
UNIVERSITY OF CINCINNATI

_____________ , 20 _____

I,__,
hereby submit this as part of the requirements for the
degree of:

__

in:

__

It is entitled:

__

__

__

__

Approved by:

Applying Multiple Query Optimization in Mobile Databases

A thesis submitted to the

Division of Graduate Studies and Research

of the University of Cincinnati

in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in the Department of Electrical & Computer Engineering and

Computer Science

of the College of Engineering

July 26, 2001

by

Rajeswari Malladi

B.E., College of Engineering, Osmania University, India, 1998

Thesis Advisor and Committee Chair: Dr. Karen C. Davis

Abstract

Mobile computing is a fast growing research and commercial area. An important application of

mobile networks is data dissemination over limited bandwidth channels. There are different

modes of data dissemination: push-based, pull-based, or a combination of both. In push-based,

the data is broadcast in the form of broadcast disks. In pull-based, a mobile unit sends an uplink

query to a central server, the server processes the data and sends the answer on a downlink

channel. If the number of uplink queries is large, a lot of channel bandwidth is expended in

sending the answers on the downlink channels. In this study, we apply multiquery optimization to

batches of pull requests in mobile databases. Materialized views are created that can be used to

answer several queries at once. The materialized views are then broadcast on a push-pull channel

dedicated for this purpose (answers to multiple pull queries). Each mobile unit receives a short

message from the server that contains information about when and for how long to tune to the

channel to retrieve the requested information. We compare multiple query processing for pull

requests (MQPR) with a basic pull request method (PR) in which each query is handled

separately. Appropriate algorithms and formulae are given to calculate the bandwidth usage and

the wait time for the mobiles sending the requests. A performance study is conducted by

simulating different query loads over a testbed schema. The studies indicate a significant savings

in the channel bandwidth usage and also a significant reduction in the wait time in MQPR

compared to PR.

Acknowledgements

I sincerely thank Dr. Karen Davis for her able guidance and valuable advice throughout

my thesis work. I appreciate all the time she invested in our discussions. Working with her, I

learnt a lot about my area, approach to research and writing style.

I thank my Dad, Mom and sisters for always encouraging me. I really enjoyed the initial

literature review discussions with Xiaoming. My thanks to Srikanth for his timely advice about

the work. I thank all my lab mates for making my work in the lab a real pleasure. I also thank

Krishnamoorthy for his constant support.

 i

Contents

List of Figures... iii

List of Tables ..v

Chapter 1 Mobile Databases..1

1.1 Mobile Databases ..1

1.2 A Motivating Example ..5

1.3 General Research Objective ..7

1.4 Specific Research Objective..7

1.5 Research Methodology ..7

1.6 Expected Contributions ...8

1.7 Overview of the Thesis..8

Chapter 2 Multiple Query Processing ..9

2.1 Applying MQP in Mobile Databases...10

2.2 MQP Techniques ...13

2.3 Multigraph Processing...14

2.4 Illustrative Example...16

2.5 Implementation..20

Chapter 3 Performance Study...24

3.1 Overview of the System ..24

3.2 Performance Model ...26

3.3 Testbed...28

3.4 Design of Experiments ..29

3.5 Results ...31
3.5.1 Bandwidth Usage ...32
3.5.2 Wait Time...34

Chapter 4 Conclusions ...38

4.1 Contributions ...38

4.2 Future Work...39

Bibliography ...40

 ii

Appendix A Testbed...42

A.1 Base Relations ...42

A.2 Views...42

Appendix B Results from the Experiments ...47

Appendix C Graphs ...54

C.1 Balanced Load ...54

C.2 Skewed Load1 ...56

C.3 Skewed Load2 ...58

C.4 Skewed Load3 ...60

C.5 Skewed Load4 ...62

C.6 Distinct Query Load ..64

 iii

List of Figures

Figure 1.1: Centralized Wireless Network Architecture ..2
Figure 1.2: A Broadcast Disk...4
Figure 1.3: Relationships between Queries and Broadcast Data..5
Figure 1.4: Bandwidth Usage for Different Channels..6

Figure 2.1: Two Sample Queries ...9
Figure 2.2: Information Flow in PR...11
Figure 2.3: Information Flow in MQPR...12
Figure 2.4: Common Subexpression Processing Algorithm ..15
Figure 2.5: Heuristics for Edge Processing..15
Figure 2.6: Algorithm for Identical Select Processing...16
Figure 2.7: An Example ...17
Figure 2.8: Base Relations ...17
Figure 2.9: Initial Query Graph for Query A ...18
Figure 2.10: Initial Query Graph for Query B ...18
Figure 2.11: Initial Multigraph for Queries A and B ...18
Figure 2.12: Transformation Steps in Processing Multigraph for Queries A and B19
Figure 2.13: Data Structure for Representing a Multigraph...20
Figure 2.14: Multigraph for Queries A and B..21
Figure 2.15: Data Structure Representation of Multigraph for Queries A and B...........................22

Figure 3.1: Phases in MQPR..25
Figure 3.2: Channel Assignment and Wait Time Calculation Algorithm......................................27
Figure 3.3: Relative Query Sizes ...28
Figure 3.4: Subsumption Relationships between Queries..29
Figure 3.5: Query Loads ..30
Figure 3.6: Fixed System Parameters...31
Figure 3.7: Number of Channels for Broadcast ...31
Figure 3.8: Bandwidth Usage...33
Figure 3.9: Percentage Savings in MQPR Compared to PR ..33
Figure 3.10: Percentage Savings of Bandwidth in MQPR Compared to PR34
Figure 3.11: Average Wait Time with 5 Channels...35
Figure 3.12: Average Wait Time with 3 Channels...35
Figure 3.13: Average Wait Times for up to 30 Requests...36
Figure 3.14: Average Wait Times for up to 50 Requests...36
Figure 3.15: Percentage Reduction in Average Wait Time using MQPR2 Compared to PR37

Figure A.1: Testbed Schema ..42
Figure A.2: Testbed Derivation from TPC-H-SPJ Query Set ..43
Figure A.3: Subsumption Relationships in the Testbed...46
Figure A.4: Query Sizes...46

Figure C.1: Bandwidth Usage for Balanced Load ...54
Figure C.2: Average Wait Time with 5 Channels for Balanced Load ...55
Figure C.3: Average Wait Time with 3 Channels for Balanced Load ...55
Figure C.4: Bandwidth Usage for Skewed Load1..56
Figure C.5: Average Wait Time with 5 Channels for Skewed Load1 ...56
Figure C.6: Average Wait Time with 3 Channels for Skewed Load1 ...57

 iv

Figure C.7: Bandwidth Usage for Skewed Load2..58
Figure C.8: Average Wait Time with 5 Channels for Skewed Load2 ...58
Figure C.9: Average Wait Time with 3 Channels for Skewed Load2 ...59
Figure C.10: Bandwidth Usage for Skewed Load3..60
Figure C.11: Average Wait Time with 5 Channels for Skewed Load3 ...60
Figure C.12: Average Wait Time with 3 Channels for Skewed Load3 ...61
Figure C.13: Bandwidth Usage for Skewed Load4..62
Figure C.14: Average Wait Time with 5 Channels for Skewed Load4 ...62
Figure C.15: Average Wait Time with 3 Channels for Skewed Load4 ...63
Figure C.16: Bandwidth Usage for Distinct Query Load...64
Figure C.17: Average Wait Time with 5 Channels for Distinct Query Load64
Figure C.18: Average Wait Time with 3 Channels for Distinct Query Load65

 v

List of Tables

Table B.1: Balanced Load..48
Table B.2: Skewed Load1..49
Table B.3: Skewed Load2..50
Table B.4: Skewed Load3..51
Table B.5: Skewed Load4..52
Table B.6: Distinct Query Load ...53

 1

Chapter 1 Mobile Databases

Wireless technology is a fast growing research and commercial area. Wireless devices such as

cellular phones, personal digital assistants (PDAs) or laptop computers have become popular

because they are convenient and economical. Currently there are around 200 milli on users of

some form of wireless networks; it is anticipated that there will be around 1 billi on subscribers in

the next five years [UC 1999]. Mobile device users need a way to communicate with other

(probably larger and more powerful) systems in order to use remote data or services. However,

there is no need to establish wired communication links. Often, a wireless network can be

installed in places where it is not possible to install a wireline. Users of mobile devices have

immediate access to services regardless of their location. Application areas include electronic

mail , field audit, public safety, stock trading, airline activities, weather information, bill paying,

warehouses, healthcare and the transportation industry [MA 2000]. Most of these applications

need access to databases, digital li braries, online services, and location-dependent information,

which is provided by mobile databases.

1.1 Mobile Databases

The main aim of mobile databases is to provide information to a mobile user. The term ‘mobile

database’ does not necessaril y mean that the database is mobile. Sistla and others [SWCD 1997]

propose a centralized and distributed mobile database architecture where some data is present at

the central server and other data is present at mobile nodes. In a distributed architecture there is a

possibilit y of nodes being disconnected [IB 1993, B 1999], and thus may not be available to

answer a request at all ti mes. In order to focus on query optimization issues, we assume a purely

centralized architecture in our work.

In a centralized wireless architecture the whole geographical area is divided into

hexagonal cells where each cell mimics a circle (shown in Figure 1.1). At the center of each cell

 2

is a Base Station (BS) that communicates with the Mobile Stations (MS) in its cell area through a

wireless link. The BS is also referred to as server and the MS as mobile units, devices, or simply

mobiles. BSs serving an area are connected by a backbone wired network through a Mobile

Switching Center (MSC). The MSCs are connected to the Public Switched Telephone Network

(PSTN). As a mobile station moves, the calls are relayed from one cell to another. When an MS

moves from one cell to another the radio link with the old BS has to be broken and a new radio

link has to be established with a new BS.

 MS (Mobile)

 BS (Server)

 Wireless Link

Figure 1.1: Centralized Wireless Network Architecture

In a centralized mobile database the database resides in the central server (or BS). There

are two ways the server can provide data for a mobile user: pull-based and push-based. In a pull-

based method the user sends a request for data on an uplink channel and the server processes the

request and sends the data to the client on a downlink channel. An uplink channel is a channel on

which a mobile can send its query to the server. The downlink channel or pull channel is the

channel on which an answer to a query is sent to an individual mobile. Other mobiles cannot

MSC

Wireline

PSTN

Other MSCs

 3

access the downlink information. Uplink channel bandwidth is used to send queries and downlink

channel bandwidth is required to send the answers to the queries. In the push-based method the

server broadcasts the data on a broadcast channel and the mobiles tune to that particular channel

to retrieve the information [AAFZ 1995]. A broadcast channel or push channel is a channel on

which the server broadcasts information that all the mobiles can access. In this mode there is a

wait for the data but there is a reduction in the channel bandwidth that is used since the data need

not be sent to each client separately. In a hybrid model, the push-only model is augmented with a

pull-based approach [AFZ 1997] by using an uplink channel to allow clients to send explicit

requests for data to the server. This model accommodates that queries whose answers cannot be

obtained from the broadcast information.

There are many limitations in using wireless devices such as frequent disconnections,

limited power, limited screen size, security and authentication requirements, and limited channel

bandwidth [IB 1993, AAFZ 1995]. In this thesis we address the issue of limited channel

bandwidth.

In a wireless mobile network the servers have relatively high bandwidth broadcast

capability while the clients can communicate only over a lower bandwidth link. Such an

environment is called an asymmetric communication environment; a new architecture for this

environment called broadcast disks has been proposed by Acharya and others [AAFZ 1995]. In

this approach the server continuously and repeatedly broadcasts data to the clients. The broadcast

channel becomes a disk from which clients can retrieve data as it goes by. The broadcast is

created by assigning data items to different disks of varying sizes and speeds and then

multiplexing the disks on the broadcast channel. Items stored on faster disks are broadcast more

often than items on slower disks. Figure 1.2 shows a simple broadcast program in which disk

pages A, B, C, D, and E are continuously broadcast. The mobiles that need this information tune

to the channel and retrieve the required information. Lee and others give channel allocation

methods for the broadcast data [LHL 1999].

 4

Figure 1.2: A Broadcast Disk

 Unlike the push architecture, in a pull model the answers for each query are sent

separately. When the queries are processed in groups there may be many common expressions

among the queries. A multiple query optimizer processes a group of queries together and executes

the common operations once. This technique is very useful for query workloads that contain

identical queries (queries are repeated), subsumption queries (the answer for a query is a subset of

the answer for another query), and overlapping queries (the two answers share some data). In the

case of disjoint queries (all the queries are all distinct), this technique behaves as an ordinary

query processor.

In this thesis, we apply the techniques of MQP for the queries sent as pull requests by a

group of users and refer to the approach as multiple query processing for pull requests (MQPR).

In the naïve approach for answering pull requests (PR), a user sends a request for data on an

uplink channel, and the server processes all these requests independently and sends the answers

separately on downlink channels; and this data is accessible only by a mobile that has sent a

request. In MQPR, we group queries that are sent to the server in a given time window. If the

queries in a particular group have some commonaliti es, we construct a query graph for these

queries and obtain a common answer for them, called a materialized view. The answers for the

queries in the group can be obtained from this materialized view. Instead of using the pull

channel, which is a downlink channel, we use a push-pull channel, which is a broadcast channel

for views that answer a group of pull requests. The individual mobiles are sent small packets

A

B
C D

E

A

B
C D

E

 5

stating when and for how long to tune to the channel and retrieve the answers. In this method we

use a broadcast channel instead of a downlink channel, and we eliminate redundancy in query

answers. We study the savings in wait time and bandwidth that are obtained using this approach.

In the next section, we motivate of our work with an example.

1.2 A Motivating Example

To illustrate the problem addressed in this thesis, consider a mobile database where data pages A,

B, C, D, E and F are continuously broadcast over a push channel. Figure 1.3 gives the

representation of the push data, while its channel bandwidth usage is given in Figure 1.4(a). The

channel is allocated for the push data and the disks A-F continuously occupy this channel. The

channel bandwidth usage for broadcasting the disks once is equal to the sum of the sizes of all the

disks. It is assumed that there is no repetition of data in the disks. A time window occurs in which

5 mobiles cannot retrieve the answers to their queries (Q1-Q5) from the push data and thus they

send pull requests to the server.

