, and, if possible, regular shape of
partitions.

Restricted parallelism. Since the events should be
processes in the increasing order of their time to
avoid causality errors, the processes must coordi-
nate their progress of simulation. Two approaches
were developed to address this issue. One is to re-
strict parallelism by limiting the time by which any
processor may get ahead of others in the simulated
time (conservative approach). The other approach
is to introduce a mechanism (often called rollback
mechanism) that repairs casualty errors once they
happen (optimistic approach).

Experience with Lyme disease simulation (without evo-
lutionary effects, cf. [3]), indicates that in case of com-
plex species interactions or large diversity of time scales
between species, an optimistic approach is more effi-
cient than the conservative one. The performance re-
sults presented in this paper indicate that this might
also be the case for GALE system.
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