SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Supporting Dynamic Process Specifications using
Communication based Processes

Inoue, Sozo
Graduate School of Information Science and Electrical Engineering, Kyushu University

Iwaihara, Mizuho
Graduate School of Informatics, Kyoto University

https://hdl.handle. net/2324/3531

HARIEHR : Proc. 35th Hawaii Int’ L Conf. System Sciences, 2002-01. IEEE Computer Society
N— 30

HEFIBAMR

Supporting Dynamic Process Specifications using Communication based
Processes

Sozo Inoue

Graduate School of Information Science

and Electrical Engineering
Kyushu University
6—1 Kasuga-Koen, Kasuga-Shi,
Fukuoka 816-8580 JAPAN
sozo@c.csce.kyushu-u.ac.jp

Abstract

In this paper, we introduce M-Trans system, which has
an ability of recording the specification of the design pro-
cess for the communicative process, which is designed in a
discussion and is be specified incompletely, of creating the
communicative process according to the specification, and
of supporting dynamic process specifications utilizing the
record of executed communicative process. The system is
based on the model that provides integrated specification of
a process and communication. The execution of the com-
municative process may be performed on parallel with the
design process, and the design process and the implementa-
tion may have interactions for coordination. Moreover, we
present a method for verifying consistency between the com-
municative process and its specification. Managing com-
municative process is important since it realizes adaptation
to unexpected situations, including exception handling and
dynamic re-composition of a process in WfMS.

1 Introduction

In the real world, there still exist collaborative processes
which are out of control for Workflow Management Sys-
tems (WfMSs). We consider a communicative process,
which is designed in a discussion and may not be specified
completely. The execution of the communicative process
may be performed on parallel with the design process, and
the design process and the implementation may have inter-
actions for coordination.

Managing communicative process is important since it
realizes adaptation to unexpected situations, including ex-
ception handling and dynamic re-composition of a process
in WEMS. Flexible process management is a critical require-

Mizuho Iwaihara
Graduate School of Informatics,
Kyoto University
Yoshida-Honmachi, Sakyo-ku,
Kyoto 606-8501, JAPAN
iwaihara@i.kyoto-u.ac.jp

ment for WfMS because the real world is inevitably sur-
rounded by frequently changing environment and/or unex-
pected human behavior.

M-Trans system(Message Transaction System) is a sys-
tem which treats the design process as a same model as
communicative processes, and supporting communicative
processes and its design processes by capturing the commu-
nication among the participants. In this paper, we focus on
interaction between design processes and the implemented
communicative processes, and especially on the behavior
that the process once executed locally or ad hoc is adopted
repeatedly. We support this behavior by suggesting the as-
sociable designs in the record of the processes to the de-
signers who participates in the design process. The system
is based on the model[9, 11, 10] which provides integrated
specification of a process and communication.

The rest of the paper is organized as follows: Section 2
introduces a communicative process and its design pro-
cess. Section 3 describes the design model of M-Trans sys-
tem, Section4 describes the dynamic specification using the
record of processes, and Section 5 describes the experience
on the real e-mail archives. After discussing related work in
Section 6, we conclude the paper in Section7.

2 Communicative processes

In this section, we reveal the features of a communicative
process, and address technical challenges.

2.1 Requirements for communicative processes

A communicative process is a process that is defined in
a discussion. For the sake of convenience, we call the dis-
cussion for designing a process a design process, and we
call the execution of a designed process an implementation

time

(a)A Communicative
Process | Design Process

I

(b)A Conventional
Process

Implementation

Process
pecificatiop

1 Implementation

Design Process

(c) An Utterance
Process Implementation |

Figure 1. A classification of a process design

of the process. A communicative process is illustrated in
Figure 1(a).

Traditionally, WEMS[4] is a system for managing pro-
cesses that is previously defined by a designer. We call such
a process a conventional process (illustrated in Figure 1(b)).
The design process outputs the specification of the conven-
tional process, and the implementation is performed after
the completion of the design process.

In the literature, another type of processes, which is im-
plemented by an utterance of a participant, are considered
in [6, 13, 14, 1]. Basic human utterance, such as promises,
orders, and questions are the targets of the system support.
We call such a process which is created and proceeds by an
utterance of a participant an utterance process(illustrated in
Figure 1(c)). The process does not have a separated design
process. The process is implemented by utterances from the
participants in an ad hoc manner.

To clarify the features of communicative processes, let
us consider an example process for publishing a program
for a conference collaboratively. In the process, the pro-
gram committee requests titles and authors’ information to
each author based on the predefined process. In the gath-
ering process, the procedure and the method to gather the
title varies according to each author. Some author may send
the title by e-mail, and another may send it by fax. Some
authors may want to send the title and authors’ information
separately. Some authors may need exceptional process to
correct the title, such as requesting correction to the author.
These details of the gathering processes are specialized with
a negotiation and an agreement among the program com-
mittee and each author. After gathering the titles, the pro-
gram committee edits the program, and assigns a chairman
to each session.