Figure 1.3: Relationships between Queries and Broadcast Data

Q1, Q5

Q2

Q3

Q4

A, B, C, D, E, F

Contents of a Mobile Database

 6

 It is assumed that the answers to Q1 and Q5 are identical, the answer to Q2 overlaps that

of Q1, the answer to Q2 subsumes that of Q3 (i.e., answers for Q3 can be obtained by doing a

simple select or join operation on the result of Q2), and the answer to Q4 does not have any data

in common with any other query answers. The representation of these queries is given in Figure

1.3. The universe of discourse is a mobile database, and the ellipses represent subsets of the

database.

The server processes the queries and sends the answers on a downlink channel in the

order the requests are sent. The channel bandwidth usage for the pull requests on a downlink

channel is shown in Figure 1.4(b).

(a) Bandwidth Usage for Push Data

(b) Bandwidth Usage for Pull Requests on a Downlink Channel

(c) Bandwidth Usage for Pull Requests on a Push-Pull (Broadcast) Channel

Figure 1.4: Bandwidth Usage for Different Channels

 In our approach we apply MQP, which helps us in determining the commonalities

between queries in the given time window. The resulting broadcast data is shown in Figure 1.4(c).

 Q1 Q2 Q3 Q4 Q5

A B C E D F A …………..

Q1, Q5 Q3 Q4

 Q2

 7

Since Q1 and Q5 are identical, the results are broadcast just once. The overlapping portion of Q1

and Q2 is broadcast just once. The result of Q3 is obtained from the result of Q2. Q4 is broadcast.

Channel bandwidth and wait time savings are expected to result from using MQP to form a

broadcast program.

1.3 General Research Objective

This thesis applies techniques from multiple query optimization to obtain bandwidth and wait

time reduction for answering pull requests in a mobile database environment.

1.4 Specific Research Objective

The specific research objectives are as follows:

a) To determine what techniques are proposed for processing pull requests and devise

improvements.

b) To measure the effectiveness of algorithms for processing pull requests.

c) To design experiments to determine performance characteristics.

d) To analyze the results to determine conditions under which savings occur.

Our approach to meeting these objectives is given in next section.

1.5 Research Methodology

The research methodology used to achieve our research objectives is given here.

a) In order to define a new method for handling pull requests, we investigate the use of

multiple query processing techniques to process a set of requests.

b) In order to determine the effectiveness of algorithms for processing pull requests, we

i. propose characteristics such as bandwidth and wait time,

ii. develop metrics to calculate the bandwidth and wait time, and

iii. select a testbed to conduct the experiments.

 8

c) To conduct experiments, we develop a software system for implementing MQP

techniques that computes bandwidth and wait time.

d) To analyze the results, we examine them in the form of graphs and draw conclusions

about the savings in bandwidth and also see how the wait time varies under different

conditions.

1.6 Expected Contributions

By accomplishing our research objectives we expect to make the following contributions:

a) an improved method to handle the pull-requests using MQP techniques,

b) cost metrics to calculate the bandwidth and wait time and also define a testbed

appropriate for MQP scenarios,

c) a software system that implements MQP and also computes bandwidth and wait time in

both the methods, and

d) identification of the key factors that affect bandwidth and wait time.

1.7 Overview of the Thesis

In Chapter 2, we discuss multiple query processing, a multigraph MQP technique, and details of

our software implementation. In Chapter 3, we present the overview of our complete system, the

testbed, design of experiments, and the results and their analysis. In Chapter 4, we present

contributions of the thesis and discuss future work.

 9

Chapter 2 Multiple Query Processing

Multiple Query Processing (MQP) optimizes a set of queries together by executing the common

operations once in order to save query execution time and evaluation cost. It has been shown by

Selli s that MQP typically offers substantial improvement to the performance of a system [S

1998]. Exhaustive algorithms have been proposed for doing MQP [SG 1990]. These are

impractical and explore an exponential search space. Roy and others propose heuristic algorithms

that are practical and provide significant benefits in the optimization of queries [RSSB 2000]. We

adopt a heuristic approach here.

a) SELECT customer.name, customer.custkey, orders.orderkey,
 orders.orderdate, orders.totalprice

 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey

 AND lineitem.orderkey = orders.orderkey
 AND lineitem.quantity = '24';

 b) SELECT customer.name, customer.custkey, orders.orderkey,

 orders.orderdate, orders.totalprice
 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey

 AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24'
AND orders.orderstatus = ‘shipping’ ;

Figure 2.1: Two Sample Queries

We ill ustrate MQP with an example. Figure 2.1 contains two queries that retrieve

information from an order processing database. The first query retrieves customer and order

information for a particular quantity of items ordered. The second query retrieves customer and

order information for a particular quantity of items ordered and whose order status is shipping.

The answer for the second query is a subset of the results of f irst query. The results of the first

query enable fast computation of the second. These requests can be optimized using MQP by first

 10

finding the Customers whose lineitem quantity is 24 and then using this to find the Orders with

the additional constraint that the order status is shipping.

Section 2.1 discusses how MQP techniques can be applied to mobile databases. Section

2.2 gives an overview of MQP techniques from the literature and we select one for our work;

Section 2.3 details the multigraph processing algorithms we use here. Section 2.4 ill ustrates an

approach with an example, while Section 2.5 gives the details of software implementation.

2.1 Applying MQP in Mobile Databases

In the mobile database architecture that we adopt, there are hundreds of mobile users served by a

central server (BS) that receives requests on an uplink channel and sends answers on the

downlink channel. In a naïve approach, when a server receives an uplink request, it processes the

request and sends a request for data to the data source, and obtains the answer from it. This

answer is sent to the mobile on a downlink channel. Figure 2.2 shows the information flow

between a mobile, a server, and a data source in the naïve method (called PR here for pull

request). The vertical li nes represent the information source, server, and a mobile and the

horizontal li nes show the data flow. The numbers on the lines show the sequence of the flow. A

dotted horizontal li ne shows that the link is an air link. The continuous horizontal li nes show that

the link is a wireline. The direction of an arrow represents the direction of the flow of data.

Significant channel bandwidth can be expended in sending query answers on the

downlink channel. If there is an overlap in the results of the queries meant for different mobiles,

channel bandwidth is wasted by sending the same data on the downlink more than once.

Response time and channel traff ic are both increased. To address these issues, we propose a

multiple query processing method for pull requests (called MQPR) to batch the queries and

perform common sub-expression processing.

 11

Figure 2.2: Information Flow in PR

The major tasks in MQP are common operation/sub-expression identification and global

plan construction. In our approach, MQPR, we develop a view from the results of various queries

and broadcast this view on a channel we call the push-pull channel. The push-pull channel

broadcasts information on a broadcast channel instead of sending answers on a downlink channel.

On a downlink channel, mobiles are sent a small packet containing information about when to

tune to the push-pull channel and which part of the view they need to download to find the results

to their queries. When there are subsumptions between queries, i.e., when the answer for a query

is to be obtained by doing a select operation on the answer being broadcast, we can sort the

answer before it is broadcast so that the mobile does not have to do a select. It can just tune at the

time given in the packet and get its answer. This is referred as filtering of data [IVB1 1994]. This

method reduces the bandwidth that would previously be wasted by transmitting almost the same

information for different users separately. Figure 2.3 shows the information flow between the

mobile, the server, the data source, and the broadcast channel for MQPR.

(1) Mobile sends an uplink query

(2) Request sent to information
source

(3) Results returned by the source

(4) Final results sent to the mobile

Information
Source

Server

Mobile

 12

Figure 2.3: Information Flow in MQPR

In Figure 2.3, the mobile initially sends an uplink query. The server collects all the

requests it obtains in a given time window, applies an MQP technique, and evaluates the common

expressions. It sends the requests for data to the information source and obtains the results. The

mobile is sent a small packet containing information regarding when and for how long to tune to

the channel to get the information. Later these results are broadcast on a broadcast channel. The

mobile then tunes to the channel according to the information in the packet and obtains the

information.

In the next section, various MQP techniques from the literature are reviewed and one is

selected for our work.

(1) Mobile sends an uplink query

MOBILE

(2) Queries are batched for common
subexpression evaluation, then

sub-queries(requests) are sent to
information source

(3) Results returned by
individual source

(5) Final results
broadcast

BROADCAST
CHANNEL

(6) Mobile tunes to channel to get the query
answer

Information
Source

Server
with
MQP

(4) Mobile sent a small packet

 13

2.2 MQP Techniques

The problem of identifying common subexpressions is NP-hard [J 1985, RH 1980, SKL 1989].

Jarke indicates that multi-relation subexpressions can only be addressed heuristically since

determining subexpressions has an exponential search space [J 1985]. There are two main

heuristic approaches, one using AND/OR graphs and the other using multigraphs. In an AND/OR

graph, the AND nodes represent the relations and the OR nodes represent the operators [RC

1988]. Roy and others have demonstrated that multiquery optimization using heuristics with

AND/OR graphs is practical and provides significant benefits [RSSB 2000]. Their method

detects subsumption by comparing each pair of operator nodes from distinct queries. There may

be many AND/OR graphs corresponding to a particular set of queries; thus the performance of an

algorithm depends on the chosen representation. AND/OR graphs are also procedural (i.e., they

specify an evaluation order) so that some potential optimization choices are not considered. Both

of these disadvantages do not occur in the multigraph approach.

We use a multigraph technique for processing subsumptions [CE 1994, CD 1998]. The

multigraph approach can be used to identify common subexpressions for identical, subsumption

and overlap cases. A multigraph is a non-procedural representation of multiple queries and the

representation of the multiple queries is unique. We choose a multigraph for MQP in our work as

it represents queries in a unique way compared to operator graphs and also because of the ease of

detection of common subexpressions. The detection of common subexpressions using a

multigraph is the same as the detection of common edges, i.e., edges connecting to the same

node(s) on the graph. The time and space complexities for processing common subexpressions

using a multigraph are much lower than those that use an operator graph [CE 1994]. In our work

we consider the identical, subsumption, and disjoint cases. We describe the multigraph technique

in the following sections.

 14

2.3 Multigraph Processing

A definition and common sub-expression processing algorithms for multigraphs are given here

[CE 1994]. A multigraph G(R, SE, JE) is defined as follows:

1. A node, r ∈ R, of the multigraph represents a relation or an intermediate result derived

from relational operation(s).

2. A selection edge, sei ∈ SE, loops on a node and represents a select operation on the

relation. A selection edge is labeled with a query ID and selection condition(s).

3. A join edge, jei ∈ JE, between two relations represents the join operation. A join edge is

labeled with a query ID and a join condition(s).

R is a relation, SE is a select edge, JE is a join edge and QL is the query li st.

A multigraph is constructed for a given set of queries. Each relation is represented as a node.

A select edge is represented as a loop on a relation. A join edge is represented by a line

connecting two relations. When a relational operation is evaluated, the node(s) and edge(s)

related to the operation are contracted into a new node. At the end of a sequence of operations,

the single remaining node represents the final result. The main idea of MQP is to execute the

common operations only once. Two conditions may have nothing in common, be identical, or the

result of one condition subsumes the result of other condition; we refer to these relationships as

the commonality between two conditions. Chen’s subsumption processing algorithm is shown in

Figure 2.4. A group of edges and type of commonality among the edges in the multigraph are

selected for processing based on the heuristics given in Figure 2.5. The type of commonality

among the edges is identified and the common operations are performed by calli ng appropriate

procedures.

 15

Algorithm comsubproc
Input: A multigraph G(R, SE, JE)
Output: A multigraph G’(R’ , SE’ , JE’) with no related conditions on same type of edges (SE or
JE)
Method:
While common operations exist
 Use the heuristics to select a group of edges/operations for processing;
 Identify the type of edges/operations (select or join) and the type of commonality
 (identical, subsumption or overlap) among the operations;
 Perform the common operation for this group of operations and contract the
 node for this operation;

Figure 2.4: Common Subexpression Processing Algorithm

Edge Processing Heuristics

1. Select a group of edges SE(u, u) such that they have identical select conditions and
QL{ JE(u, v)} ⊆ QL{ SE(u, u)} ;

2. Select a group of edges SE(u, u) such that they have identical select conditions and
QL{ JE(u, v)} ⊄ QL{ SE(u, u)} ;

3. Select a group of edges SE(u, u) such that they have subsumed select conditions and
QL{ JE(u, v)} ⊆ QL{ SE(u, u)} ;

4. Select a group of edges JE(u, v) such that they have identical join conditions and
QL{ JE(u, v)} ⊆ QL{ SE(u, u)} where w ≠ u or w ≠ v.

5. Select a group of edges JE(u, v) such that they have subsumed join conditions and
QL{ JE(u, v)} ⊆ QL{ SE(u, u)} where w ≠ u or w ≠ v.

Figure 2.5: Heuristics for Edge Processing

All six algorithms for processing the edges found with the heuristics are discussed by

Chen [CE 1994]. The algorithms are for processing (1) identical selects, (2) subsumption selects,

(3) overlap selects, (4) identical joins, (5) subsumption joins, and (6) overlap joins. In our work,

algorithms (1), (2), (4) and (5) are implemented. Figure 2.6 describes the algorithm for

processing identical select conditions. This algorithm is ill ustrative of other identical and

subsumption processing algorithms. In the algorithm for processing identical selects all the select

operations with identical common subexpressions are performed just once and a contracted node

is created by removing all the identical edges representing the same common subexpressions. The

algorithm in Figure 2.4 continues to find the common subexpressions and processes them until no

 16

further common conditions exist. The output of this algorithm is a multigraph with all the

common conditions removed; it is a materialized view that can answer all of the queries

represented in the input multigraph.

Algorithm S_identical
Input: A multigraph
 G(R, SE, JE), QL(sc, Ri) // list of query Ids and their associated
 identical select operation σsc(Ri);
Output: A contracted multigraph G’(R’ , SE’ , JE’)
Method:
 Perform σsc(Ri) and create a contracted node n for this operation;
 Delete edges representing the σsc(Ri) operation;

For all selection edges se(Ri,Ri) with query ID in QL(sc,Ri) do
 Move se(Ri,Ri) to se(n, n);
For all edges (t,Ri) where t ≠ Ri do

If query ID of edge (t,Ri) is in the QL(sc,Ri), change original li nks from (t,Ri) to
(t,n);

 If there are no remaining edges on node Ri, delete node Ri;

Figure 2.6: Algorithm for Identical Select Processing

In the following section we give an ill ustrative example of the multigraph MQP technique.

