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Abstract

In various industrial fields, the operators use pre-
designed procedures either to solve problems or for
troubleshooting. In the Parisian subway, such procedures
exist since 1900. However, these procedures are not
always exactly suited to the case at hand, and the
operators generally prefer to customize a solution than to
rely on fixed procedures. For the design of an “ intelligent”
assistant system aimed at supporting operators’ decision
in subway control, we have modeled operators’ activity
and know-how. As a result, we introduce the contextual
graph model, which appears as a simple solution to
describe and manage operational decision making.

1. Introduction

In high technical and heavily dynamica regulation
processes, operators who are responsible for the process
control have to rapidly react. If an incident occurs, they
have only few minutes to forge a representation of the
issue, gather information on the situation, analyze the
incident and undertake the correcting actions. To ease their
job, many companies have established fixed procedures.
Initially, general procedures have been designed to provide
operators with a secure reference for incident solving.
However, these general procedures forget the contextual
dimension of the case at hand. Nowadays, companies are
diversifying these procedures by introducing increasingly
contextual considerations. This operation multiplies and
specializes the available procedures for each type of
incident. This rises the question of representing and
managing these very numerous, contextua-dependent
procedures.

Actualy, very often the operators prefer to replan their
action in real time rather than to rely on the procedures
based on company's experience, thisis due to two main
reasons. Firstly, the sdlected procedure is not always
perfectly adapted to the situation at hand and can lead to
improper actions or sub-optimal incident resolution

strategies. Secondly, if the operator relies on a procedure,
he can miss some important facts and notice them too
late to adequately solve the incident. Procedures are then
used as frames to construct a genuine strategy tailored to
the specificities of a given situation. Such practices are
based on operational knowledge and are shared by the
operators. This well-known phenomenon was studied by
Leplat [14] who distinguished between the prescribed and
the effective tasks. The former is the task conceived by
the “method office” of the company, and the latter is the
effective task which is executed by the employees. The
effective task corresponds to the operational knowledge of
the workers. This knowledge results from their experience
and social interaction, this phenomenon is known after
Brown and Duguid [4] under the name of community of
practice, see also Wenger [30].

For the design of precise procedures, it seems
important to gather operators practices and to andyze
their operational knowledge. Using computers, we can
manage large databases and data structures, and thus
design decision support systems based on real practices.
The SART project [3, 18] aims at the design and
development of such a decision support system for the
operators in charge of the control of a subway line. This
project is based on the interaction between the operator
and the system and will ease their mutual comprehension.
For this purpose, we tried to mimic the system reasoning
on the operators’ one. Thus, we needed to anayze the
operational knowledge used by operators and to record it
in an adapted structure which can be easily understood by
operators and efficiently used by the computer.

This paper presents the results obtained on the basis
described in Brézillon and Pomerol [2]. We present, in
Section 2, general information about the application field
(the Parisian subway and its control) and our results about
activity analysis. We present our model of representation
of the operational knowledge in Section 3. This
representation is based on decision trees and we explain
the structural modification we introduced to adapt these
decision treesto our particular domain.



2. Operational knowledge

2.1. Parisian subway representations

The Parisian subway is a dense underground railway
network and a high technical transportation system. A
line can be represented according to several points of
view:

1. One can see it as a succession of stations and
interstations (interstations are the rail track
portions between two successive stations). This is
mainly the travelers view of theline.

2. A second viewpoint is based on electrical supplies.
The power needed for all the trains on the line is too
high to be supplied by a unique rectifier sub-
station, thus, several rectifier sub-stations power the
line. This permits to divide the track into severd
sections, each of them being powered by at least
one sub-station, so that each section is independent
from the others from an electrical point of view. For
practical reasons, each section is also made of sub-
sections to reduce the impact of an incident on the
traffic.