The features of communicative processes are the follow-
ing:

e A process is designed in the discussion. The process

adopted in the discussion is implemented. In the ex-
ample above, the process for gathering titles is con-
structed by an agreement between the program com-
mittee and each author.

e The implementation may even precede the design pro-
cess. Since the design process is dominated by a dis-
cussion, there is not possibly enough time to specify
the process or the domain knowledge completely. For
example, the mistake of a title must be rapidly cor-
rected to avoid the delay of the following tasks. In
such a case, an implementation of a process without a
formal specification might be performed.

e The design process is often rather dependent on its
implementation than autocratic. The design process
might continue after the process has been imple-
mented. Then the major topic in the design process
is the correctness of the implemented process, and de-
ciding its effect on other processes. For example, after
the program committee requires the author to resend
the authors’ information by fax as an exception be-
cause of a failure in printing, the exception is agreed in
the design process, and discussed whether the excep-
tion is adopted as a normal option of the title gathering
process. If it is adopted, the option sending by fax is
incorporated into the process specification.

e A process is intermixed with utterance processes and
conventional processes. In the example above, an
agreement among the program committee and each au-
thor is performed by an utterance process. Moreover,
the overall procedure for publishing a conference pro-
gram can be specified, as a process which is readable
for a WEMS, such as in order of gathering titles, pro-
gram edit, and chairman assignment.

2.2 Flexible relations between a design process
and the implementation

From the features of communicative processes shown
above, we can figure out that the flexible management of
relations between the design process and the implementa-
tion is required. Although, traditional WfMSs only sup-
port top-down approach, that is, the process is implemented
after the design process is finished. We believe that the
implementation-oriented approach for managing commu-
nicative processes is equivalently important.

We capture the constructions of relations between the
specification and the instance as follows:

o (Consistency Check) First of all, the method for check-
ing consistency between a design process and its im-
plementation is necessary. This method would be per-
formed frequently, because the consistency might be

violated not only when an instance is created, but also
the design process is progressed.

o (Localization) The most simple, and powerful way to
avoid the inconsistency between a design process and
its implementation is to isolate them and to assume the
cause of the inconsistency as a local adaptation. For
example, to resend the authors’ information is treated
as a local adaptation for a particular author. Figure 2(b)
illustrates the implementation without corresponding
part in the design process by localizing the implemen-
tation of Figure 2(a).

o (Generalization) Localization is occasionally danger-
ous because the localized process can not follow up
the progression of other processes, such that another
process adopts to resend the authors’ information, and
the resending process need a confirmation steps by the
program committee. Hence, we introduce design pro-
cesses a method for incorporating the localized imple-
mentation and maintain the consistency. Figure 2(c)
illustrates the generalization of a localized implemen-
tation and applying it to another process implementa-
tion.

Design Process

Design Process
(0220) o0

Localization Y

1 Instance Locahi"g‘
Implementation Implementation
00 0~0%3
N
@ &\% (b)
&
6@

Design Process

0045

4

General_ize’/\InStance

Implementation ~ ? Implementation

O O
O"O*O O"Oso

(©)

Figure 2. Localization and Generalization of a
communicative process

Managing communicative process is important since it
realizes adaptation to unexpected situations, including ex-

ception handling[2, 8] and dynamic re-composition[18, 20]
of a process in WfMS. Flexible process management is a
critical requirement for WEMS because the real world is
inevitably surrounded by frequently changing environment
and/or unexpected human behavior. In deed, adaptation to
an unexpected situation is a communicative process, that is,
the approach to be adopted is discussed in a communicative
process, and the adaptation might be executed urgently on
parallel with the discussion.

2.3 Design processes for communicative processes

A design process for a communicative process is an ut-
terance process, because the design process proceeds with
utterances of the participants. Many systems for support-
ing utterance process have been proposed. These systems
[6, 13, 14, 1] classify utterances as propositions such as
“suggest”, “promise”, and “cancel”. Other systems aim to
record the semantics of the discussion[5], in which each ut-
terance is assumed to represent the state of the discussion.
Moreover, goal-oriented decision rationale model[17, 19]
is based on the vocabularies that divide (such as “sub-
goal”), solve(such as “achieve”), and evaluate(such as “sup-
port”, “deny”) problems and requirements. [16] introduces
the specific vocabularies which specify the process design,
such as “Has-Subtask”, “Has-Temporal-Relationship”, and
“Has-Attribute”.

From these approaches for supporting utterance process,
we observe that the following properties, which are useful
for implemented communicative processes, can be obtained
from the history of the design process:

e The problem to be solved in the communicative pro-
cess is divided into subgoals by the discussion. For ex-
ample, to publish the conference programs is the prob-
lem. The problem may be divided into the subgoal to
gather the titles and the subgoal to edit the program.

e Some utterances specify the process structure directly,
as in [16].

e An utterance has possibly multiple responses. For ex-
ample, a question may be answered by two or more
answers, and any number of authors may submit the
titles in the title gathering process.