2.4 Illustrative Example

Consider the example Queries A and B shown in Figure 2.7. These queries are from an order-

processing database. The base relations underlying these queries are given in Figure 2.8. The

construction of the multigraph for these queries and the transformations are given here. First the

base relations for these queries are identified as Orders, Customers and Lineitem. In the

following figures O stands for Orders relation, C for Customer relation and L for the Lineitem

relation. Figure 2.9 shows the representation of Query A in the form of a query graph. The nodes

are the relations, the edge joining two nodes is a join edge and the dotted edge looping to a

relation is a select condition. Figure 2.10 shows the query graph representation for Query B.

Figure 2.11 shows the multigraph for Queries A and B.

 17

A) SELECT customer.name, customer.custkey, orders.orderkey,
 orders.orderdate, orders.totalprice

 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey

 AND lineitem.orderkey = orders.orderkey
 AND lineitem.quantity = '24';

 B) SELECT customer.name, customer.custkey, orders.orderkey,

 orders.orderdate, orders.totalprice
 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey

 AND lineitem.orderkey = orders.orderkey
 AND lineitem.quantity = '24'

 AND orders.orderstatus = ‘shipping’ ;

Figure 2.7: An Example

Part (partkey, name, mfgr, brand, type, size, container, retailprice, comment)
Supplier (suppkey, name, address, nationkey, phone, acctbal, comment)
Partsupp (partkey, suppkey, availqty, supplycost, comment)
Customer (custkey, name, address, nationkey, phone, acctbal, mktsegment, comment)
Nation (nationkey, name, regionkey, comment)
LineItem (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, tax,
 returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstinct, shipmode,
 comment)
Region (regionkey, name, comment)
Orders (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippriority
 comment)

Figure 2.8: Base Relations

 18

Figure 2.9: Initial Query Graph for Query A

Figure 2.10: Initial Query Graph for Query B

Figure 2.11: Initial Multigraph for Queries A and B

C L O
(Qa, C.custkey=O.custkey)

(Qa, L.quantity=’24’)

(Qa, O.orderkey=L.orderkey)

C L O
(Qb, C.custkey=O.custkey)

(Qb, L.quantity=’24’)

(Qb, O.orderkey=L.orderkey)

(Qb, O.orderstatus=’shipping’)

C L O
(Qa, C.custkey=O.custkey)

(Qa, L.quantity=’24’)

(Qa, O.orderkey=L.orderkey)

(Qb, C.custkey=O.custkey)

(Qb, L.quantity=’24’)

(Qb, O.orderkey=L.orderkey)

(Qb, O.orderstatus=’shipping’)

 19

(a)

(b)

(c)

Figure 2.12: Transformation Steps in Processing Multigraph for Queries A and B

Figure 2.12 gives the transformation steps in the processing of the multigraph. In Figure

2.12(a) the select condition ‘L.quantity=24’ is processed and the node L is replaced by the

reduced node L’ . In Figure 2.12(b) the join condition ‘c.custkey=o.custkey’ is processed and the

node O is replaced by O’ . The condition ‘O.orderkey=L.orderkey’ is processed and the node O’ is

replaced by node O” . The view in Figure 2.12(c) is now broadcast. The broadcast is sorted on

orderstatus so that the mobiles that have sent Query B can get the data without doing a select

operation. A small packet is sent to the mobiles that have sent Query B when they need to tune in

so that they get the required information (i.e., they can tune when the information for ‘orderstatus

= shipping’ is being broadcast). For any select conditions on other attributes that cannot be

reduced for different queries, the mobile is sent information in order to perform a select.

C L’ O
(Qa, C.custkey=O.custkey) (Qa, O.orderkey=L.orderkey)

(Qb, C.custkey=O.custkey) (Qb, O.orderkey=L.orderkey)

(Qb, O.orderstatus=’shipping’)

L’ O’
(Qa, O.orderkey=L.orderkey)

(Qb, O.orderkey=L.orderkey)

(Qb, O.orderstatus=’shipping’)

O’ ’

(Qb, O.orderstatus=‘shipping’)

 20

2.5 Implementation

The multiquery processing algorithm is coded in C++. The algorithm takes a manually created

multigraph as input. Creating a multigraph from a given query set could be automated, but we

focus on the actual MQP coding rather than pre-processing.

(a) A Multigraph Node

(b) A Node in the Selection List

(c) A Node in the Join List

(d) A Node in Join Pair List

Figure 2.13: Data Structure for Representing a Multigraph

Figure 2.13(a) gives the data structure for our implementation of a multigraph. The data

structure is the same as that given by Chen [CE 1994] with small modifications. All the relations

MAX_SEL REL_SIZE

 REL_ID

MAX_JOIN
 NEXT

SELECTION LIST

 JOIN LIST

(Query Number, Select Condition Number) Next

(Query Number, Join Condition Number) Next

REL_ID Num_of_Joins Next

JOIN PAIR LIST

 21

have a unique relation identifier, REL_ID. The select and join conditions are given select

condition numbers and join condition numbers, respectively. We introduce a variable REL_SIZE

to store the size of the node and a next pointer to facilit ate traversal of the multigraph. Consider a

relation with REL_ID R1. MAX_SEL is the number of select conditions on node R1, and

MAX_JOIN is the number of relations that R1 is joined with. There are two pointers, one to the

selection li st and other to the join li st. Figure 2.13(b) shows a node in a selection li st. Each node

in the selection li st stores the query number and the selection condition number along with a

pointer to the next node in the selection li st. Figure 2.13(c) shows a node in the join li st. Each

node in the join li st has the REL_ID of the node to which the node R1 is joined with. If node R1

is joined with relation R2, REL_ID is R2 for this join node. The Num_ of_ Joins in the join node

is the number of joins between node R1 and node R2. There is a pointer to the join pair li st and a

pointer to the next node in the join li st. Join pair li st has all the join pairs between the nodes R1

and R2. Figure 2.13(c) shows a node in the join tuple li st. Each node in a join tuple li st is a join

tuple that is a query number and a join condition number.

Figure 2.14: Multigraph for Queries A and B

C L O

(Qa, C.custkey=O.custkey)

(Qa, L.quantity=’24’)

(Qa, O.orderkey=L.orderkey)

(Qb, C.custkey=O.custkey)

(Qb, L.quantity=’24’)

(Qb, O.orderkey=L.orderkey)

(Qb, O.orderstatus=’shipping’)

(Qa, Ja1)

(Qb, Jb1)

(Qb, Sb2)

(Qa, Ja2)

(Qb, Jb2)

(Qa, Sa1)

(Qb, Sb1)

 22

Figure 2.15: Data Structure Representation of Multigraph for Queries A and B

0

1

Size of C

C

O 2 NIL

Qa, Ja1 Qb, Jb1 NIL

NIL

1

2

Size of O

O

Qb, Sb2 NIL

C 2

Qa, Ja1 Qb, Jb1 NIL

L 2 NIL

Qa, Ja2 Qb, Jb2 NIL

2

1

Size of L

L

O 2 NIL

Qa, Ja2 Qb, Jb2 NIL

Qa, Sa1 Qb, Sb1 NIL

NIL

 23

 In Figure 2.14, we repeat the multigraph of Figure 2.11 for Queries A and B given in

Section 2.4. We give selection condition numbers and join condition numbers for the selection

and join conditions. The data structure representing the multigraph is given in Figure 2.15. There

are three nodes representing the three relations in the multigraph. Each node has a selection list

representing the select conditions on that relation and a join list representing the joins it has with

other relations.

 A multigraph such as that shown in Figure 2.15 is given as input to the MQPR algorithm.

The algorithm uses heuristics (Figure 2.5) to select a group of edges for processing. The type of

edge and commonality among the operations is identified and the common operations are

performed and a contracted node is obtained. The multigraph is modified (i.e., nodes are

constructed and edges are eliminated) when an operation is carried out. This processing of

common edges is done until no further common operations exist. The size of the result to be

broadcast for the given set of queries is computed from the final multigraph obtained after the

transformations. This is used in determining the channel bandwidth and the wait time; the cost

metrics for these calculations are discussed in the next chapter.

 24

Chapter 3 Performance Study

In this chapter the performance of algorithms to process pull requests are compared. Since the

algorithms determine the content of a push-pull broadcast channel, two relevant performance

criteria are bandwidth usage and wait time. We design simulations with different query workloads

to investigate the impact of the algorithms in different scenarios for these two metrics. Section 3.1

details the complete system. Section 3.2 gives the performance model. Section 3.3 gives the

testbed we use in our experiments. Section 3.4 outlines the design of experiments and Section 3.5

gives the results and their analysis.

3.1 Overview of the System

There are two phases for the creation of a push-pull broadcast program. One is to determine the

content (answers to queries) and the other is to assign the broadcast elements to the available

push-pull channels.

 In the PR method the elements to be broadcast are the answers to all the queries that the

server receives. In MQPR the queries are grouped based on subsumptions and the elements to be

broadcast are the answers of each of these groups. Figure 3.1(a) shows Phase 1 in MQPR. The

MQP algorithms are given in Chapter 2. The query workload is a form of an unreduced

multigraph. Figure 3.1(b) shows Phase 2, the channel assignment algorithm. This is the same for

both PR and MQPR; only the input values change.

(a) Phase 1 in MQPR

MQP Query

Workload
Reduced
Multigraph

 25

(b) Phase 2

Figure 3.1: Phases in MQPR

In PR the ordering of the elements is the order in which the server received the queries.

In MQPR we define two ways of ordering the elements: MQPR1 and MQPR2. In MQPR1, the

elements are sorted in the order of their size and the smaller elements are given higher priority

for broadcast than the larger elements. MQPR2 is an improved method for broadcasting the

elements. In this the elements to be broadcast are sorted in increasing value of the ratio of the

size of the element to the count of the number of users waiting for the element (Si/Sci). The

element with smallest Si/Sci value has the highest priority to be broadcast. In our study,

significant lowering of the average wait time is obtained using this method.

 The other input for the channel assignment algorithm is the heuristics of assignment.

These heuristics give us the strategy to assign elements to the channels. The heuristic we use here

takes one element at a time from the ordered list and assigns it to the channel with the least sum

of sizes of all the previously assigned elements.

 Our channel assignment algorithm gives the broadcast program for each of the channels.

The results within a broadcast element are ordered so that the subsumed queries can avoid doing

Channel
Assignment

Ordering of
Broadcast
Elements

Heuristics for
Assignment

Broadcast Program for
Push-pull Channel

Small Packet
for the Mobile
Stating when to
Tune

Number of
Elements to
Broadcast

Number of Channels
Available for
Broadcast

 26

selects. Each mobile is sent a packet stating when to tune to get its answer. In the next section we

give the channel assignment algorithm.

3.2 Performance Model

This section introduces terms and variables used for describing our performance model, followed

by an algorithm for calculating wait time.

The broadcast is done in the form of buckets that are the smallest logical unit of

broadcast. All buckets are the same size. Bucket size is given in bytes.

 The parameters we use in this chapter and their explanations are as follows:

• C: channel bandwidth usage in bytes,

• N: number of requests,

• b: the size of the that needs to be broadcast for a query set in bytes,

• L: bucket length in bytes,

• B: the number of buckets to be broadcast (B = b/L),

• t: time to broadcast a single bucket,

• T: time to broadcast the given data (T = B * t),

• n: number of elements to be broadcast,

• nc: number of channels available for broadcast,

• Si: size of the ith element that is being broadcast,

• Sci: count of the number of users who are waiting for the ith element, and

• wi: wait time for a mobile waiting on the ith element.

The total channel bandwidth is the sum of the sizes of all the elements that are broadcast.

Access time is the time a mobile spends determining where in the broadcast the answer for its

query can be obtained. In our system, access time is not computed because the mobile is sent a

packet detailing when the mobile can tune in to retrieve the desired information. Only tuning time

 27

is considered. Tuning time is measured in terms of the number of buckets. The wait time is the

time elapsed between the times a request is sent to the time the mobile starts downloading the

data. The algorithm for calculating the wait time is given in Figure 3.2. It takes as input the

number of elements to be broadcast, the element sizes in a given order, and the number of

available channels. It gives as output the wait time for each mobile waiting on these elements.

The algorithm combines our channel assignment heuristic with the computation of individual wait

times.

Assign_and_find
input: n, //number of elements that need to be broadcast
 int size[] //array having sizes of elements to be broadcast in the order
 float waittime[] //array to hold the calculated wait_times
 nc //number of channels available for broadcast
output: waittime[] //the wait times are returned
BEGIN

 initialize the size of each channel to zero //channel size is the sum of elements scheduled to
be broadcast on that channel

 for each of the elements in the array
 compute the channel with smallest size
 add this element to that particular channel, compute the new channel size
 add this element in the element list of that channel
 wait time for an element in the element list of a channel=
 (sum of sizes of elements before it in the element list* t/L)
return waittime[]
END

Figure 3.2: Channel Assignment and Wait Time Calculation Algorithm

After obtaining the wait times for each mobile from the algorithm in Figure 3.2, the average wait

time is calculated as follows:

Average wait time = (∑
=

N

i
iw

1

)/ N

 The next section gives the testbed for our experiments.

 28

3.3 Testbed

This thesis extends the TPC-H-SPJ query set [T 1999] to include additional queries with

subsumption relationships. A detailed explanation of how the queries are derived and the

subsumption relationships between the queries is described in Appendix A. TPC-H-SPJ contains

select-project-join (SPJ) subset of the TPC-H benchmark’s query set [TB 1999]. The TPC-H-SPJ

query set modifies the TPC-H queries to discard the aggregation, ORDERBY and GROUPBY

functions, but retains the original schema. TPC-H benchmark is a decision support benchmark

that consists of a suite of business-oriented ad-hoc queries with broad industry-wide relevance.

We choose this benchmark as our basis since it does not represent the activity of any particular

business segment, but rather an industry that manages, sells, or distributes products worldwide.

Query Sizes

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Query No.

S
iz

e
(b

yt
es

)

Figure 3.3: Relative Query Sizes

Our testbed extends the TPC-H-SPJ query set to a total of f ifteen queries. The queries are

either the same or modifications of queries in TPC-H-SPJ benchmark. We introduce subsumption

 29

relationships in order to apply an MQP technique. A summary of the relative sizes of the queries

appears in Figure 3.3. The subsumption relationships are given as a Venn diagram in Figure 3.4.