3. Thereisathird view of the line according to the
organization of the regulation [11]. Two main classes
of operators regulate aline: first, the local control
point agents (LCP agents) who manage the trains
and their departure time, second, the centered
control room (PCC in French) agents, which we
call here operators, who are responsible of the traffic
supervision and incident solving. The two classes of
agents are working at different places and
communicate by telephones. Operatorsat PCC can
also communicate with train drivers, station managers
and exploitation supervisor (himself connected to
emergency Services).

Operators alternatively use these three descriptions.
When the issue principally concerns traveler
transportation, the first description is preponderant. When
a technical problem or a located long-lasting incident
occurs, operators choose sectioning and sub-sectioning to
limit the impact of the issue on the residual traffic. If
trains on the line are delayed by the incident, operators
communicate the information to the end station (third
aspect). Most incidents need a combination of the three
representations to be solved: the operators keep in mind
that (1) travelers security is an important contextual
factor that constrains incident solving, (2)the
consequences of an incident should perturb as few as
possible the traffic, and (3) appropriate actions (e.g. train
redirection) is intended to maintain as far as possible the

regularity of the transport, but interfere with the end
station agents’ work.

2.2. Parisian subway control organization

For each line, there is a principal terminus and one or
more secondary terminuses, each of them having alocal
control point controlling the departure of the trains. The
LCP agents have also to manage the traffic in the
terminus area, to choose which train will start, to order
the departure according to the theoretical timetable and to
adapt it to the actual conditions.

A particularity of the Parisian subway is that the
PCCs of al the lines (except the new line cdled
METEOR which is entirely automatic) are in the same
room, so that the operators of several lines can solve
together an incident. Moreover, the operators ae
organized in several teams and two turnovers are defined,
one based on 7 days, the other on 10 days. Thus, all
operators rapidly share each new experience. The operators
form a community of practice[4] or a community of
interaction [16]. This is important to explain the
construction of a shared knowledge and a collective
resolution of the problem. Hereafter, we consider the
problems from the viewpoint of the operators. The PCC
is remote from the line and the only information available
to operators is indirectly available by telephones and
displayed on a synoptic panel of the line. Operators have
to mentally construct a model of the local situation to
make their decision in the spirit of what Clancey [7]
proposed for diagnosis seen as the building of a situation-
specific model.

The operator of each subway line is assigned for one
part of the day to the corresponding control console
that allows to cut the power in any section, to stop trains
at each station, to communicate with train drivers with
high frequency telephones, terminus agents, station
agents, local operators or exploitation supervisor with
automatic telephones. The operator faces a large
synoptic display (cdled TCO a the RATP)
representing the line, the sectioning and sub-sectioning,
the stations and the train position. The TCO also controls
some commands such as energy commands and switching
commands.

Thus, the actions available to operators concern
mainly train regulation (delaying), train redirection,
section and sub-section power cutting and supply, or
waiting for information, event or action from local or
external agents. The operators play an important role as
two-way  communication channel, dispatching
information from local agents (drivers, station agents, end
station agents or local-situated executives) to exploitation



and line executives. All the available information is
relayed by the operators. As a consequence, operators are
the coordinators of all the people solving the incident and
the managers of the necessary resources.

When an incident occurs, the operator responsible of
the concerned line becomes the “incident manager” and the
operators who may possibly help him, are the assessors.
The incident manager stays at the control console,
responding to phones, controlling the trains and making
decision. Assessors help him on several points: for all
incidents needing line power control, an assessor stays at
the TCO to cut or reestablish the power on sections or
sub-sections and for possible train redirections; for more
important incidents, a second assessor observes the
activity, advises the incident manager and take notes on
the resolution (the time of the actions and events, the
train number and location of train redirections...). When
the incident is solved, the incident manager writes a
report containing incident description and the actions
undertaken to solveit.

3. Operational knowledge representation

Operational practices are difficult to model: firstly they
are numerous, secondly they are often implicit within the
community of practice [4] and strongly linked one to each
other and thirdly the main distinction among them is the
context in which these practices are applied. Moreover
these practices are often dynamically congtrained in
sequences of actions. To gather and study operational
practices, we record the incidents as a set of
characteristics, including context description and the
action sequence applied to solve them. With this
feedstock, we constructed an adapted representation to
collect and organize this type of knowledge for reuse
purpose. In this section, we present the models
underlying our representation.