We basically adopt such approaches. Figure 3 illus-
trates the architecture of processes in our model. The sys-
tem specifies rules for designing a communicative process
in a design process template, which is specified as an mg-
template(described in Section 3.3), and the design process
progresses along with the template. The record of the de-
sign process is viewed as a process template, which is also
specified as an mg-template. Converting a design process

and process template is beyond the interest of this paper. A
communicative process is implemented by instantiating the
process template.

C Design Process Template) —

Instan}iation/ L ﬂ Generalization (b)
Localization

Design Process -
(Template View) process Template (a)

Instantiation/ l
(b)

A Lo
Generalization

Localization

Implementation

Figure 3. The process architecture in M-Trans
system

Additionally, we adopt the generalization mechanism to
realize practical support for design processes. We believe
that not only the top-down approach based on the prede-
fined rules but also the bottom-up approach that utilizes the
already implemented processes is important. In practical
situations, the process might not be described completely,
because the process might be decided without a discussion,
or the process might require a rapid execution. As shown
in Figure 3, generalization and localization can occur both
in the relation between the design process template and the
design process, and between the process template and the
implementation. Generalization mechanism is useful to ex-
plore the process structure effectively, because the general-
ization can be performed only for the repeated use of the
process structure.

3 M-Trans system

In this section, we describe the M-Trans system.

The current M-Trans system is implemented as a Java
servlet and Java applet. Figure 4 is a main user interface of
M-Trans system. Users can access the system through web
browsers. The outputs of the system are written in XML
(eXtensible Markup Language). This schema provides an
easy customization of the outputs from the system accord-
ing to the application domain or the project.

We briefly overview the system in Section 3.1, describe
m-group, which is the model for communicative processes
in Section 3.2 and mg-template, which is the model for the
m-group specification in Section 3.3, and address the con-
sistency between an m-group and an mg-template in Sec-
tion 3.4. We do not distinguish the design processes and
other communicative processes (we ignore (a) in Figure 3),

#JM=TRAMS Bystam Raview Page = Miomsoft Intarnet Explorar =] xj
| Ve BRE ERW HRCANE D AaTH
[t grvomsi it = | BBE -+ - D) A Qe emcin JEE e 9@ o 2

| PELAIEI[E rinfocahast fservietreven 5] ot
Up| Lipdate =
- parentpaper submessian: Sozo M
[— Reniesr Process Design | [cancet: Sozn moue: i

T stort: nuit

‘D comment: Soza INOUE: |

W auestion: nult: i
receipl: Hiroto Yasmirs |

| meestion: Miroto Yasuira: When can v hold a mestil
cancel: Hinoto Yasuura:

Mg s
[I — ;

imeeling schedule

| arvswer: Makoto Sugihars RIL design. | e d
1) uestion: Sozo INOUE: Layoen Tool, |~ T comeni:

(] meestion: Saze INOUE: Tooks.
ustinn: Makobo Sugiara; Claaning
Samulation daia.

war: Hinoln Yasuura:

Bug report,
Fug.
Plaase downinad the paper.
(] paper_submission: Saze INOUE:

B peotien: Sozn INOUE: MistEIod papes.

B oeestions : Guastion o
B peotien: Soen INOUE:

e Soen oL =
A DRER

From Sozo [NOLE
MGClass. paper_submission
Title: [

Body

Paper Title [
Authors. [
File Type: [z

=

2] 77 Lo FmEE AL

=
JEEREETT A

Figure 4. Main User Interface of M-Trans sys-
tem

and only focus on the relation between the template and in-
stance in this section (we focus on (b) in Figure 3).

3.1 The system overview

Design processes for a communicative process and a
conventional process, and implementations of an utterance
process and communicative process are mainly performed
by communications. M-Trans system integrates workflow
management and asynchronous communication among par-
ticipants, by m-group data model, which is described in
Section 3.2. The system has the following features:

e The system can execute an utterance process and con-
struct a communicative process.

e The system can execute a communicative process
without defining the full specification of the conven-
tional process. This is realized by the localization
mechanism. Users can start a process in an ad hoc
manner, or the design process can progress without a
restriction by the design process template.

e A method for verifying consistency between imple-
mentation and the specification is provided.

e The system can incorporate a localized implementa-
tion into its template by a generalization. Users can
assure the implemented process in an ad hoc manner
so that it is applied to another implementation.