Figure 3.4: Subsumption Relationships between Queries

3.4 Design of Experiments

We design simulations to study the bandwidth savings between PR and MQPR, and study the

effect on wait time for the PR, MQPR1 and MQPR2 algorithms for different kinds of workloads at

the server. Some examples of loads that a server may have are light loads (small queries), heavy

loads (large queries) and balanced loads (all types of queries). For each experiment we vary the

number of user requests from one to fifty in increments of size 1. For a given number of requests,

we randomly select the queries from the testbed query set.

 In the first experiment, we use a balanced load, i.e., all the queries have equal probability

of being selected. In the second one, termed Skewed Load1, the first k queries have higher

probability of occurring than the rest. By increasing the probability of subsumption relationships

between queries, we can study how this impacts bandwidth. The third load, termed Skewed

Load2, k small queries (queries for which the results are small) have higher probability of

occurring than other queries. This query set helps us to determine how performance

Q1

Q2
 Q3

Q4

 Q5

Q6 Q7

Q8

Q9 Q10

Q11

Q12 Q13

Q14

Q15

 30

characteristics vary with a light load. In the fourth one, termed Skewed Load3, k large queries

(queries for which the results are large) have higher probability of occurring and this load depicts

the system performance with a heavier load. In the fifth one, termed Skewed Load4, k randomly

selected queries have higher probability than the rest. This query set is used to study the system

behavior for a skewed load with no particular pattern. The sixth experiment is conducted with

distinct queries, called Distinct Query Load that consists of queries with no subsumption

relationships between them, although some queries are repeated according to random selection.

Figure 3.5 summarizes all the query loads.

 Type of Load Load Description Rationale

Balanced All queries have equal probability

General workload

Skewed Load1 First k queries have higher probability Increased subsumptions

Skewed Load2 k small queries have higher
probability

Lighter load

Skewed Load3 k large queries have higher
probability

Heavier load

Skewed Load4 k random queries have higher
probability

Random skewed load

Distinct Query Load All the queries are disjoint queries No subsumptions

Figure 3.5: Query Loads

For our study, we double the likelihood of a query occurring in a workload if it has a

higher probability according to a particular strategy for that workload. We let k=7 for our study

since it represents approximately half of the queries in the testbed. In Figure 3.6 we give the fixed

parameters that are constant for all the experiments. These parameters are identical to those used

in other performance studies in the literature [IVB 1994]. For each query set we vary the number

of channels available for broadcast as shown in Figure 3.7. The value 10 is chosen for PR, but a

smaller number of channels for MQPR is sufficient to give comparable or better performance.

 31

Variable Description Value
C Channel bandwidth 10Kbps
L Bucket length in bytes 128 bytes
t Time to broadcast a single bucket 0.1 sec

Figure 3.6: Fixed System Parameters

Method Number of Channels
PR 10
MQPR1 3, 5
MQPR2 3, 5

Figure 3.7: Number of Channels for Broadcast

Each experiment has a given number of requests (from 1 to 50), and we group the

selected queries so that queries with subsumptions fall in a particular group. We construct a

multigraph for each of these groups and use it as an input to our MQP algorithm given in Section

3.1. The MQP algorithm computes the size of elements that needs to be broadcast. The elements

are ordered for the different methods (PR, MQPR1, MQPR2), and passed to the channel

assignment algorithm for computing broadcast plan. The bandwidth is computed for PR and

MQPR methods. The bandwidth is same for MQPR1 and MQPR2, they only differ in the ordering

of the elements in the broadcast. Wait times are computed for PR, MQPR1 and MQPR2

techniques.

3.5 Results

For different numbers of user requests, for each of the channel number variations and push-pull

broadcast (program creation algorithm), the bandwidth usage and the wait times are calculated.

Thus 600 simulations are conducted for bandwidth and 1,500 simulations are conducted for wait

time. The complete results are tabulated in Appendix B. Representative examples are given in

this section. We plot three graphs for each type of load. The first one is the bandwidth usage

graph, the second graph gives the average wait time with 3 channels, and the third graph gives the

 32

average wait time with 5 channels. The complete graphs are given in Appendix C. We introduce

an example of each of these graphs and analyze the results in the following subsections.

3.5.1 Bandwidth Usage

Figure 3.8 shows the bandwidth usage graph for a balanced load. The queries are randomly

selected for a given number of user requests (from 1 to 50). On the x-axis is the number of user

requests and on the y-axis is the bandwidth usage in bytes. The bandwidth plot for MQPR levels

out after a certain number (in this case 39) of user requests. The bandwidth plot for PR continues

to increase. The bandwidth usage in MQPR is always less than or equal to that of PR. In some

points the plot in PR increases but the plot of MQPR decreases (e.g., where x=18 and x=19). The

reason for this is the savings due to identical queries (at x=19 there are more repetitions of certain

queries than at x=18). Figure 3.9 gives the percentage savings of MQPR compared to PR. On the

x-axis is the number of user requests and on the y-axis is the percentage savings in MQPR

compared to PR. The findings from the graph are tabulated in Figure 3.10. We observe that

significant savings result from MQPR for any type of load. The savings are lowest for queries

with smaller sizes (Skewed Load2) and highest for the load with large queries (Skewed Load3).

 We have also computed the bandwidth usage in the Disjoint Query Load and similar

results are observed. The percentage savings are 47.35% for up to 30 requests and 59.86% for up

to 50 requests. The results of this experiment depict the savings in the channel bandwidth usage

when there are no subsumptions (but there are identical queries); we cannot compare the results

directly to those of the other workloads since the Distinct Query Load has only 8 possible queries

to choose from and the repetitions of individual queries is higher.

 33

Balanced Load

0

50000

100000

150000

200000

250000

300000

350000

1 5 9 13 17 21 25 29 33 37 41 45 49

No. of User Requests (N)

B
W

 U
sa

g
e

(b
yt

es
)

PR

MQPR

Figure 3.8: Bandwidth Usage

Percentage Savings

0
10
20
30
40
50
60
70
80
90

100

1 5 9 13 17 21 25 29 33 37 41 45 49

No.of Mobiles

P
er

ce
n

ta
g

e
S

av
in

g
s

Balanced Load

Skewed Load1

Skewed Load2

Skewed Load3

Skewed Load4

Figure 3.9: Percentage Savings in MQPR Compared to PR

 34

 Type of Load Up to 30
requests

Up to 50
requests

Balanced 39.44% 51.21%

Skewed Load1 40.39% 50.95%

Skewed Load2 30.83% 42.63%

Skewed Load3 41.12% 55.21%

Skewed Load4 43.23% 53.74%

Figure 3.10: Percentage Savings of Bandwidth in MQPR Compared to PR

3.5.2 Wait Time

For calculating wait times, we assume that 10 channels are available for broadcast in PR. In

MQPR1 and MQPR2, we vary the number of channels as 3 and 5. In Figure 3.11 the number of

user requests is on the x-axis and the average wait time in seconds is on the y-axis. The wait times

are reduced using MQPR1 although just 5 channels are used for broadcast compared to 10 for PR.

It is further observed that the wait times with MQPR2 are slightly lower than MQPR1. The

average wait times in PR and MQPR1 are almost the same up to 17 user requests. After that the

wait time calculated for MQPR1 remains almost the same but the wait time calculated for PR

increases rapidly. Figure 3.12 gives the plot of average wait time. This is similar to Figure 3.11,

but only 3 channels are used for broadcast in MQPR1 and MQPR2. Even when using just 3

channels for broadcast the average wait times are either below PR or comparable. Wait times

increase up to a certain maximum value (in this case 250 seconds) for 12 requests and after that

they remain almost constant using either MQPR technique.

 35

Wait Time (5 Channels)

0

100

200

300

400

500

600

700

800

1 6 11 16 21 26 31 36 41 46

No. of User Requests (N)

A
ve

ra
g

e
W

ai
t

T
im

e
(s

ec
s)

PR

MQPR1

MQPR2

Figure 3.11: Average Wait Time with 5 Channels

Wait Time (3 Channels)

0

100

200

300

400

500

600

700

800

1 6 11 16 21 26 31 36 41 46

No. of User Requests (N)

A
ve

ra
g

e
W

ai
t

T
im

e
(s

ec
s)

PR

MQPR1

MQPR2

Figure 3.12: Average Wait Time with 3 Channels

 Figure 3.13 compares the average wait times for the mobiles for up to 30 requests (which

we refer to as Case 1). We do the comparison for varying loads, broadcast methods, and

 36

broadcast channels. The same comparisons for up to 50 requests (which we refer to as Case 2) are

given in Figure 3.14.

Type of Load Avg Wait
Time in PR

with 10
Channels

Avg Wait
Time in

MQPR1 with
5 Channels

Avg Wait
Time in

MQPR2 with
5 Channels

Avg Wait
Time in

MQPR1 with
3 Channels

Avg Wait
Time in

MQPR2 with 3
Channels

Balanced 64.61 4.98 4.17 68.19 61.89

Skewed Load1 81.92 4.36 3.34 51.08 43.64

Skewed Load2 31.50 3.10 2.77 36.97 31.49

Skewed Load3 105.82 6.53 5.38 78.62 66.85

Skewed Load4 98.57 3.93 3.21 58.21 48.27

Figure 3.13: Average Wait Times for up to 30 Requests

Type of Load Avg Wait
Time in PR

with 10
Channels

Avg Wait
Time in

MQPR1 with
5 Channels

Avg Wait
Time in

MQPR2 with
5 Channels

Avg Wait
Time in

MQPR1 with
3 Channels

Avg Wait
Time in

MQPR2 with
3 Channels

Balanced 208.11 7.51 6.91 86.05 81.31

Skewed Load1 221.04 7.19 5.37 76.59 64.28

Skewed Load2 121.35 4.80 4.35 52.10 47.48

Skewed Load3 346.53 9.15 8.33 118.77 110.36

Skewed Load4 262.28 5.91 4.09 78.55 63.54

Figure 3.14: Average Wait Times for up to 50 Requests

The wait times for PR are high even though it uses 10 channels. These wait times are

comparable to the wait times in MQPR approaches with just 3 channels in Case 1, but they are

much higher in Case 2. The wait times for MQPR2 are uniformly lower than wait times calculated

for MQPR1. The large impact of a small increase in the number of channels using MQPR

techniques is evident from the relatively lower wait times. The average wait times computed by

MQPR approaches remain almost the same in Case 1 and Case 2, but the average wait times

 37

computed by PR are higher for large number of requests than smaller number of user requests. In

Case 1 the wait times calculated for Balanced and Skewed Load2 using MQPR1 are slightly

higher than those calculated using PR, but this is still reasonable since we are using just 3

channels in MQPR1 compared to 10 in PR. MQPR2 overcomes this and the wait times in these

cases are almost the same as those in PR. In other words, MQPR2 always outperforms MQPR1

and PR in our study for average wait time calculations. Figure 3.15 gives the percentage

reduction of the average wait time for MQPR2 compared to PR. It can be seen that reasonably

good reduction in wait time is obtained by using MQPR2.

Type of Load Up to 30
Requests with
3 Channels

Up to 30
Requests with
5 Channels

 Up to 50
Requests with
3 Channels

Up to 50
Requests with
5 Channels

Balanced 4.21% 93.55% 60.93% 96.68%
Skewed Load1 46.73% 95.92% 70.92% 97.57%
Skewed Load2 0.03% 91.21% 60.87% 96.42%
Skewed Load3 36.83% 94.92% 68.15% 97.60%
Skewed Load4 51.03% 96.74% 75.77% 98.44%

Figure 3.15: Percentage Reduction in Average Wait Time using MQPR2 Compared to PR

 We have seen that MQPR techniques outperform PR for both bandwidth and wait time

calculations. MQPR2 performs well in wait time calculations. We have seen that by grouping the

queries and adopting the push-based broadcast mode for pull queries, we obtain reduction in the

bandwidth usage. Wait times computed by MQPR approaches are lowered in case of higher

number of requests and they are comparable to the wait times computed by PR approach in case

of lower number of queries.

 38

Chapter 4 Conclusions

We present the contributions of our thesis, followed by a discussion of open research questions.

4.1 Contributions

We give below the contributions of the thesis.

• We investigate MQP techniques, adopt a multigraph technique, and use it to propose an

improved method for handling pull requests that creates multiquery materialized views to

be broadcast.

• We give cost metrics to calculate bandwidth usage and wait time for materialized views

that are broadcast to answer queries.

• We extend the TPC-H-SPJ query set with additional subsumption queries to test MQP

scenarios.

• We develop a software system to implement MQP using multigraphs.

• We conduct a performance study for different types of loads and see how the bandwidth

and wait time are affected by the type of method used and the nature of loads.

In our performance study, we observe that by grouping queries and creating materialized

views to broadcast, we obtain reductions in bandwidth usage and also lowering of wait times.

MQPR techniques outperform PR for both bandwidth and wait time calculations in our study;

MQPR2 performs better than MQPR1 in all cases. More savings in bandwidth usage are obtained

for heavy load compared to the lighter load, the reason for this being more bandwidth is used for

large size queries and by taking care of repetitions and subsumptions a lot of savings are

obtained.

 39

4.2 Future Work

In this section, we outline future problems that can be investigated in the framework presented

here.

In our work we do not consider the case of queries with overlap. A performance

evaluation including this type of query relationship can be done using our framework. The study

can be done using the AND/OR operator graphs and applying MQP techniques suggested by Roy

and others [RSSB 2000] instead of muligraphs to compare their relative merits.

Determining optimal time window is an important issue and algorithms can be developed

to determine the length of time window for which the server needs to wait. In our work we

assume a centralized architecture but a distributed architecture is a more realistic one and work

can be done on how different requests can be handled in this environment.

Algorithms can be developed to study the frequency of pull requests and determine what

to broadcast on the push channels to reduce the number of pull requests. Dynamic broadcasting

techniques can be developed and broadcast disks can be reorganized so that the number of pull

requests remains low.

Subieta proposes a method based on stored queries in a cache, which is a <query,

response> pair [SR 1987]. When a collection of stored queries is available, responses to some

queries may be obtained locally. In the mobile environment algorithms can be developed for

updating the views stored in the cache so that the cache can answer future queries. This may

reduce the number of pull requests that a mobile needs to send to a remote server.

 40

 Bibliography

[AAFZ 1995] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. “Broadcast Disks: Data
Management for Asymmetric Communication Environments.” Proceedings of ACM SIGMOD
Conference, San Jose, CA, May 1995.

[AFZ 1997] S. Acharya, M. Franklin, and S. Zdonik. “Balancing Push and Pull for Data
Broadcast.” Proceedings of ACM SIGMOD Conference, Phoenix, AZ, May 1997.