3.1. Importance of the contextual dimension and
of the dynamics of context

Recently, for the sake of engineering applications, we
have tried to understand and model the role of context in
reasoning [22]. To do so, we worked on the control of a
subway line [19]. Starting from these observations, we
defined contextual knowledge as the part of the
context that is relevant in a given situation for a given
operator [2]. This may be seen as the subset of the
context in which the operator can find every chunk of
knowledge for reasoning about or interpreting and
explaining the situation. The complementary part in the
context is called external context.

Brézillon and Pomerol defined also the
proceduralized context as the proceduralized part of the
contextual knowledge, which is considered explicitly,
with causal and consequential links, at a given step of
the problem solving [2]. Indeed, the operators do not
consider at each moment all the contextual pieces of
knowledge during an incident solving. The
proceduralized context is the part of the contextual
knowledge on which the operators are focusing on at a
given step of the incident solving (see Figure 1). This
notion is relative to each operator, to the current situation
and to the moment at which the operator is working. The
proceduralized status of a chunk of context is not
permanent since a contextual piece of knowledge is
proceduralized when the operator focuses on it and goes
back to its initial status of back-stage contextual
knowledge when it is no longer mobilized in the
reasoning. The process of proceduralization is close to the
idea of “externalization” [16]. Externalization describes
the way how a mobilization of some tacit knowledge
changes it into explicit one.

Proceduralized contexts

Focus
(e.g., a triggering event)

CONTEXT

External context

‘I ntextual knowledge 2

Figure 1. Three types of context

3.2. Computer science approaches

Artificial intelligence develops, for several years,
formalisms for operational knowledge representation.
Here we present some approaches. In an expert system-
like representation, knowledge is gathered as production
rules. These rules are pieces of knowledge of the form “if
preconditions then conclusions” They are recorded in
large rule bases difficult to update. The rules are structured
chunks of knowledge, which are easily understood (by the
domain experts). However, the lack of structure of the
rule-base impedes the comprehension (even for the experts
of the domain) and the maintenance of the knowledge.

Some works have been done on rule-bases structuring,
namely on the splitting of the rule bases into several rule



packets, each containing a subset of rules applied to solve
a specific sub-problem [2]. Clancey [7] proposed to add
screening clauses to the precondition part of the rules so
that they are activated only in some kind of context, this
amount to add in the preconditions of the rules some
clauses constraining the triggering to a certain context.
This is burdensome because the designers must anticipate
al the possible contexts to define the preconditions of the
rules. Moreover each rules describes a part or a whole
context without any reference to the dynamics of the
situation which is fundamenta to understand the
situation.

The decision tree approach [23] tries to represent the
decision step by step. Thisis obtained by the presence of
two types of nodes. the event nodes and the decision
nodes. At an event node, paths are separated according to
all the possible realization of an event on which the
decision maker has no influence. On a decision node, the
person makes a choice. This approach might be away to
structure rule bases. For each new element analyzed in the
preconditions, a new event node is created. For each new
value of an existing contextual element, anew branch is
created, and so on. Rule after rule, atreeis constructed.
The leaves give the rule conclusions. The main problem
with this structure is the combinatorial explosion. The
number of leaves is an exponential function of the depth
of the tree. The addition of a contextual element may
easily double the size of the tree.

Bayesian networks are composed of nodes, representing
random variables, and links representing the causal
relations between the different random variables [9, 20].
Each node is associated to a table giving the distribution
of probabilities of the corresponding random variable
according to the values of the random variables of which
it depends on. The influence diagrams introduce decision
nodes into Bayesian networks [15, 17]. These networks
are possible solutions to limit the combinatoria and
information explosions in decison trees with
probabilities. However, both approaches, Bayesan
networks and influence diagrams, necessitate, to be
handled, some information about the probabilistic
dependence between the different random variables and are
anyway limited to a reasonable number of variables.