The execution of an utterance process is realized by
preparing the specification of human utterances and execut-
ing the utterance process by implementing the specification.
The construction of a communicative process is realized by
preparing the specification of the design process and run-
ning the design process by instantiating the specification,
or binding the specification afterwards. The specification of
design processes is introduced from decision rationale mod-
els such as [17, 16, 19]. Both specifications are given in
the form of mg-template, which we describe in Section 3.3.
Since an mg-template can also specify the conventional pro-
cess, it is easy to evolve a communicative process to a con-
ventional process without lacking the context of the com-
municative process.

3.2 m-groups

To integrate communication and processes, we define m-
groups, whose example is shown in Figure 5(b). An m-
group is,

[m_id, m_class, Children, Tdeps, body, Rscs, Roles].

m_id is an ID. body is a participant’s message by any
medium such as text, voice, or video. m_class is an mg-
class, which is an utterer’s intention. Some examples of mg-
class are “Issue”, “Argument”, and “Position” in gIBIS[5],
and other examples are “Bug_report”, “Request_modify”,
“Modify_design”, and “Test_report” in software process
[15]. An m-group is able to specify a semantically contin-
uous human interaction with C'hildren, called child group,
which is a set of m-groups. An m-group which is allowed to
have child groups is called multiple m-group, and the other
m-groups are called single m-groups. An m-group m pro-
duces an event root, execution, commit, or abort each of
which denotes a creation of m, a creation of a child group,
a successful completion of m’s intention, or a failure of the
intention, respectively. An m-group can commit after its all
child groups have terminated, that is, committed or aborted.
Roles is a set of roles, each of which is a participant to the
m-group, and Rscs is a set of resources, which are a set of
relative information, such as data used in the m-group.
Tdeps is a set of transactional dependencies (t-deps),
which are represented as arrows between m-groups in the
figure. We represent an t-deps from an m-group m; to ms
as (m1 — m2).When a t-dep is assigned between m-groups
either of which has not terminated, the t-dep means that,
equivalent to the control flow among activities in WEMS, the
destination m-group cannot be executed before the source

m-group commits. On the other hand, a t-dep means that
the destination m-group refers the source m-group when the
t-dep is assigned between m-groups that have been termi-
nated. The latter t-dep corresponds to the reply to the pre-
vious argument. A t-dep has a label which is an element
of the predefined set of strings. In the figure, root, commit,
and abort events are shown as double circles.

3.3 mg-templates

For the purpose of describing a specification for an m-
group, we introduce m-group templates (mg-templates). An
mg-template is,

[t-id, t_class, TChild, T DTmpls, T Rscs,T Roles].

t_id is an ID, t_class is an mg-class, T'Child is a set of
mg-classes, T'DT'mpls is a set of tdep-template(described
below in this Section), T'Rscs is a set of resources, and
T Roles is a set of roles. mg-template is a description of
a specification for an m-group with a specific mg-class.
We represent an mg-template with an mg-class ¢_class as
mgTmplate(t_class). Figure 5(a) is an mg-template for mg-
class Decision, the structure of which is introduced from
SIBYL[17].

While the definition of mg-templates seems to be similar
to that of m-group, the following differences exist: an mg-
template has a set of mg-classes instead of child groups,
and an mg-template has a set of tdep-templates instead of
t-deps.

A t-dep template (tdep-template), drawn as an arrow in
Figure 5(a) , denotes a t-dep when the mg-template is in-
stantiated, which is the creation of an m-group according to
the mg-template definition. We represent a tdep-template
from an m-group m; to meo as label(my[multiy —
multiz)me), where multiy and multis are multiplicity
constraints, described below in this Section. A tdep-
template connects an mg-class, a role, or a resource to
one of them. Split or join properties in WfMS[4], such
as AND-split or OR-join for t-deps, can be assigned for
tdep-templates which share an mg-class, if the both ends
of each tdep-templates are mg-classes. AND-split, or OR-
split, means that either all or none of the destination m-
group, or only one of the destination m-groups, is instanti-
ated, respectively. AND-join, or OR-join, means that the in-
stantiation of the destination m-group is allowed after all of
the source mg-classes are instantiated, or one of the source
mg-classes is instantiated, respectively.

If each ends of a tdep-template are mg-class, it has con-
straint, called multiplicity constraint, on the multiplicity of
the instances at the time the instances commit. The con-
straint is 1, *, or + . The semantics of each constraint is the
following: With an instance of the opposite end m-group,

(a)An example of mg-templates

Decision

Problem Alternative

o
2
T

*
l Aport
Go
D)*-*
designer
F)l-* 0)1-*
r=-
- L}
insllantliate
L
7
(\ ,

d1:Decision

r
Root :Problem g1:Goal

d1:ResulJommit

(b) An example of m-groups

Labels:

a): achieve

b): subgoal

f): subgoal/follow/precede

d): support/object/assign_role/assign_resource
/AND /OR

0): support/object

c): adopt

q): query

Decision m-group class name

m-group class
—
e d
-_ -
e

1-1 dependency
+-1 dependency
- dependency
+-+ dependency
1-ALL dependency

LALL ALL-1 dependency

ALL-1

m:Question

m-group id:
m-group class

commit m-group
: ~— commit event
rootevent—~__ ot qQmmit
© Q
p child m-group
N
t-dependency

Figure 5. An example of m-groups and mg-templates

e 1: one instance of the m-group on the close end is con-
nected by an instance of the tdep-template.

e *: any number of instances of the m-group on the close
end are connected by instance of the t-dep.

e +: more than zero instances of the m-group on the
close end are connected by instances of the t-dep.