[B1999] D. Barbara. “Mobile Computing and Databases - A Survey.” IEEE Transactions on
Knowledge and Data Engineering, Vol 11, No. 1, pp. 108-117, Jan/Feb 1999.

[CD 1998] F. Chen and M.H. Dunham. “Common Sub-expression Processing in Multiple-Query
Processing.” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 3, pp. 493-
499, May/June 1998.

[CE 1994] F. Chen and M.H. Eich. “Decomposition and Common Subexpression Processing in
Multiple-Query Processing.” Southern Methodist Univ. Technical Report 94-CSE-30, Aug 1994.

 [IB 1993] T. Imielinski and B.R. Badrinath. “Data Management for Mobile Computing.”
SIGMOD RECORD, Vol. 22, No. 1, pp. 34-39, 1993.

[IVB 1994] T. Imielinski, S. Viswanathan and B.R. Badrinath. “Energy Eff icient Indexing on
Air.” Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data,
pp. 25-36, Minneapolis, MN, USA, May 1994.

[IVB1 1994] T. Imielinski, S. Viswanathan and B.R. Badrinath. “Power Eff icient Filtering of
Data on the Air.” Proceedings of the EDBT Conference, Cambridge, UK, March 1994.

[J 1985] M. Jarke. “Common Subexpression Isolation in Multiple Query Optimization.” Query
Processing in Database Systems, pp. 191-205, Springer Verlag, New York, 1985.

[LHL 1999] W. Lee, Q. Hu and D.L. Lee. “A Study on Channel Allocation for Data
Dissemination in Mobile Computing Environments.” Mobile Networks and Applications, Vol. 4,
No. 2, pp. 117-129, 1999.

[MA 2000] R. Malladi, and D.P. Agrawal. “Wireless and Mobile Networks: Advances and
Challenges.” Proceedings of the 4th World Multiconference on Systemics, Cybernetics and
Informatics (SCI2000) and the 6th International Conference on Information Systems Analysis and
Synthesis (ISAS2000), pp. 218-223, Orlando, FL, USA, July 2000.

[RC 1988] A. Rosenthal and U.S. Chakravarthy. “Anatomy of a Modular Multiplier Query
Optimizer.” Proceedings of the 14th Conference on VLDB, pp. 230-239, Los Angeles, CA, USA,
1988.

[RH 1980] D.J. Rosenkrantz and H.B. Hunt. “Processing Conjunctive Predicates and Queries.”
IEEE International Conference on Data Engineering, pp. 64-72, Quebec, Canada, 1980.

 41

[RSSB 2000] P. Roy, S. Seshadri, S. Sundarshan and S. Bhobe. “Eff icient and Extensible
Algorithms for Multi Query Optimization.” ACM SIGMOD Intl. Conference on Management of
Data, pp. 249-260, Dallas, TX, USA, 2000.

[S 1998] T.K. Selli s. “Multiple-Query Optimization.” ACM Transactions on Database Systems,
Vol. 13, No. 1, pp. 23-52, Mar 1988.

[SG 1990] T. Selli s and S. Ghosh. “On the Multi -Query Optimization Problem.” IEEE
Transactions on Knowledge and Data Engineering, Vol. 2, No. 2, pp. 262-266, Jun 1990.

[SKL 1989] X. Sun, N. Kamel, and L.M. Li. “Solving Implication Problems in Database
Applications.” Proceedings of ACM SIGMOD International Conference on Management of Data,
pp. 185-192, Portland, Oregon, 1989.

[SR 1987] K. Subieta and W. Rzeczkowski. “Query Optimization by Stored Queries.”
Proceedings of the 13th VLDB Conference, pp. 369-380, Brighton, England, 1987.

[SWCD 1997] P. Sistla, O. Wolfson, S. Chanberlain and S. Dao. “Modeling and Querying
Moving Objects.” Proceedings of the International Conference on Data Engineering, pp. 422-
432, Birmingham, UK, 1997.

[T 1999] S. Turlapaty. “Performance Analysis of Self-Maintainable Data Warehousing
Algorithms.” Master’s Thesis, ECECS Department, University of Cincinnati, 1999.

[TB 1999] Transaction Processing Performance Council (TPC). “T PC Benchmark-H.”
http://www.tpc.org.

 [UC 1999] “Future Directions in Mobile Computing and Networking Systems,” NSF Workshop,
University of Cincinnati, Jun 1999, http://www.ececs.uc.edu/~dpa/.

 42

Appendix A Testbed

This appendix gives the base relations and the database schema that are used in the experiments.

A.1 Base Relations

The testbed schema shown in Figure A.1 has eight relations [TB 1999]. The base relations along

with the attributes of each where the primary keys are in bold and the foreign keys are in italics.

Part (partkey, name, mfgr, brand, type, size, container, retailprice, comment)
Supplier (suppkey, name, address, nationkey, phone, acctbal, comment)
Partsupp (partkey, suppkey, availqty, supplycost, comment)
Customer (custkey, name, address, nationkey, phone, acctbal, mktsegment, comment)
Nation (nationkey, name, regionkey, comment)
LineItem (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, tax,
 returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstinct, shipmode,
 comment)
Region (regionkey, name, comment)
Orders (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippriority
 comment)

Figure A.1: Testbed Schema

In the next section, the adaptation of TPC-H-SPJ benchmark and the definitions of the selected

queries that are used as materialized views in this thesis are given.

A.2 Views

We present the definitions of fifteen queries we selected and modified from the TPC-H-SPJ

benchmark. The fifteen queries that are used as materialized views are presented in SQL. We give

below the queries we considered in our test bed. The explanation of how these queries are derived

from the TPC-H-SPJ [T 1999] query set is given in Figure A.2.

 43

Testbed TPC-H-SPJ
Q1 Same as Q2
Q2 Select clause added to Q2
Q3 Select clause removed from Q3
Q4 Same as Q3
Q5 Same as Q4
Q6 Select clause added to Q4
Q7 Select clauses added to Q4
Q8 Same as Q5
Q9 Select clause added to Q5
Q10 Select clause removed from Q6
Q11 Same as Q6
Q12 Same as Q7
Q13 Select clause added to Q7
Q14 Select clause removed from Q8
Q15 Same as Q8

Figure A.2: Testbed Derivation from TPC-H-SPJ Query Set

Q1) CREATE VIEW extended_price AS

 SELECT part.type, lineitem.extendedprice
 FROM lineitem, part
 WHERE lineitem.partkey = part.partkey
 AND lineitem.shipdate = '1995-09-01'

Q2) CREATE VIEW extended_price1 AS
 SELECT part.type, lineitem.extendedprice
 FROM lineitem, part
 WHERE lineitem.partkey = part.partkey
 AND lineitem.shipdate = '1995-09-01'
 AND part.retailprice > 50,000

Q3) CREATE VIEW parts_supplier_relationship AS
 SELECT part.brand, part.type, part.size
 FROM PartSupp, part
 WHERE PartSupp.partkey = part.partkey
 AND part.brand = 'brandno45'

Q4) CREATE VIEW parts_supplier_relationship1 AS
 SELECT part.brand, part.type, part.size
 FROM PartSupp, part
 WHERE PartSupp.partkey = part.partkey
 AND part.brand = 'brandno45'
 AND part.size = '45'

Q5) CREATE VIEW important_stock_identification AS

 44

 SELECT PartSupp.partkey, PartSupp.supplycost, PartSupp.availqty
 FROM PartSupp, supplier, nation
 WHERE PartSupp.suppkey = supplier.suppkey
 AND supplier.nationkey = nation.nationkey
 AND nation.name = 'germany'

Q6) CREATE VIEW important_stock_identification1 AS
 SELECT PartSupp.partkey, PartSupp.supplycost, PartSupp.availqty
 FROM PartSupp, supplier, nation
 WHERE PartSupp.suppkey = supplier.suppkey
 AND supplier.nationkey = nation.nationkey
 AND nation.name = 'germany'
 AND supplycost > 12,000

Q7) CREATE VIEW important_stock_identification2 AS
 SELECT PartSupp.partkey, PartSupp.supplycost, PartSupp.availqty
 FROM PartSupp, supplier, nation
 WHERE PartSupp.suppkey = supplier.suppkey
 AND supplier.nationkey = nation.nationkey
 AND nation.name = 'germany'
 AND supplycost > 12,000
 AND availqty > 10

Q8) CREATE VIEW large_volume_customer AS
 SELECT customer.name, customer.custkey, orders.orderkey,
 orders.orderdate, orders.totalprice
 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey
 AND lineitem.orderkey = orders.orderkey
 AND lineitem.quantity = '24'

Q9) CREATE VIEW large_volume_customer1 AS
 SELECT customer.name, customer.custkey, orders.orderkey,
 orders.orderdate, orders.totalprice
 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey
 AND lineitem.orderkey = orders.orderkey
 AND lineitem.quantity = '24'
 AND orders.orderstatus = ‘shipping’

Q10) CREATE VIEW shipping_priority AS
 SELECT lineitem.orderkey, orders.orderdate, orders.shippriority
 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey
 AND lineitem.orderkey = orders.orderkey
 AND orders.orderdate = '1995-03-15'

 45

 AND lineitem.shipdate = '1995-03-15'

Q11) CREATE VIEW shipping_priority1 AS
 SELECT lineitem.orderkey, orders.orderdate, orders.shippriority
 FROM customer, orders, lineitem
 WHERE orders.custkey = customer.custkey
 AND lineitem.orderkey = orders.orderkey
 AND orders.orderdate = '1995-03-15'
 AND lineitem.shipdate = '1995-03-15'
 AND customer.mktsegment = 'building'

Q12) CREATE VIEW returned_item_reporting AS
 SELECT customer.custkey, customer.name, customer.acctbal,
 nation.name, customer.address, customer.phone
 FROM customer, orders, lineitem, nation
 WHERE orders.custkey = customer.custkey
 AND lineitem.orderkey = orders.orderkey
 AND customer.nationkey = nation.nationkey
 AND orders.orderdate = '1994-10-01'

Q13) CREATE VIEW returned_item_reporting1 AS
 SELECT customer.custkey, customer.name, customer.acctbal,
 nation.name, customer.address, customer.phone
 FROM customer, orders, lineitem, nation
 WHERE orders.custkey = customer.custkey
 AND lineitem.orderkey = orders.orderkey
 AND customer.nationkey = nation.nationkey
 AND orders.orderdate = '1994-10-01'
 AND nation.name=’canada’

Q14) CREATE VIEW cost_supplier AS
 SELECT supplier.acctbal, supplier.name, nation.name, part.partkey, part.mfgr
 supplier.address, supplier.phone, supplier.comment
 FROM part, supplier, PartSupp, nation, region
 WHERE PartSupp.partkey = part.partkey
 AND PartSupp.suppkey = supplier.suppkey
 AND supplier.nationkey = nation.nationkey
 AND nation.regionkey = region.regionkey
 AND part.size=’15’

Q15) CREATE VIEW cost_supplier1 AS
 SELECT supplier.acctbal, supplier.name, nation.name, part.partkey, part.mfgr
 supplier.address, supplier.phone, supplier.comment
 FROM part, supplier, PartSupp, nation, region
 WHERE PartSupp.partkey = part.partkey
 AND PartSupp.suppkey = supplier.suppkey

 46

 AND supplier.nationkey = nation.nationkey
 AND nation.regionkey = region.regionkey
 AND part.size=’15’
 AND region.name = ' europe’

Figure A.3 gives the subsumptions introduced in the testbed query set.

Query Subsumes

1 2
3 4
5 6,7
6 7
8 9
10 11
12 13
14 15

Figure A.3: Subsumption Relationships in the Testbed

Figure A.4 gives the sizes of the queries.

Query Size in Bytes
Q1 105,035
Q2 94,532
Q3 1,440,000
Q4 28,800
Q5 1,024,000
Q6 512,000
Q7 460,800
Q8 5,201,053
Q9 520,106
Q10 18,000
Q11 12,000
Q12 244,122
Q13 9,765
Q14 1,312,000
Q15 262,400

Figure A.4: Query Sizes

The ordering of the queries computed in decreasing order of their final sizes is as follows:

Q8, Q3, Q14, Q5, Q9, Q6, Q7, Q15, Q12, Q1, Q2, Q4, Q10, Q11, Q13.

The distinct query load considered includes the following queries:

Q1, Q3, Q5, Q6, Q8, Q10, Q12, Q14.

These queries do not have any subsumption relationships between them.

 47

Appendix B Results from the Experiments

The results of all the experiments are given in the following tables for different kinds of loads.

Table B.1 gives the results for the Balanced Load. Table B.2, Table B.3, Table B.4 and Table B.5

give the results for Skewed Load1, Skewed Load2, Skewed Load3 and Skewed Load4,

respectively. Table B.6 gives the results for the Distinct Query Load. The description of these

loads is given in Chapter 3. The following are the notations used in the tables.