Another interesting approach is the Case-Based
Reasoning (CBR), which is akind of analogy reasoning
[10]. To solve a current issue, one selects the most
similar problem in a problem base and one adapts the
solution to the problem at hand. Note that instead of
adapting prior solutions, Leake [12] proposes as an
interesting alternative to store and reuse trace of how
those solutions were derived. The main advantage of this
reasoning is its great power of generalization and its

maintenance. However, it fails to provide explanations on
the obtained solution.

3.3. Representing contextual information

None of the above representations give us satisfaction
and sticks to the operators’ reasoning which is more or
less a mixture of rules, decision trees and case-based
reasoning. It has been recognized for awhile that rules are
not sufficient to capture the nature of cognition (e.g. [1]).
Here we found again that the operators use some deductive
rules simultaneously with fixed encoded schemes. Thisis
the reason why we darted to thoroughly study the
operators’ practice. This study proved that the operators
are very sensitive to the context of their action. They try
to diagnose, as soon as possible, thereal state of the
system by recognizing and anticipating sequences of
events. As such it is reminiscent to scenario thinking.
For this reason we started from the notion of decison
tree.

We arrive now to a main point of our representation.
Each event at an event node carries on a part of the
uncertainty of the situation. For example, C1 in Figure
2, means that either an immediate repair would be
possible or not (see Annex 1). There are two ways to
manage this uncertainty either assess some probabilities
for each events, which is the usual view in decison
theory or consider that, anyway, the two events ae
possible depending on the circumstances. Our
representation must provide an answer for any possible
circumstances whatever the probability is. The problem
of an operator is to get an adapted answer as soon as he
knows what the situation is. Thus, the main problemis
to diagnose the exact situations according to the
contextual information reaching the operators. For this
reason we considered that each branch, actually describesa
contextual knowledge, which becomes more and more
accurate as long as the branch is followed. It isnot a
question of nature bet, all the situations that may happen
and have to be represented whatever their probabilities are.
Thus, we are no longer interested by the probability of a
branch but by the possibility to determine, as soon as
possible, on which path the operator is, to determine
what is the next action to undertake. In other words, we
come back to the original idea of Savage [24], namely
that each nature state (a sequence of eventsis a nature
state) describes a state of the world, or using our words, a
context for action. We must also stress that the operator
has no choice of the path and therefore no optimal choice,
because the path is dictated by the context of the incident.

At this step there is no probabilities on the events, the
main purpose is to describe, with the maximum of
parsimony, al the possible contexts in which the



decision has to be made. For example, the branch with
{C12, C21, C32} describes a context in which there is

no immediate repair possible, but enough motor coach
power is still available and a steep incline is ahead. For
this reason we will talk hereafter of context nodes instead
of event nodes and of context instead of nature's state. The
action postponement at the leaves observed in Figures 2
amounts to relating each decision to a state of nature, here
the context described in the branch. Thus, our
representation tends to stick to operators' behaviour. In
some cases, especiadly at the beginning of the tree,

decision making under uncertainty would probably, if
possible, be interesting, but by trying to gather as much
as possible relevant information before action,  the
operators endeavour to make decision under certainty.
This means that when undertaking an action in the tree
they consider that, due to the contextual information they
got, the state of nature between the root and the action
undertaken is the true state of nature.
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Figure 2. Decision tree representing the official procedure for “lack of train power” incident

Thus, we adopted a tree representation, made of two
types of elements: the actions, which are directives to
do an action, and thecontextual nodes, which select a
branch depending on the knowledge about the current
context. Figure 2 shows the decision tree representation
of the official procedure for “train lack of power” solving
(the meaning of the boxesis not important, see Annex 1
and [17]), it suffices to say that the rectangular boxes are
actions and the circles, contextual nodes.

In summary, our representation isinspired by decision
trees, but mainly differs on two points. Firstly, our trees
have no chance nodes but contextual nodes. Secondly,
there are no probabilities. This representation shows

several important characteritics that have some

conseguences on the size and structure of our tree:

1. As said in section 2.2, operators use many
contextual elements to perform their choice. This
lead to a large number of practical strategies, even
for the same incident. This multiplies the number
of branches and the tree grows rapidly.