We formally define multiplicity constraint.

Definition 1 (multiplicity constraint)

A tdep-template ¢: tlabel(t_classo[multig
multiq]t_classy), is said to be legal wrt. an com-
mitted m-group [m_id, m_class, Children, T'deps, body,
Rscs, Roles] iff the following conditions satisfy:

—

o For every committed m-group m; € Children whose
mg-class is t_classy, if multiy is,
— 1: one t-dep (m;; — m;)is in T'deps,
- +: more than zero t-deps (m;; — m;) are in
Tdeps,

where, in both cases, each m;; is an m-group with mg-
class t_classg in Children.

e For every committed m-group m; € Children whose
mg-class is t_classy, if multi; is,

- 1: one t-dep (m; — my,) is in T'deps,

— +: more than zero t-deps (m; — my;,) are in
Tdeps,

where, in both cases, each m;; is an m-group with mg-
class t_classy in Children.]

3.4 Consistency between an m-group and an mg-

template

d1:Decision
r

pl:Problem

Root

illegal w.r.t. "achieve(Goal[+ ->+]Alternative)"
and "adopt(Alternatie[+->1]Result)"

Figure 6. An illegal m-group

For a tdep-template a t-dep is created on the instance
of mg-template when the destination mg-class is instanti-
ated. Moreover, the instantiation of the source mg-classes
precedes the instantiation of the destination mg-class.

However, communicative process might be implemented
against its specification as addressed in Section 2.1. For
this reason, we define a legalexecution of an m-group as a
consistency between an m-group and an mg-template.

Figure 6 is an example of illegal m-group w.r.t. tdep-
templates in Figure 5(a). The m-group in the figure is illegal
w.r.t. achieve(Goal[+ — +]Alternative), since g2
has no t-dep connected to Alternative. In the real situa-
tion, this corresponds to the case where not all the subgoals
are considered with alternatives. Moreover, the m-group
is illegal w.r.t. adopt(Alternative[+ — 1]JResult)
since two Results connected to v2 have been created,
which means two results are adopted in the design process.

We define the legal execution of an m-group.

Definition 2 An m-group m: [m_d, m_class, Children,
Tdeps, body, Rscs, Roles] is said to be legal iff the
following conditions satisfy, where [t id,t class, T'Child,
TDTmpls, TRscs, T Roles] is mgTmplate(m_class):

e For every child € Children, the mg-class of child is
in TChild.

e Every tdtmpl € T DTmpls is legal w.r.t. m if m has
committed.

e For every tdep-template tlabel(t_classi[multi; —
multis)t_classy) € TDTmpls, and every my with
t_class; and mo with t_classe, where my,ms €
Children, at-dep (m; — ms) exists in T'deps, where
tlabel, multiy, multis are any values.

e Every rsc € Rscs is in T Rscs.
e Every role € Roles is in T'Roles.

e Every child € Children is legal. U

This definition constrains the mg-class, multiplicity con-
straint, resources, roles, and recursive legality of child
groups of an m-group.

We present an algorithm match for checking if an m-
group is legal, and obtains the components which causes
the illegality. In the algorithm, the subroutine that checks if
an m-group m satisfies the multiplicity constraint of a tdep-
template ¢ in m is specified as checkMultiplicity(¢,m) (We
omit its description).

Input: m-group m: [m_id, m_class, Children,Tdeps,
body, Rscs, Roles],
mg-template: [tud, tclass, TChild, T DTmpls,
T Rscs, T Roles]

Output: a set of illegal components.

Algorithm: match

1. Let ret be an empty set.

2. If (m_class # t_class), add m to ret and return
ret.

3. For each child € Children,

(a) Let classcniiq be the mg-class of child.
(b) If (classchia ¢ TChild), add child to ret.
(c¢) Let tmpl.piia be mgTmplate(classcniid)-

(d) If match(child, tmpl.piq) is not empty,
add the obtained return values to ret.

4. For each t-dep (my — mg) € Tdeps,

(a) Let m_class;(m_classs) be the mg-class of
mi(mg), respectively.

(b) If (a tdep-template (m_classi[multiy, —
multis)m_classe) ¢ TDTmpls), where
multi; and multis are any multiplicity con-
straint, then add (m;, — mg) to ret.