• N Number of queries

• (1- 15) Frequencies of queries 1-15

• BW(N) Total bandwidth used in PR (in bytes)

• BW(M) Total bandwidth used in MQPR (in bytes)

• Wait(N)10 Average wait time in PR (in secs)

• Wait(M)5 Average wait time in MQPR1 using 5 channels (in secs)

• Wait(NM)5 Average wait time in MQPR2 using 5 channels (in secs)

• Wait(M)3 Average wait time in MQPR1 using 3 channels (in secs)

• Wait(NM)3 Average wait time in MQPR2 using 3 channels (in secs)

 48

 N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BW(N) BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10250 10250 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2126 2126 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 2272 2272 0 0 0 0 0
4 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 10368 10368 0 0 0 2.34375 2.34375

5 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 14964 10964 0 0 0 3.75 3.75
6 2 0 0 0 0 0 0 1 1 0 0 0 0 1 1 58637 51703 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 3 1 0 0 2 1 23065 10390 0 0 0 0 0

8 0 0 0 0 0 0 1 2 1 0 1 3 0 0 0 94745 46234 0 0 0 3.51562 3.51562
9 0 1 2 1 0 2 1 0 0 0 0 1 0 0 1 39020 19945 0 0 0 88.1911 71.7793

10 1 1 1 1 2 0 1 2 0 0 0 0 0 0 1 115950 62753 0 0 0 57.4117 57.4117

11 3 1 1 1 0 0 0 0 0 1 3 0 1 0 0 15173 12287 0.69354 0 0 1.38707 1.38707
12 0 0 3 0 1 0 0 2 1 0 0 1 1 2 1 151613 72040 16.5291 0 0 247.68 263.573
13 0 0 0 1 1 1 0 1 3 0 2 1 1 1 1 79519 61109 2.02915 2.88462 2.88462 63.587 63.587

14 1 0 0 1 1 1 2 1 1 2 0 0 0 1 3 81623 60069 9.4774 2.00893 2.00893 22.1691 22.1691
15 1 2 0 4 0 2 1 1 0 0 2 0 0 1 1 67918 56022 8.125 0.625 0.625 10.3456 10.3456
16 2 0 0 2 1 1 1 0 1 3 0 0 2 1 2 36678 23575 7.75854 4.06714 2.30933 22.8677 13.4146

17 2 1 3 3 0 1 2 0 1 1 1 0 1 0 1 54428 22400 19.7195 5.41199 1.27597 82.8028 28.0223
18 2 0 2 1 1 1 0 1 1 3 1 2 1 1 1 97769 73001 33.4213 11.4614 10.6801 132.918 130.659
19 0 4 1 2 2 0 1 2 0 1 1 2 2 0 1 121771 64719 31.3426 9.99441 9.99441 65.5741 65.5741

20 0 0 2 0 0 2 3 0 2 1 1 1 5 2 1 74499 31611 127.847 1.40625 1.40625 70.0143 70.0143
21 1 3 2 1 0 1 2 2 3 1 3 0 1 1 0 141165 67170 87.6975 4.43806 2.48605 110.537 42.0474
22 0 2 1 0 1 5 3 2 1 1 1 0 2 1 2 151593 71088 171.349 2.26438 2.26438 118.527 118.527

23 0 2 1 2 1 3 0 3 1 3 0 1 3 2 1 184248 72919 110.327 14.6783 14.6783 178.531 178.531
24 1 2 2 0 2 0 1 1 1 2 1 1 3 5 2 146955 73001 149.447 8.01009 8.01009 109.423 103.757
25 2 1 3 2 1 2 0 2 2 1 3 2 1 2 1 168835 73001 101.002 15.9419 14.8169 179.929 176.675

26 0 1 3 3 0 4 5 0 2 2 2 2 1 0 1 83699 24149 164.218 18.1248 3.92224 91.3291 50.8845
27 4 1 2 2 0 3 1 3 2 2 1 1 2 2 1 197582 69001 190.453 17.2794 16.7585 116.134 112.11
28 2 0 3 0 3 1 5 1 1 1 1 2 2 4 2 175389 73001 362.804 7.36802 7.36802 100.686 100.686

29 1 2 2 3 1 1 2 2 1 5 2 3 3 0 1 138893 64801 104.006 10.9134 10.9134 67.3478 67.3478
30 5 1 2 2 1 1 4 0 2 2 2 2 2 2 2 91353 36431 240.168 12.8161 12.8161 98.8313 98.8313
31 3 3 1 3 2 0 2 4 2 3 2 3 0 1 2 231142 73001 198.813 17.6968 17.2432 191.925 188.42

32 2 3 2 1 0 2 0 3 4 2 0 1 3 6 3 242802 69001 494.005 19.2687 19.2687 132.414 132.414
33 1 3 4 2 2 2 3 0 0 3 4 3 0 5 1 143104 32368 292.784 2.55682 2.55682 52.5791 52.5791
34 2 3 0 2 2 2 4 2 3 4 2 2 3 2 1 163506 61976 206.831 4.54963 4.54963 44.7177 44.7177

35 2 3 2 5 1 4 0 2 2 2 2 3 1 2 4 175841 73001 256.835 12.1906 11.7888 147.256 144.151
36 1 3 2 2 5 2 2 2 2 2 5 0 2 1 5 191981 71170 367.64 2.41016 2.41016 103.105 103.105
37 4 0 4 3 0 3 4 4 4 2 3 2 1 1 2 272946 69001 353.333 20.4029 18.8826 134.923 119.755

38 3 2 2 1 1 6 3 5 3 1 3 2 3 0 3 295435 64801 322.457 18.3857 18.3857 83.8798 83.8798
39 2 4 4 6 4 1 3 1 0 1 5 1 2 3 2 175897 73001 424.955 5.70984 3.90695 83.181 69.25
40 4 3 3 1 5 1 7 3 1 1 3 5 1 1 1 256970 73001 396.25 9.61211 8.90898 109.152 103.718

41 2 2 2 3 2 2 2 2 3 4 4 4 2 6 1 223218 73001 480.186 11.7221 11.7221 138.602 138.602
42 2 4 4 2 2 6 3 3 4 2 1 2 2 0 5 253590 64801 421.653 15.6854 15.6854 86.9218 86.2522
43 3 2 2 4 3 4 2 1 3 2 3 5 2 5 2 192963 73001 569.974 9.59557 9.59557 118.641 118.641

44 2 1 2 3 0 3 4 3 5 2 5 2 4 3 5 240040 69001 587.302 16.5178 16.5178 114.114 114.114
45 3 3 2 2 4 4 2 3 3 2 5 2 4 2 4 250486 73001 438.759 12.1911 12.1911 139.561 139.561
46 2 5 3 1 2 2 3 4 2 8 0 2 5 3 4 289039 73001 443.91 11.9261 11.9261 137.394 137.394

47 1 6 4 1 4 3 6 3 2 2 2 2 4 2 5 281441 73001 704.185 10.2256 10.2256 123.003 123.003
48 2 4 3 3 2 3 4 1 2 4 6 6 2 1 5 163400 73001 363.499 6.88647 6.88647 87.613 87.613
49 3 5 3 5 2 8 3 2 3 1 1 5 3 3 2 238135 73001 536.404 10.6692 9.80828 126.31 119.657

50 6 2 3 1 5 2 4 3 1 1 4 2 5 3 8 280600 73001 607.704 7.68969 7.68969 101.529 101.529

Table B.1: Balanced Load

 49

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BW(N) BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10250 10250 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 12070 12070 0 0 0 0 0
3 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 8139 8139 0 0 0 0 0
4 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 15466 15466 0 0 0 1.90723 1.90723
5 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0 13559 4820 0 0 0 0 0
6 1 0 0 1 0 1 1 0 0 2 0 0 0 0 0 8926 5186 0 0 0 4.6875 4.6875
7 0 0 0 1 1 2 0 0 0 0 0 0 2 0 1 18427 10351 0 0 0 3.26953 3.26953
8 1 0 1 0 0 0 2 0 0 0 0 2 0 1 1 35384 27827 0 0 0 44.3547 44.3547
9 1 3 1 2 1 0 0 0 0 1 0 0 0 0 0 22876 20211 0 0 0 4.6875 1.5625

10 3 2 1 1 0 0 0 1 0 1 0 0 1 0 0 56263 52920 0 0 0 2.93203 2.93203
11 1 1 2 0 1 1 2 0 0 1 1 1 0 0 0 45400 22118 1.27841 0 0 20.0334 20.0334
12 0 0 1 1 0 0 1 3 0 0 3 1 0 1 1 151463 67734 1.5625 2.34375 2.34375 123.349 123.349
13 1 1 1 2 2 1 0 1 0 0 0 3 0 0 1 81663 64661 9.14255 6.3122 6.3122 78.7182 78.7182
14 0 1 0 1 1 1 0 2 1 1 2 1 0 0 3 106678 53694 3.95089 6.83036 6.83036 60.2584 59.0996
15 2 2 0 2 1 4 1 1 0 0 0 0 0 0 2 75901 51728 29.2588 0 0 14.4706 14.4706
16 2 0 1 6 1 1 2 1 0 0 0 1 1 0 0 76057 62611 10.3206 0 0 47.8207 32.4347
17 1 3 0 1 3 4 0 1 0 0 2 0 1 1 0 94408 60098 23.0928 1.00023 1.00023 12.2546 10.9083
18 1 1 3 0 1 1 3 1 2 0 1 2 1 1 0 121103 72954 85.3466 15.2389 14.1973 173.846 161.772
19 1 5 1 2 1 3 3 0 0 1 2 0 0 0 0 47341 20211 24.9491 0 0 2.22039 2.22039
20 1 1 6 1 3 0 2 0 0 1 0 2 1 2 0 125015 32368 184.77 4.92188 1.40625 78.4736 51.3082
21 1 3 2 4 1 2 1 0 1 0 2 1 0 3 0 82944 36384 82.8372 24.7846 5.24684 162.096 86.6645
22 0 4 2 5 1 2 1 2 0 0 1 1 1 2 0 150022 72872 104.923 9.69688 7.56619 142.682 113.19
23 4 3 1 1 0 3 1 1 0 3 3 0 0 3 0 104659 67094 43.1365 0.61141 0.61141 26.3611 26.3611
24 1 5 4 1 1 2 1 1 0 0 1 1 1 3 2 146898 72954 203.434 5.37223 5.37223 92.1154 92.1154
25 2 2 4 1 4 2 0 5 1 0 1 2 0 0 1 301530 64754 340.868 21.5691 21.5691 109.663 112.57
26 5 3 2 0 1 1 2 3 0 3 2 2 1 0 1 176468 64801 70.9195 10.55 10.55 53.1125 53.1125
27 3 3 1 1 4 1 5 2 0 0 1 4 0 1 1 171441 72954 250.166 6.77286 6.77286 83.6318 83.6318
28 2 2 3 1 7 1 5 1 1 2 0 1 1 0 1 164104 64801 369.149 7.87026 7.87026 81.4939 53.694
29 5 1 5 3 5 2 2 0 0 1 1 1 1 1 1 131484 32368 202.608 3.87931 0.96983 62.6359 37.7296
30 2 2 4 3 4 5 1 1 2 1 2 0 2 0 1 155683 62970 415.895 3.18633 1.66055 45.3517 37.2654
31 4 4 0 2 2 6 1 1 2 1 2 2 1 2 1 125815 61976 196.159 3.53831 3.53831 35.652 35.652
32 3 6 3 1 1 3 4 2 2 2 1 2 1 1 0 179176 73001 293.011 12.0151 4.32214 131.678 63.0524
33 3 3 5 3 1 3 3 4 2 1 1 1 0 0 3 271353 64801 280.854 18.3288 15.3459 104.75 101.037
34 2 3 2 3 5 3 6 2 1 0 3 1 2 0 1 190352 64754 270.803 8.61914 8.61914 81.0271 57.9952
35 1 2 5 3 2 2 7 1 2 3 1 3 2 1 0 173822 73001 314.042 10.2479 7.43538 120.134 98.4018
36 1 2 6 3 2 3 5 3 3 0 1 2 2 1 2 268973 72954 472.466 16.0202 14.4577 192.018 173.908
37 1 0 4 4 4 3 3 2 3 2 1 1 3 2 4 226188 73001 459.314 14.1295 13.3694 168.353 160.199
38 2 3 3 6 0 2 5 1 1 1 3 3 2 3 3 152849 69001 287.708 7.64947 6.53927 82.5104 73.9319
39 2 2 2 6 6 3 5 1 3 1 1 1 1 3 2 194859 73001 521.165 11.3009 10.2192 138.184 125.859
40 2 7 4 4 4 2 3 4 0 2 2 1 2 3 0 299322 73001 537.778 11.0184 9.26055 128.869 115.286
41 6 4 3 5 3 3 5 1 1 2 1 1 4 0 2 148136 64801 364.938 6.74676 6.74676 70.6014 58.9923
42 1 5 4 2 5 5 5 2 2 3 2 2 2 1 1 234232 73001 443.209 9.82403 8.48475 113.705 103.357
43 8 1 7 5 1 3 6 0 2 4 2 1 2 1 0 149964 36431 344.655 23.2271 2.56241 141.492 48.9261
44 3 2 5 4 5 4 3 1 5 2 2 2 2 3 1 226074 73001 517.418 14.0662 12.4682 161.315 148.967
45 4 9 4 3 1 4 4 0 2 6 1 2 3 0 2 111211 28231 275.961 15.5772 5.83455 76.4925 48.8853
46 4 6 4 6 3 3 2 3 2 1 2 1 5 2 2 254506 73001 419.285 11.9765 10.1422 139.527 125.354
47 3 5 8 5 6 5 2 2 4 1 1 2 1 1 1 286424 73001 824.916 14.3652 11.074 164.057 134.436
48 3 3 5 4 4 2 7 2 3 4 2 2 1 4 2 270224 73001 547.081 11.1845 10.3056 134.624 125.196
49 2 4 0 6 5 3 10 1 0 6 2 5 1 2 2 169822 61976 556.671 1.60714 1.60714 20.8651 20.8651
50 9 5 5 3 3 6 4 1 2 2 1 3 1 3 2 220185 73001 667.343 7.17352 6.32977 91.2211 84.7014

Table B.2: Skewed Load1

 50

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BW(N) BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40633 40633 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 8140 8140 0 0 0 0 0
3 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 10132 10132 0 0 0 0 0
4 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 17361 17361 0 0 0 3.51562 3.51562
5 1 0 0 0 0 1 0 0 0 2 0 1 0 0 0 7009 6868 0 0 0 2.8125 2.8125
6 0 0 2 0 0 0 0 0 0 1 2 0 1 0 0 22904 11466 0 0 0 0 0
7 0 0 0 0 1 1 0 0 0 2 0 1 1 1 0 24514 20297 0 0 0 2.00893 2.00893
8 0 0 0 0 1 1 0 0 0 2 1 1 1 0 1 16408 12097 0 0 0 3.51562 3.51562
9 2 1 0 0 0 0 1 0 0 0 3 0 0 2 0 26760 14764 0 0 0 2.08333 2.08333