The operators prefer to gather a maximum of
information before making their decision. This
behavior postpones most of the actions to the end
of the branches of the tree [2]. This observation is
very close to the observation of Watson and Perrera
[29] who consider a hierarchical case representation



that holds more general contextual features at its top
and specific building elements at its leaves.

3. The operators privilege actions allowing to reech
common intermediary situations. Thus, they can
reuse common strategies to clear the incident.
Graphically, the tip sequence of actions is often
repested from one branch to another.

4. Several action sequences are executed in the same
order in different situations (paths).

5. Some actions could be done in different order, but
must precede a given one. For example, before
attaching two trains, both have to be emptied, but
the order in which they are emptied does not matter
(partia order on the actions).

The large expansion of the tree structure does not
easily permit to represent highly-contextual decision
making in complex applications. In the next section, we
explain the modification we have done, based on the
characteristics discussed above, to obtain a managesble
structure for representing operational knowledge on
incident solving on subway lines.

3.4. From contextual treesto contextual graphs

First, we can reduce the number of objects in the
structure by replacing repeated sub-sequences of actions
(characteristic 3 and 4 above) by a single object caled
macr o-action. The choice made for defining the
different macro-actions is based on common sub-
procedures known by the operators, such as “linking
trains,” “return to end-station without travelers’... The
principle of the replacing is explained on Figure 3.

Figure 3. From a sequence of actions to a macro-
action

This replacement simplifies the lecture of the tree, but
do not reduce the structural expansion of the tree.
Secondly, relying on the previous observation #3, we can
merge the branches of the tree as soon as the sequence
leading to the end of the incident are similar, as shown in
Figure 4.

Figure 4. From tree to graph

Cognitively speaking, this amount to use a scarcity
principle that leads the operatorsto try to reuse well-
known procedures as soon as possible. This operation has
severa main consequences on the structure of the
representation and on the meaning of the model.

1. We no longer face a tree but a graph. This graph is
oriented without circuits, with exactly one root and
one goal because operators have only one goal (clear
the incident and go back to normal exploitation) and
the branches express only different strategies,
depending on the context, to achieve this goal. The
graph structure moreover allows extending of the
representation.

2. The size of the structure is now under control and the
consideration of a new contextual element will add

some elements in the graph, but not increase
drastically its size.

3. The change of the structure introduces a dynamics
comparable to the dynamics of the change between
proceduralized and contextual knowledge. Indeed,
when two branches are merged, it means that the
undertaken actions led to a common situation from
different contexts. The contextual elements attached
to the different branches are proceduralized at the
diverging node. They stay in this state for the
different action sequences, because they intervene in
the branch decisions. Finally, they are de-
proceduralized when the branches are merged. By this
way we explicitly express the life duration of the
contextual elements (Figure 5).
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Figure 5. Proceduralization and de-proceduralization

Even in a part of a subgraph it may happens that the
actions are only partially ordered (see the example above
of two trains on the same line which have to be cleared of
the travelers whatever the order of the operations).

Figure 6. Contextual graph representing the
official procedure for “lack of train power” incident
represented in Figure 2.

We need to represent this issue; this is why we
introduced the temporal branching symbols to
represent action sequences that can be donein different
order (characteristics # 5). This symbol is made of two
parts: a divergent branching and a convergent branching;
the paralel branches wear the temporally independent
decision blocs. Finally we obtain the following structure
(Figure 6) that we call contextual graph.

This structureis called “ contextual graph” to recall that
it makes it explicit the context and its dynamics for
decision-making. This representation is more compact
than trees and seems to be well accepted by the operators,
it simply represent the succession of actionsto carry out
in order to solve an incident; the different possible paths
express the possible strategies according to the context.