5. For each tdtmpl € TDTmpls, add m to ret if
(checkMultiplicity (tdep, m) = false).

6. For each rsc € Rscs, add rsc to ret if (rsc ¢
T Rscs).

7. For each role € Roles, add role to ret if (role ¢
T Roles).

8. return ret.

4 Supporting dynamic specifications

In this section, we describe the flexible management of
relation between an m-group and an mg-template. As dis-
cussed in Section 2.2, we assume that the localization and
the generalization of a process specification, (mg-template
in our model) are used in the following manner:

e For a rapid or an exceptional processes, localization
of the mg-template is performed. This must be pos-
sibly performed without any discussion in the design
process to be quickly applied to the urged processes.

e Localized m-groups can be generalized and reused if
it is agreed in the design process. The generalized m-
group is incorporated into its mg-template, and another
m-group can be instantiated using the mg-template.

The system captures an operation sequence, which is a
creation of an m-group, a commit or abort of an m-group,
or a modification on mg-template which is a template view

of the design process. For an operation sequence, the sys-
tem checks if the operation sequence is safe, that is, the ex-
isting mg-templates and their m-groups is legal even after
performing the operation sequence. If it is safe, the oper-
ation sequence can be performed immediately. Otherwise,
the system shows the cause of the unsafety to the users who
request the operation sequence, and let them select among
the following:

e Cancel the operation sequence and do not perform it.

e Perform the operation sequence locally, and do not af-
fect the mg-template of the target m-group by localiz-
ing the m-group.

e If instance of the mg-template of the target m-group
has a local structure which can apply to the result of the
operation sequence, the local structure is generalized
to the mg-template.

In the following, we describe the method to check if the
operation sequence is safe, to detect the cause of the un-
safety and show them to the users, to localize the operation
sequence, and generalize a local structure of an instance to
its mg-template.

Detecting the cause of the unsafety

To check if the operation sequence is safe, the system ap-
plies match algorithm. This procedure collects the m-
groups which causes the unsafety. Let = the target com-
ponent, which is an m-group, a resource, a role, or a t-dep,
in an element, such as “add an m-group m;”, in the oper-
ation sequence, let m, be the m-group which includes z,
and let T}, the mg-template of which m, is an instance. If
match(m,, T},) returns empty for any « in the operation
sequence, then the operation sequence is safe, or else, the
return value of the algorithm match is treated in the follow-
ing procedure.

Visualizing the unsafety

If the operation sequence is safe, the operation sequence is
performed immediately. If not, the system shows the causes
graphically to the users. Figure 7 is the window which
shows the causes. In the left frame in the figure, the part
which is modified by the operation sequence, which is re-
sending a paper by adding new m-group in this figure, is
emphasized with a distinguished color.

This window can be monitored by a participant of the
mg. On the window, the users are able to select “Cancel”,
“Localize”, or “Modify Template”. “Cancel” denotes that
the system cancels the operation sequence. In this case,
the system clears the buffer which stores the operation se-
quence. We describe the remaining two selections in the
following.

' [un[update| =
= : 8 Sozo INOUE:
. problem: Hiroto Yasuura: Review Proce abort: null:

question: Hiroto Yasuura: When cahwe commit: hull:
cancel: Hiroto Yasuura: Mee| =

send_by_fax: S0zo INOUE:
question: Hiroto Yasuura: meeting sche | comment: Sozo INOUE:
answer: Makoto Sugihvara: :f
question: $0z6 INOUE: L
question: Sozo INOUE: Tools.
question: Makoto Sugihara:
answer: Hiroto Yasuura: Simi
[problem: Sozo INOUE: Bug report.
. problem: Sozo INOUE: Bug.
. download: Sozo INOUE: Please download 1l
paper_submission: Sozo INOUE:
resend: S0zo INOUE:
problem: Sozo INOUE:
nguestion: Sozo INOUE:
nroblen: Saza lNLIE:

.

Mistitled paper.
Question aboutthe | |

[T

?LII

DM 77 D

Figure 7. Visualizing the unsafety and candi-
dates for generalization

Localization

If the users select “Localize”, the system perform the op-
eration sequence as a local effect in m,,. In this case, the
localized m,, is ignored in the later match.

Generalize the local structure

If the user select “Modify Template” and if the result of
the operation sequence is also included in some existing lo-
cal instance, the mg-template is allowed to merge the local
structure with itself. In this case, the local structure is called
to be generalized.

We describe the method for generalizing a component
in an instance to the mg-template 7. We assume x’ an m-
group, a resource, a role, or a t-dep. The procedure for gen-
eralizing ' to T is the following:

1. If 2’ is a resource or arole, Add z to T'.
2. If 2’ is an m-group,

(a) Add anew mg-class ¢ which corresponds to x’ to
TChildin T,

(b) create a new mg-template 7, which corresponds
to the mg-class c, and,

(c) generalize each child group to the created mg-
template 7, by applying this procedure recur-
sively.