10 1 1 1 1 1 0 0 0 0 1 1 0 3 0 0 21497 20287 0 0 0 3.57539 2.93203
11 0 0 1 1 2 1 0 0 1 2 0 1 0 0 2 41826 27411 1.27841 2.55682 2.55682 90.5658 58.4462
12 1 0 0 0 0 1 1 0 1 2 2 1 3 0 0 15088 10931 1.27148 0 0 9.18197 9.18197
13 2 2 0 1 1 1 0 1 1 1 2 0 0 1 0 70617 60069 3.53365 2.16346 2.16346 16.5186 16.5186
14 1 1 0 0 0 0 0 2 0 0 6 0 1 2 1 106014 51873 2.55385 0 0 2.97405 2.97405
15 1 3 0 0 1 0 1 2 1 2 1 0 3 0 0 100569 49670 3.71328 0 0 3.82969 3.82969
16 1 2 1 3 1 1 0 1 1 0 1 2 0 1 1 87127 72954 15.4426 12.6011 11.4292 160.281 146.698
17 2 2 1 4 4 1 1 0 1 0 0 1 0 0 0 60838 26041 20.6159 0 0 85.0561 35.3537
18 2 2 2 3 1 1 1 1 0 0 1 2 2 0 0 86587 62704 26.2717 0.52083 0.52083 34.9521 26.8762
19 1 2 3 2 2 0 0 1 1 3 1 2 1 0 0 101600 62751 33.0287 1.48026 1.48026 43.1505 32.4142
20 3 2 1 1 0 0 1 0 0 5 1 2 2 1 1 36077 27968 15.7484 1.40625 1.40625 27.981 27.981
21 4 0 2 1 0 0 2 1 2 2 2 2 2 0 1 88452 60401 42.0879 13.7316 13.7316 67.0252 73.501
22 1 1 0 4 0 0 1 1 1 2 1 4 2 0 4 67112 49376 67.8048 2.68466 2.68466 30.2727 27.0767
23 2 1 1 2 1 1 3 0 3 3 1 2 1 2 0 73976 36431 71.5207 11.9261 8.96977 91.0916 81.1057
24 1 2 1 1 1 1 3 0 3 1 3 4 2 0 1 59015 28231 102.4 9.7679 7.42415 68.8319 59.7767
25 2 2 2 3 1 1 1 1 1 4 0 1 3 2 1 111838 73001 92.3398 9.37719 8.25219 114.804 106.111
26 2 1 3 1 0 3 0 1 1 3 2 3 4 1 1 111987 69001 50.8438 8.47566 7.39393 69.1273 60.7688
27 3 2 0 4 0 0 1 0 3 4 3 3 2 0 2 31446 12806 34.6393 3.02083 2.39583 30.0637 20.973
28 5 1 1 3 2 1 1 1 0 0 3 3 5 1 1 99683 72954 68.2684 4.26995 3.60031 63.3526 55.5911
29 3 2 0 2 4 1 1 1 0 2 4 2 2 3 2 124095 61976 173.331 3.20043 3.20043 27.8043 27.8043
30 3 1 0 1 0 4 0 3 3 1 5 3 3 2 1 182624 57976 118.372 5.90625 5.90625 54.9749 54.9749
31 4 3 1 2 0 2 0 2 2 1 3 6 4 0 1 128811 60801 90.7042 11.9491 11.9491 52.4707 59.0509
32 2 1 0 2 2 0 2 2 1 0 6 4 4 0 6 132155 53729 137.466 3.28125 3.28125 35.5788 34.4069
33 3 2 0 3 1 3 2 3 2 1 4 4 4 0 1 172339 53776 115.691 5.96591 3.83523 50.0384 41.0143
34 5 3 4 1 1 2 0 1 1 3 4 5 3 1 0 133051 73001 129.242 6.89499 5.24058 79.5874 66.8037
35 4 2 0 1 5 2 4 2 2 2 2 4 0 1 4 183325 61976 481.18 4.58036 4.58036 43.805 43.805
36 7 5 2 0 0 1 2 1 2 5 4 3 2 0 2 102948 60801 131.814 7.61947 7.61947 36.4702 36.4702
37 2 1 2 2 1 2 1 3 2 4 3 3 5 1 5 202402 73001 206.516 12.6093 12.6093 145.454 150.967
38 6 3 1 5 2 3 0 1 0 2 4 4 4 0 3 102887 64801 132.32 4.37983 4.37983 47.7859 47.7859
39 3 3 1 3 1 3 0 2 1 0 5 3 7 7 0 200406 72954 365.232 7.27374 7.27374 97.5107 97.5107
40 1 3 1 4 5 1 2 1 2 3 7 5 5 0 0 126141 62751 162.698 1.05469 1.05469 27.3738 27.3738
41 3 4 1 5 1 4 3 2 2 5 2 2 2 3 2 181691 73001 259.242 10.0636 9.72066 120.082 117.432
42 2 4 0 4 4 1 2 4 4 3 5 6 2 0 1 242017 53776 365.611 6.62946 4.62054 55.897 47.3886
43 3 5 0 3 4 1 3 2 1 3 3 3 8 2 2 170594 61976 171.368 2.87791 2.87791 29.704 29.704
44 4 5 3 4 1 1 1 1 2 6 3 5 3 2 3 143524 73001 222.891 7.83212 6.55371 96.1298 92.1148
45 1 2 0 2 1 0 0 3 8 6 5 8 4 1 4 200479 61976 231.014 7.0625 3.9375 63.4256 31.172
46 2 6 2 3 1 3 2 3 1 2 4 6 5 2 4 223591 73001 259.931 8.66406 8.66406 104.056 104.056
47 2 6 1 3 4 4 2 2 1 4 8 6 0 2 2 195882 73001 314.737 6.43459 6.43459 78.1687 78.1687
48 4 3 1 3 6 1 2 3 5 3 4 7 2 1 3 249539 73001 589.072 14.8483 14.8483 161.045 161.045
49 3 4 0 2 1 3 3 3 2 5 6 2 3 3 9 221201 61976 342.642 5.7398 4.30485 45.6414 39.564
50 4 2 3 2 4 2 2 2 4 5 8 5 3 2 2 219497 73001 413.133 11.2533 10.972 125.574 123.401

Table B.3: Skewed Load2

 51

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BW(N) BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 738 738 0 0 0 0 0
2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 15313 15313 0 0 0 0 0
3 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 40998 40998 0 0 0 0 0
4 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 29640 29640 0 0 0 3.51562 3.51562
5 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 62840 60790 0 0 0 38.1441 38.1441
6 1 0 0 1 0 2 0 0 1 0 1 0 0 0 0 13202 9202 0 0 0 6.875 6.875
7 1 0 0 0 2 1 0 1 0 0 1 0 0 1 0 71797 59797 0 0 0 13.0619 13.0619
8 1 0 0 0 2 2 0 0 0 0 0 0 1 2 0 45396 19146 0 0 0 1.90723 1.90723
9 0 0 1 0 2 1 2 0 0 0 1 1 0 1 0 50700 31500 0 0 0 22.2328 22.2328

10 0 0 0 0 1 2 0 2 1 0 0 0 0 3 1 134129 58883 0 0 0 0 0
11 1 2 0 0 0 1 1 0 2 0 0 1 1 1 1 32307 21041 0.69354 0 0 49.5962 49.5962
12 0 2 1 1 1 0 0 0 1 1 1 2 0 1 1 41364 36349 2.65625 14.6526 8.49818 109.179 80.3004
13 1 2 3 0 2 1 0 1 2 0 0 0 0 0 1 106857 62753 23.9864 0 0 66.2443 66.2443
14 0 0 0 0 1 1 2 1 1 0 3 2 0 2 1 90542 60884 16.3015 0 0 29.2547 29.2547
15 0 1 0 2 0 6 0 1 1 1 0 2 0 1 0 84090 57894 42.0816 3.9375 3.9375 43.1029 38.2279
16 2 1 0 1 1 2 1 1 3 2 1 0 0 1 0 85652 60069 19.5021 3.51562 0.87891 25.4365 14.2693
17 0 2 1 1 4 1 2 0 1 2 0 1 0 1 1 74703 36349 70.8566 10.343 10.343 103.133 85.7561
18 0 1 0 1 1 2 0 2 3 2 1 0 1 4 0 151871 60063 77.6451 5.60156 5.17773 30.4015 29.9327
19 0 0 1 3 6 0 1 1 3 0 1 0 2 0 1 118644 62103 80.1277 1.60609 1.60609 47.9422 47.1392
20 1 1 1 1 3 1 1 3 0 2 0 1 1 4 0 209798 73001 145.78 13.715 13.715 161.109 161.109
21 1 1 1 0 0 5 0 4 0 3 0 0 3 2 1 218542 67170 80.6384 3.04185 2.12277 85.3765 38.8664
22 1 0 3 1 2 2 4 3 1 1 1 1 1 1 0 211626 73001 205.018 17.4766 6.28675 191.531 91.7126
23 2 0 2 1 0 2 5 1 4 1 0 1 0 2 2 133900 69001 170.283 19.6731 19.6731 133.441 128.55
24 3 1 3 0 1 2 3 1 1 0 1 1 1 3 3 147424 72954 224.881 8.01009 8.01009 114.146 114.146
25 1 1 5 0 0 1 3 1 2 0 2 2 3 3 1 158399 68954 270.368 11.722 11.347 101.898 97.552
26 0 2 1 0 2 1 3 2 4 0 2 1 0 6 2 208741 72872 492.598 17.4036 5.00397 219.002 97.1892
27 1 1 2 2 1 2 2 3 3 2 0 1 2 5 0 235389 73001 346.019 20.3186 20.3186 226.958 226.958
28 0 1 1 1 4 1 5 4 2 1 2 2 0 3 1 273815 72919 448.52 16.8301 16.8301 203.638 197.611
29 1 2 2 1 1 2 1 2 2 2 0 3 1 5 4 199544 73001 264.827 12.7732 12.7732 159.42 157.076
30 4 1 2 2 1 3 2 3 2 2 2 2 1 1 2 202906 73001 191.905 15.5514 15.0827 172.125 168.503
31 2 2 2 0 4 0 1 4 3 3 2 1 2 4 1 281660 73001 378.981 19.4366 19.4366 211.628 211.628
32 0 0 5 0 5 3 3 2 3 3 2 2 0 3 1 249730 72181 546.219 2.19727 2.19727 156.558 151.037
33 1 1 2 5 2 6 3 4 3 0 1 0 1 2 2 275477 71123 568.844 3.60689 2.91335 192.401 185.793
34 2 2 4 3 5 3 1 4 3 1 1 1 0 3 1 314057 73001 493.475 19.7896 18.5488 220.243 202.106
35 0 1 1 3 2 8 2 2 1 2 1 4 2 4 2 206449 72919 387.543 7.93741 7.93741 109.055 105.841
36 2 0 1 2 3 3 5 4 3 3 3 2 1 1 3 263057 73001 350.054 17.1277 17.1277 187.598 187.598
37 1 3 2 0 5 6 4 4 1 0 2 1 2 5 1 326079 72954 728.272 11.5958 11.5958 136.792 132.991
38 2 3 2 2 1 3 5 4 3 2 2 3 2 2 2 270472 73001 553.531 16.5963 16.5963 182.003 182.003
39 1 2 2 2 3 2 6 6 5 1 2 1 2 3 1 378151 73001 825.464 24.587 24.587 261.551 261.551
40 4 2 7 2 2 6 2 1 5 2 2 0 1 3 1 225454 71170 605.587 3.82588 2.87227 142.921 134.421
41 1 4 4 1 1 5 3 5 7 1 1 0 3 2 3 346522 71170 745.664 5.04621 5.04621 249.776 249.776
42 4 4 3 0 4 2 5 2 1 2 1 1 3 6 4 255527 73001 592.537 6.86579 6.86579 94.991 94.991
43 4 2 1 4 6 3 2 4 5 1 2 1 0 6 2 334794 73001 656.969 18.8102 18.8102 211.426 203.685
44 0 1 2 1 3 3 4 5 2 4 1 3 4 6 5 363589 72919 1007.43 12.7082 12.7082 164.173 164.173
45 3 3 5 2 4 3 6 4 4 3 0 4 1 2 1 336440 73001 751.672 16.7757 15.5257 183.923 174.264
46 0 2 3 0 7 8 2 5 2 2 1 5 2 4 3 398933 72919 918.115 12.1556 12.1556 152.753 152.753
47 1 3 3 3 6 6 6 4 2 0 0 4 1 3 5 350425 72861 911.861 10.4756 10.4756 140.442 140.442
48 3 8 2 2 3 2 2 5 2 4 0 4 4 3 4 329259 73001 635.476 13.1388 13.1388 148.628 148.628
49 5 3 7 1 2 4 3 4 4 3 0 1 3 4 5 360687 73001 994.711 15.6932 15.6932 181.701 181.701
50 1 2 8 4 1 5 2 11 1 3 3 1 3 4 1 625315 73001 1499.62 23.0691 21.1003 251.604 247.27

Table B.4: Skewed Load3

 52

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BW(N) BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 820 820 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2645 2645 0 0 0 0 0
3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 17363 17363 0 0 0 0 0
4 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 12301 8301 0 0 0 3.51562 3.51562
5 0 0 1 0 2 0 1 1 0 0 0 0 0 0 0 71483 59883 0 0 0 38.1441 38.1441
6 0 0 1 2 0 0 1 1 0 0 0 0 1 0 0 56009 55559 0 0 0 6.875 6.875
7 1 1 2 1 0 1 0 0 0 0 1 0 0 0 0 28377 16164 0 0 0 13.0619 13.0619
8 0 0 3 0 2 0 0 0 0 1 1 0 1 0 0 50060 19466 0 0 0 1.90723 1.90723
9 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 21711 17296 0 1.04167 1.04167 22.2328 22.2328