Theideato use the dynamics of scenarios for modeling
practices is somehow reminiscent to various scenario-
based analyses in particular in strategic planning [13, 28],
design [5], software engineering, especialy in

regquirements engineering (e.g. [8, 21, 27]). In all these
contexts, asin our case, what is important is not the
probability but the exhaustivity: all the possible paths
must have been envisioned.

In the contextual graphs that we have built for several
incident types, we note that some parts of the different
graphs are identical. Analyzing these sub-graphs we
exhibit that they complete a common sub-goal (for
example, when a train lacks of power and can not restart
alone, or when a train has no more brake, both trains
need to be helped by another train). Such a representation
by contextual graphs/sub-graphs (Figure7) is very
similar to the generic tasks proposed by Chandrasekaran
[6]. The difference is that this tasks are not generic in the
sense that they can be combined to lead to more
integrated tasks they are rather elementary or atomic tasks
that can only add or followed each other in any order.

Each isolated sub-graphs, associated with a name
(operators know the corresponding procedures and agree
on a name) are also more or less reminiscent to a script
[25, 26] but they moreover include the dynamics of
proceduralization. These structures can be reused and
adapted for another actions. For example in Figure 7 the
sub-procedure “Helping train clearing” is derived from
the sub-procedure “Damaged train clearing” and adapted
by the introduction of the fact that an available train may
run to the next station, if this station is free, to evacuate
its travelers in better conditions. In our system the sub-
graphs are the elementary chunks of reasoning stored and
reminded to the operators in case of incident. The
adaptation to the context is made by the choice of the
path. Some flexibility is left to the operators by the
adaptation of the elementary actions contained in the
graph, because the actions are generally defined by their
result rather than by a detailed modus operandi.
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Figure 7. Set of contextual graphs used while "lack of train power" incident resolution

4. Conclusion

Our representation by contextual graphs is inspired
from practice. We observed that contextual information
matters more than probabilities to make decision in an
operational setting. Thus we adapted the notion of
decision tree to take into account contextual
representation and its dynamics. We simplified the tree
representation, thanks to two notions, namely macro-
action and temporal branching. Going one step beyond
the computer representation of reasoning on the basis of
context and contextual graph, we have pointed out that
some sub-graphs represent usual procedures. These sub-
graphs, beyond the fact that they give a simple computer
representation of reasoning, have a deep meaning for
operators and are significant, even drawn out of the
context of an incident. We thus are able to propose a set
of interrelated contextual graphs that incorporate the
notion of context in any problem solving (e.g. an
incident solving) and represent the dynamics of the
proceduralization de-proceduralization process.
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Annex 1

Some Actions (A) and Contexts (C) in case of incident on a metro line.

Actions Contexts
1 Residual traffic regulation C11 | Immediate repair possible
2 Damaged train continues with travelers C12 | Immediate repair impossible
3 Damaged train continues with travelers C21 | Enough motor coaches available
until a steep incline
4 Damaged train restarts without travelers C22 | Not enough motor coaches available
5 Stable damaged train at end station C31 | No steep incline between damaged train and
end station
6 Repair damage C32 | Presence of steep incline until end station
7 Exit of the travelers out of the damaged
train
8 Exit of the travelers out of next train C41 | Damaged train at station
9 Exit of the travelers out of damaged train C42 | Damaged train under tunnel
via available cars
10 | Exit of the travelers out of next train via C43 | Damaged train partially at station
available cars
11 | Exit of the travelers out of damaged train
via track
12 | Exit of the travelers out of next train via C51 | Next train at station
track
13 | Next train joins damaged train C52 | Next train under tunnel
14 | Link both trains C53 | Next train partially at station
15 | Convoy return to end station
16 | Disassemble convoy C61 | Presence of a station between damaged train
and next train
17 | Next train goes to next station C62 | No station between both trains

Macro-actions Actions lists

MA 1 | Damaged train continues service Actions 2 and 5

MA 2 | Damaged train stops service Actions 7, 4 and 5

MA 3 Make a convoy with damaged train and next train Actions 13, 14, 15, 5and 16
MA 4 | Empty next train at a station Actions 17 and 8