3. If 2/ is a t-dep, add tdep-template “cs(1 — 1)cg” to T,
where cs(cg) is the mg-class of the source (destination)
m-group of z’, respectively.

If the generalized mg-template matches z’ and all the
instances of T', T" is allowed to be replaced with the gener-
alized mg-template.

The system seeks the candidates to be replaced, and
shows the users the difference from the original mg-
template. The right frame in Figure 7 is the visualization
of the candidates. In the figure, the m-groups which can be
generalized are listed.

When the user selects one of the listed mg-templates, the
system replaces 1" with the selected generalization. Finally,
the operation sequence is performed. Figure 8 shows an
example of generalization.

(uesuonAnswer

Rool] .
»B[ux:_repors Oggesuon E?mmu | Q:EPOFS E%UO“E\ ?mmll

1%

Ahon Abor(
odule upd;
[gcncml’c !
L - / 1
locall7e i lmlanlm(e
b / ,/u by
‘\ ’ £,/ \ /
/ i \/
v]
il: i2:
report Answer c4:Commit g report Apswer :Commit
g g Y
r4:Root Question r4:Root Question
a4:Abort ad:Abort

Figure 8. An example of generalization

5 Experience

We applied the e-mail archives in a software develop-
ment project to our model manually, and analyzed the effec-
tiveness. 9 developers and about 15 test users participated
in the project. We analyzed about 130 e-mails which are
exchanged among the participants during about 2 weeks.

We attached an mg-class to each e-mail by considering
the context of the e-mail, and we assumed each e-mail is an
m-group. To see the effectiveness of localization and gen-
eralization, we prepared only an empty mg-template, and
constructed an mg-template using localization and gener-
alization technique. We assumed that a reference relation
by a replying e-mail is a t-dep. We counted the number of
e-mails which caused an instantiation, localization, or gen-
eralization of an m-group.

We show the result in Figure 9. The figure is the tran-
sition of the number of exchanged e-mails. The e-mails
are classified into the effects on an m-group and an mg-
template by every 2 days. From the figure, we can observe
that the localization shares a large part. This demonstrates
the effectiveness of localization, because there exists a lot of
m-groups that is executed locally without its mg-template.
The rate of generalization is small, and the rate of instanti-
ation, which could occur as a result of a generalization, is
much larger than the rate of generalization. This suggests
that a particular rate of m-groups can be managed in a same

manner as conventional processes by utilizing generaliza-
tion, even if the initial mg-template is empty. Moreover, the
rate of instantiation tends to slightly increase. Hence, more
m-groups would be managed as a consistent mg-templates
instance. Figure 8 is one case of the generalization which
found in the analysis.

Ogeneralization
M localization
Dinstantiation

Rate of E- mails

n 13 15 17 19 2 23
Date(by 2 days)

Figure 9. The rate of emails in each category

6 Related work

One of the requests remained for supporting collabora-
tive work is adaptation to unexpected situations. The real
world is inevitably surrounded by frequently changing en-
vironment and/or unexpected human behavior. As for pro-
cess management technology, dynamic and adaptive work-
flow systems for managing exceptional situations have been
proposed[12, 20]. A formalization of split/join methods
is proposed for dynamic restructuring of transactions for
tree-structured human activity in [18]. In [7], an adapta-
tion to a critical exception by evolving partial specification
of a process is realized. Moreover, flexible implementa-
tion of a process is introduced, which contains cloning an
activity to multiple participants and an activity that is al-
lowed to be implemented anytime in the lifetime of the pro-
cess. However, these approaches focus on the flexibility
in a process instance or flexible usage of ’strict’ specifica-
tions, and do not consider utilization of the flexible speci-
fications based on the semantics of human activity, such as
policies for decision-making and negotiation among organi-
zations. We introduced an approach which utilizes flexible
specification, which may be in incomplete state, by captur-
ing communication and providing verification method. [3]
proposes an approach to promote reusability by extending
other processes and to define rules for handling exceptions
using ECA rules. Although ECA rule is effective for an ex-
pected exception, it cannot adapt to an unexpected behavior
in a communicative process, since the ECA rule must be
previously defined.

[12] proposes several flexible methods for re-binding in-
stances to a new version of specification, such as eager
propagation(the change of a specification immediately af-
fects all its instances), and lazy propagation (new version
is created). This approach would be also useful in commu-
nicative process, and can be combined to our approach. Our
approach assumes re-binding as a significant method to con-
struct a specification, and applies it to both communicative
processes and its design processes.

Many decision rationale models have been proposed in
the literature[5, 17]. These models aim to capture the design
rationale, which consists of the design problems, alterna-
tive solutions, tradeoff analysis among the alternatives, and
the decisions which had been made. The models are based
on a semi-formal message of participants. The models are
powerful and generic models, but do not have enough in-
formation to implement a communicative process, such as
the order of execution, participants, resources, and depen-
dencies among the implementations of communicative pro-
cesses. iDCSS[16] introduces specific vocabularies to con-
struct a process, and integrates decision rationale model and
process management. iDCSS is based on similar motivation
to our approach, however, it does not consider the flexible
relation between a specification and a process instance.

7 Conclusion

M-Trans system provides the mg-templates for con-
structing the specification in a communication, and provides
the functionality to dynamically modify the mg-templates
by checking the consistency between its instances and us-
ing the record of the instances. M-Trans system has a wide
applicability because it is able to specify and execute an
utterance process, a communicative process, and a conven-
tional process.

References

[1] D. P. Bogia, W. J. Tolone, S. M. Kaplan, and E. de la Tri-
bouille. Supporting dynamic interdependencies among col-
laborative activities. In Proc. ACM Conf. Organizational
Computing Systems, pages 108-118, 1993.

[2] F. Casati, S. Ceri, S. Parabosci, and G. Pozzi. Specification
and implementation of exceptions in workflow management
systems. In ACM Trans. Database Systems, volume 24 of 3,

pages 401-451, Sep 1999.

[3] D. K. W. Chiu, K. Karlapalem, and Q. Li. E-ADOME: A
framework for enacting e-services. In Proc. 1st Workshop
on Technologies for E-Services, Egypt, Sep 2000.

[4] T. W. M. Coalition. Terminology and glossary. In Technical
Report WEMC-TC-1011, The Workflow Management Coali-

tion, Jun 1996.
[5] J. Conklin and M. L. Begeman. gIBIS: A hypertext tool for

exploratory policy discussion. In ACM Trans. Office Infor-
mation Systems, volume 6 of 4, pages 303-331, Oct. 1988.

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

F. Flores, M. Graves, B. Hartfield, and T. Wingrad. Com-
puter systems and the design of organizational interaction.
In ACM Trans. Office Information Systems, volume 6 of 2,
pages 153—172, April 1988.

D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki.
Managing escalation of collaboration processes in crisis mit-
igation situations. In Proc. 16th Int’l Conf. Data Engineer-
ing, pages 45-56, 2000.

E. E. in chief, V. Number, P. Hagen, and G. Alonso. Flexi-
ble exception handling in the opera process support system,
1998.

S. Inoue and M. Iwaihara. Structured message manage-
ment for group interaction. In Proc. Int’l Workshop. New
Database Technologies for CSCW and Spatio-Temporal
Data Management (NewDB’98), Singapore, Nov. 1998.

S. Inoue and M. Iwaihara. Adapting transactions to ex-
ceptional situations using structured messages. In Proc.
Int’l Symp.Database Applications in Non-Traditional Envi-
ronments(DANTE’99), pages 264-271, Kyoto, Nov. 1999.
IEEE Press.

S. Inoue and M. Iwaihara. Dynamic composition of trans-
actions on asynchronous communication. In IPSJ Trans.
Database, number SIG 8 (TOD 4),Vol. 40, pages 1-12, Nov.
1999.

G. Joeris and O. Herzog. Managing evolving workflow spec-
ifications. In Proc. of 3rd IFCIS Int’l Conference on Coop-
erative Information Systems(CooplS "98), New York, Aug.
1998.

S. M. Kaplan, A. M. Carrol, and K. J. MacGregor. Support-
ing collaborative process with conversationbuilder. In Proc.
ACM Conf. Organizational Computing Systems, pages 69—
79, 1991.

S. M. Kaplan, W. J. Tolone, D. P. Bogia, and C. Bignoli.
Flexible, active support for collaborative work with conver-
sationbuilder. In Proc. ACM Conf. Computer-supported Co-
operative Work, pages 378-385, November 1992.

M. L. Kellner, P. H. Feiler, A. Finkelstein, T. Katayama, L. J.
Osterweil, M. H. Penedo, and H. D. Rombach. Software
process modeling example problem. In T. Katayama, edi-
tor, Proc. 6th Int’l Software Process Workshop, pages 19-29.
IEEE Computer Society Press, 1990.

M. Klein. iDCSS: Integrating workflow, conflict and
rationale-based concurrent engineering coordination tech-
nologies. In CERAs, 3 1995.

J. Lee. SIBYL: A tool for managing group decision ra-
tionale. In Proc. Conf. Computer-supported collaborative
work, pages 79-92, Oct 1990.

L. Liu and C. Pu. Methodological restructuring of complex
workflow activities. In Proc. 14th Int’l Conf. Data Engineer-
ing, pages 342-350, California, 1998.

J. Mylopoulos, L. Chung, and B. Nixon. Representing and
using nonfunctional requirements: A process-oriented ap-
proach, 1992.

M. Reichert and P. Dadam. ADEPT#ex— supporting dynamic
changes of workflows without loosing control. Journal of
Intelligent Information Systems, 1997.

	HICSS35 2002
	Return to Main Menu