10 0 0 2 0 0 1 0 0 0 2 2 0 3 0 0 27197 15466 0 0 0 0 0
11 2 1 1 0 0 1 1 0 1 0 0 1 1 0 2 31376 24091 0.69354 7.45987 7.45987 49.5962 49.5962
12 3 1 0 2 1 2 2 0 0 0 0 0 0 1 0 37100 19295 3.75 0 0 109.179 80.3004
13 2 0 2 1 2 1 1 0 1 1 0 1 1 0 0 54153 26181 3.98618 3.24519 1.08173 66.2443 66.2443
14 1 0 2 1 1 1 1 1 2 1 0 1 0 0 2 94053 64801 23.1158 20.5974 20.5974 29.2547 29.2547
15 0 2 3 0 3 1 1 0 2 0 1 0 0 2 0 95547 34395 62.1859 1.875 1.25 43.1029 38.2279
16 3 3 2 0 0 0 1 0 3 0 1 0 2 0 1 45263 21953 15.387 2.60229 1.64868 25.4365 14.2693
17 5 1 3 2 0 2 0 1 0 0 1 1 1 0 0 89751 58704 18.9691 0.55147 0.55147 103.133 85.7561
18 0 0 4 1 2 3 2 0 1 1 2 0 0 2 0 105316 33703 156.329 0 0 30.4015 29.9327
19 4 0 2 2 1 2 0 0 1 2 1 1 1 1 1 60954 36431 42.238 18.7558 9.37788 47.9422 47.1392
20 0 1 4 1 3 1 4 1 0 0 1 0 2 0 2 133343 62841 94.3057 2.37598 2.37598 161.109 161.109
21 3 0 5 0 1 1 0 1 0 3 2 1 2 1 1 126314 73001 34.1738 7.25577 5.24684 85.3765 38.8664
22 2 2 4 1 1 3 1 3 1 0 0 0 2 2 0 218558 71030 219.153 1.38707 1.38707 191.531 91.7126
23 2 2 4 1 0 4 4 0 0 0 1 1 0 3 1 113544 28321 171.233 2.03804 1.63043 133.441 128.55
24 3 0 2 1 0 2 1 2 2 3 1 2 1 2 2 155186 69001 110.68 15.4342 15.4342 114.146 114.146
25 1 2 3 3 1 3 2 1 0 2 1 1 1 2 2 131514 73001 131.061 6.65734 5.53234 101.898 97.552
26 2 1 8 1 4 1 0 3 1 1 1 0 1 1 1 267178 71170 495.47 4.80424 2.7503 219.002 97.1892
27 0 1 2 1 3 6 3 0 0 1 1 2 2 1 4 104914 32286 321.307 1.5625 1.5625 226.958 226.958
28 1 2 3 4 2 2 2 3 0 1 1 2 3 1 1 206624 73001 190.195 12.3076 9.79646 203.638 197.611
29 5 0 7 4 4 1 2 1 1 0 0 1 1 1 1 185932 72861 412.813 5.65921 5.65921 159.42 157.076
30 5 1 6 2 2 2 3 1 0 0 1 0 1 3 3 185294 71123 450.062 2.34687 1.83828 172.125 168.503
31 3 0 3 3 5 1 4 1 1 0 2 1 1 3 3 179054 72954 298.509 7.10862 7.10862 211.628 211.628
32 3 1 5 3 3 3 2 2 0 2 3 1 2 1 1 199514 73001 543.657 8.64429 6.00757 156.558 151.037
33 2 0 2 3 5 7 6 0 1 1 1 2 1 1 1 134904 36431 355.656 13.2854 5.39938 192.401 185.793
34 5 2 5 3 1 4 1 0 1 1 6 1 2 1 1 109231 36431 180.615 20.1351 5.24058 220.243 202.106
35 2 2 4 3 3 0 3 2 1 3 6 2 4 0 0 174026 62751 213.539 1.20536 1.20536 109.055 105.841
36 3 1 4 6 2 1 4 1 4 2 2 2 1 3 0 175946 73001 328.392 15.3033 12.5689 187.598 187.598
37 3 2 6 4 8 2 3 0 1 1 1 1 2 2 1 184046 36431 571.773 23.3182 3.358 136.792 132.991
38 3 2 4 4 4 1 3 3 4 2 1 2 2 3 0 269883 73001 497.461 18.0766 16.2263 182.003 182.003
39 4 1 7 5 1 6 5 2 3 1 1 0 1 1 1 239962 71170 500.202 4.15024 2.19411 261.551 261.551
40 2 2 6 2 5 5 2 1 4 3 0 3 1 2 2 225974 73001 610.446 13.0698 11.6636 142.921 134.421
41 2 3 6 3 4 4 3 1 4 0 2 0 3 3 3 225034 71123 562.426 2.81793 2.25972 249.776 249.776
42 8 3 5 1 2 5 4 1 2 1 4 0 2 2 2 189683 71170 394.274 2.09431 1.73103 94.991 94.991
43 4 4 10 4 3 5 4 1 2 2 1 0 1 1 1 239547 71170 603.478 3.46493 1.33594 211.426 203.685
44 5 2 9 5 6 6 3 1 1 1 2 0 2 0 1 237982 62970 704.599 3.06658 0.81259 164.173 164.173
45 5 2 9 2 7 4 6 1 0 0 1 2 1 2 3 272147 72954 805.914 4.11519 2.86519 183.923 174.264
46 7 1 6 6 2 2 3 3 3 2 2 2 3 2 2 273334 73001 574.955 14.3718 11.9261 152.753 152.753
47 5 4 8 5 4 4 5 0 0 2 2 3 1 2 2 195048 32368 541.091 3.88963 1.19681 140.442 140.442
48 3 4 6 5 2 5 6 1 1 2 4 4 3 0 2 188951 64801 489.296 6.64176 4.00505 148.628 148.628
49 5 1 5 6 5 7 7 2 1 0 2 2 2 2 2 269725 72954 659.573 7.12859 5.7893 181.701 181.701
50 4 7 8 1 4 2 6 1 1 1 6 4 1 0 4 221581 64801 721.118 5.81359 5.81359 251.604 247.27

Table B.5: Skewed Load4

 53

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BW(N) BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 140 140 0 0 0 0 0
2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 19250 19250 0 0 0 0 0
3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 54883 54883 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 1 0 0 0 2 0 61273 51023 0 0 0 0 0
5 1 0 1 0 2 0 0 0 0 1 0 0 0 0 0 28211 20211 0 0 0 2.8125 2.8125
6 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 65931 61931 0 0 0 34.1305 34.1305
7 1 0 0 0 1 1 0 3 0 0 0 0 0 1 0 144970 59703 0 0 0 35.168 35.168
8 1 0 1 0 1 2 0 0 0 0 0 1 0 2 0 50477 32227 0 0 0 44.3547 44.3547
9 1 0 1 0 2 1 0 1 0 2 0 1 0 0 0 74892 62751 0 1.5625 1.5625 34.9963 34.9963

10 1 0 2 0 1 0 0 2 0 1 0 0 0 3 0 143477 71094 0 2.8125 2.8125 180.63 187.43
11 1 0 1 0 1 2 0 1 0 0 0 3 0 2 0 94925 72861 7.45987 7.45987 7.45987 104.985 104.985
12 1 0 1 0 1 2 0 2 0 1 0 4 0 0 0 117106 62751 8.01009 2.34375 2.34375 42.1406 42.1406
13 1 0 3 0 2 1 0 1 0 1 0 2 0 2 0 119658 73001 31.505 9.55739 8.47566 122.502 114.144
14 0 0 3 0 1 1 0 4 0 3 0 1 0 1 0 220861 72181 17.6407 4.01786 1.00446 270.445 114.648
15 4 0 5 0 1 1 0 2 0 0 0 1 0 1 0 164956 72861 56.4793 10.9411 10.9411 175.711 141.264
16 4 0 1 0 2 0 0 1 0 4 0 1 0 3 0 104385 73001 19.7805 6.00757 6.00757 79.9427 79.9427
17 2 0 1 0 3 2 0 2 0 3 0 1 0 3 0 159236 73001 70.4132 10.4812 10.4812 125.608 121.472
18 1 0 1 0 1 4 0 2 0 1 0 3 0 5 0 174449 73001 167.951 9.89887 9.89887 127.747 127.747
19 2 0 3 0 1 3 0 3 0 4 0 2 0 1 0 191917 73001 75.0229 15.177 13.6968 165.929 154.491
20 2 0 2 0 2 3 0 6 0 5 0 0 0 0 0 296643 60844 285.437 0 0 26.0238 26.0238
21 2 0 3 0 1 4 0 2 0 3 0 1 0 5 0 194236 73001 165.16 9.82403 9.82403 127.661 125.653
22 3 0 4 0 5 3 0 4 0 0 0 2 0 1 0 276059 72861 342.879 14.9197 3.72994 183.861 85.9598
23 5 0 4 0 2 2 0 2 0 2 0 5 0 1 0 174436 73001 119.025 9.58118 7.74694 109.97 95.7969
24 6 0 1 0 2 3 0 5 0 2 0 2 0 3 0 282185 73001 210.695 17.6815 6.3488 190.73 86.8397
25 4 0 1 0 0 3 0 4 0 3 0 7 0 3 0 233587 69001 155.908 13.6919 5.53234 85.4133 58.6123
26 2 0 4 0 4 3 0 2 0 5 0 4 0 2 0 200739 73001 234.864 8.47566 7.39393 102.06 93.7014
27 1 0 5 0 4 5 0 3 0 5 0 1 0 3 0 264330 73001 471.854 11.7218 10.6801 139.575 127.359
28 2 0 4 0 5 2 0 4 0 4 0 4 0 3 0 296115 73001 470.161 13.7316 13.2294 155.848 151.967
29 4 0 5 0 3 3 0 2 0 4 0 3 0 5 0 234332 73001 723.025 8.08378 8.08378 106.083 106.083
30 2 0 3 0 6 4 0 3 0 3 0 5 0 4 0 272248 73001 663.888 9.61211 9.61211 116.107 116.107
31 4 0 4 0 2 3 0 5 0 5 0 6 0 2 0 312094 73001 412.296 15.0498 14.1425 163.472 156.461
32 8 0 5 0 4 4 0 1 0 5 0 3 0 2 0 178372 73001 267.632 4.7616 3.44324 63.8838 53.6968
33 1 0 6 0 2 9 0 5 0 3 0 2 0 5 0 378973 73001 719.829 14.9899 14.5638 175.14 168.012
34 4 0 3 0 7 3 0 4 0 2 0 7 0 4 0 322196 73001 531.547 10.8948 10.8948 126.39 126.39
35 5 0 5 0 2 4 0 3 0 3 0 11 0 2 0 256153 73001 481.744 9.04252 7.83717 104.122 94.8085
36 5 0 2 0 7 5 0 4 0 8 0 3 0 2 0 292482 73001 569.799 9.89887 9.89887 110.293 110.293
37 4 0 2 0 4 6 0 8 0 2 0 5 0 6 0 478165 73001 1064.54 18.5025 7.47614 203.43 102.348
38 4 0 6 0 5 4 0 2 0 7 0 6 0 4 0 261476 73001 553.676 6.53927 5.79914 84.9275 79.2084
39 10 0 6 0 6 3 0 4 0 2 0 4 0 4 0 347148 73001 940.039 10.5797 9.85857 124.497 118.924
40 3 0 11 0 2 1 0 5 0 3 0 8 0 7 0 436807 73001 1203.19 14.1245 11.312 169.621 156.371
41 4 0 4 0 1 7 0 2 0 7 0 8 0 8 0 263790 73001 723.64 5.37481 5.37481 77.0726 77.0726
42 9 0 3 0 6 5 0 7 0 4 0 4 0 4 0 442759 73001 926.225 14.6809 14.6809 160.798 160.798
43 8 0 4 0 8 5 0 3 0 7 0 3 0 5 0 315420 73001 646.362 7.03316 7.03316 88.3296 85.3863
44 6 0 9 0 6 5 0 5 0 3 0 3 0 7 0 455233 73001 1186.65 12.2013 11.5621 148.088 143.149
45 9 0 7 0 3 6 0 4 0 6 0 3 0 7 0 374983 73001 921.185 9.4816 9.4816 117.606 117.606
46 6 0 7 0 10 2 0 4 0 5 0 6 0 6 0 407852 73001 1227.57 9.27548 8.96977 114.182 111.82
47 4 0 8 0 7 5 0 3 0 10 0 5 0 5 0 353374 73001 909.192 7.6314 6.73379 96.7445 89.8087
48 6 0 4 0 8 7 0 5 0 5 0 8 0 5 0 412300 73001 1152.54 9.71965 9.71965 113.634 113.634
49 2 0 10 0 7 7 0 7 0 4 0 6 0 6 0 556079 73001 1891.64 14.5926 13.4446 169.283 160.413
50 8 0 8 0 6 3 0 6 0 6 0 4 0 9 0 501086 73001 1143.27 12.097 12.097 145.505 145.505

Table B.6: Distinct Query Load

 54

Appendix C Graphs

This appendix gives the graphs plotted for different loads. Section C.1 shows the graphs for a

Balanced Load and Sections C.2 to C.5 give graphs for Skewed Loads 1-5. Section C.6 gives the

graphs for a Distinct Query Load. There are three graphs plotted for each type of load: bandwidth

usage, average wait time with 5 channels, and average wait time with 3 channels. Discussion of

these graphs appears in Chapter 3.

C.1 Balanced Load

Balanced Load

0

50000

100000

150000

200000

250000

300000

350000

1 6 11 16 21 26 31 36 41 46

No. of User Requests (N)

B
W

 U
sa

g
e

(b
yt

es
)

PR

MQPR

Figure C.1: Bandwidth Usage for Balanced Load

 55

Wait Time (5 Channels)

0

100

200

300
400

500

600

700

800

1 6 11 16 21 26 31 36 41 46

No. of User Requests (N)

A
ve

ra
g

e
W

ai
t

T
im

e
(s

ec
s)

PR

MQPR1

MQPR2

Figure C.2: Average Wait Time with 5 Channels for Balanced Load

Wait Time (3 Channels)

0

100

200

300
400

500

600

700

800

1 6 11 16 21 26 31 36 41 46

No. of User Requests (N)

A
ve

ra
g

e
W

ai
t

T
im

e
(s

ec
s)

PR

MQPR1

MQPR2

Figure C.3: Average Wait Time with 3 Channels for Balanced Load

 56

C.2 Skewed Load1

Skewed Load 1

0

50000

100000

150000

200000

250000

300000

350000

1 5 9 13 17 21 25 29 33 37 41 45 49

No. of User Requests (N)

B
W

 U
sa

g
e

(b
yt

es
)

PR

MQPR

Figure C.4: Bandwidth Usage for Skewed Load1

Wait Time (5 Channels)

0
100
200
300
400
500
600
700
800
900

1 5 9 13 17 21 25 29 33 37 41 45 49

No. of User Requests (N)

A
ve

ra
g

e
W

ai
t

T
im

e
(s

ec
s)

PR

MQPR1

MQPR2

Figure C.5: Average Wait Time with 5 Channels for Skewed Load1

 57

Wait Time (3 channels)

0

100

200

300

400

500

600

700

800

900

1 5 9 13 17 21 25 29 33 37 41 45 49

No. of User Requests (N)

A
ve

ra
g

e
W

ai
t

T
im

e
(s

ec
s)

PR

MQPR1

MQPR2

Figure C.6: Average Wait Time with 3 Channels for Skewed Load1

	date: 26th July
	year: 01
	candidatename: Rajeswari Malladi
	degree: Master of Science
	program: Computer Science
	title1: Applying Multiple Query Optimization in Mobile Databases
	title2:
	title3:
	title4:
	cmember1: Dr. Karen Davis
	cmember2: Dr. Dharma Agrawal
	cmember3: Dr. Carla Purdy
	cmember4:
	cmember5:

