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Abstract
Mobile computing is a fast growing research and commercial area. An important application of
mobile networks is data dissemination over limited bandwidth channels. There are different
modes of data dissemination: push-based, pull-based, or a combination of both. In push-based,
the data is broadcast in the form of broadcast disks. In pull-based, a mobile unit sends an uplink
guery to a central server, the server processes the data and sends the answer on a downlink
channel. If the number of uplink queries is large, a lot of channel bandwidth is expended in
sending the answers on the downlink channels. In this study, we apply multiquery optimization to
batches of pull requests in mobile databases. Materialized views are created that can be used to
answer several queries at once. The materialized views are then broadcast on a push-pull channel
dedicated for this purpose (answers to multiple pull queries). Each mobile unit receives a short
message from the server that contains information about when and for how long to tune to the
channel to retrieve the requested information. We compare multiple query processing for pull
requests (MQPR) with a basic pull request method (PR) in which each query is handled
separately. Appropriate algorithms and formulae are given to calculate the bandwidth usage and
the wait time for the mobiles sending the requests. A performance study is conducted by
simulating different query loads over atestbed schema. The studies indicate a significant savings
in the channel bandwidth usage and also a significant reduction in the wait time in MQPR

compared to PR.
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Chapter 1 Mobile Databases

Wirelesstedindogy is a fast growing reseach and commercial area Wirelessdevices such as
cdlular phores, personal digital asdstants (PDAS) or laptop computers have become popuar
becaise they are mnvenient and econamicd. Currently there ae aound 200 milli on users of
some form of wirelessnetworks; it is anticipated that there will be aound 1 lili on subscribersin
the next five yeas [UC 1999. Mobile device users neal a way to communicate with other
(probably larger and more powerful) systems in order to use remote data or services. However,
there is no real to establish wired communication links. Often, a wireless network can be
instaled in paces where it is not posgble to install a wireline. Users of mobile devices have
immediate accesto services regardless of their location. Applicaion areas include dedronic
mail, field audit, pulic safety, stock trading, airline adivities, weaher information, bl paying,
warehouwses, hedthcare and the transportation industry [MA 200Q. Most of these goplicaions
neal accessto databases, digital libraries, online services, and locaion-dependent information,

which is provided by mobil e databases.

11 M obile Databases
The main aim of mobile databases is to provide information to a mobile user. The term ‘mobile
database’ does not necessarily mean that the database is mobile. Sistla and ahers [SWCD 1997
propcse a catralized and dstributed mobil e database achitedure where some data is present at
the central server and dher datais present at mobil e nodes. In a distributed architedure thereisa
posshility of nodes being disconreded [IB 1993,B 1999, and thus may nat be available to
answer arequest at all times. In order to focus on guery optimization isaes, we aume apurely
centrali zed architecture in ou work.

In a cetralized wireless architedure the whole geographicd area is divided into

hexagonal cdlswhere eat cdl mimics a drcle (shown in Figure 1.1). At the center of ead cdl



is a Base Station (BS) that communicates with the Maobile Stations (MS) in its cell areathrough a
wireless link. The BS is also referred to as server and the MS as mobile units, devices, or smply
mobiles. BSs serving an area are connected by a backbone wired network through a Mobile
Switching Center (MSC). The MSCs are connected to the Public Switched Telephone Network
(PSTN). As amohile station moves, the calls are relayed from one cell to another. When an MS
moves from one cell to another the radio link with the old BS has to be broken and a new radio

link has to be established with anew BS.

O MS (Mobile)

Bl BS(Seve)
7~ WirdessLink

Wireline

Other MSCs

7

Figure 1.1: Centralized Wireless Network Architecture

In a centralized mobile database the database resides in the central server (or BS). There
are two ways the server can provide data for a mobile user: pull-based and push-based. In a pull-
based method the user sends a request for data on an uplink channel and the server processes the
request and sends the data to the client on a downlink channel. An uplink channel is a channel on
which a mobile can send its query to the server. The downlink channel or pull channel is the

channel on which an answer to a query is sent to an individual mobile. Other maobiles cannot



access the downlink information. Uplink channel bandwidth is used to send queries and downlink
channel bandwidth is required to send the answers to the queries. In the push-based method the
server broadcasts the data on a broadcast channel and the mobiles tune to that particular channel
to retrieve the information [AAFZ 1995]. A broadcast channel or push channel is a channel on
which the server broadcasts information that all the mobiles can access. In this mode there is a
wait for the data but there is a reduction in the channel bandwidth that is used since the data need
not be sent to each client separately. In a hybrid model, the push-only model is augmented with a
pull-based approach [AFZ 1997] by using an uplink channel to allow clients to send explicit
requests for data to the server. This model accommodates that queries whose answers cannot be
obtained from the broadcast information.

There are many limitations in using wireless devices such as frequent disconnections,
limited power, limited screen size, security and authentication requirements, and limited channel
bandwidth [IB 1993, AAFZ 1995]. In this thesis we address the issue of limited channel
bandwidth.

In a wireless mobile network the servers have relatively high bandwidth broadcast
capability while the clients can communicate only over a lower bandwidth link. Such an
environment is called an asymmetric communication environment; a new architecture for this
environment called broadcast disks has been proposed by Acharya and others [AAFZ 1995]. In
this approach the server continuously and repeatedly broadcasts data to the clients. The broadcast
channel becomes a disk from which clients can retrieve data as it goes by. The broadcast is
created by assigning data items to different disks of varying sizes and speeds and then
multiplexing the disks on the broadcast channel. Items stored on faster disks are broadcast more
often than items on slower disks. Figure 1.2 shows a simple broadcast program in which disk
pages A, B, C, D, and E are continuously broadcast. The mobiles that need this information tune
to the channel and retrieve the required information. Lee and others give channel allocation

methods for the broadcast data [LHL 1999].
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Figure 1.2 A Broadcast Disk

Unlike the push architedure, in a pul model the answers for ead query are sent
separately. When the queries are processed in groups there may be many common expressons
among the queries. A multi ple query optimizer proceses agroup d queriestogether and exeautes
the common operations once This technique is very useful for query workloads that contain
identica queries (queries are repeaed), subsumption gueries (the answer for aquery is asubset of
the answer for ancther query), and overlapping queries (the two answers sare some data). In the
case of digjoint queries (al the queries are dl distinct), this technique behaves as an ardinary
query processor.

In this thesis, we gply the techniques of MQP for the queries ent as pull requests by a
group d users and refer to the gpproadch as multiple query processng for pull requests (MQPR).
In the naive gproach for answering pull requests (PR), a user sends a request for data on an
uplink channel, and the server processes all these requests independently and sends the answers
separately on dawvnlink channels; and this data is accessble only by a mobile that has nt a
request. In MQPR, we group queries that are sent to the server in a given time window. If the
queries in a particular group have some cmmondlities, we nstruct a query graph for these
gueries and oldain a common answer for them, cdled a materialized view. The answers for the
gueries in the group can be obtained from this materialized view. Instead of using the pull
channel, which is a downlink channel, we use apush-pull channel, which is a broadcast channel

for views that answer a group d pull requests. The individual mobiles are sent small padets



stating when and for how long to tune to the channel and retrieve the answers. In this method we
use a broadcast channel instead of a downlink channel, and we eliminate redundancy in query
answers. We study the savings in wait time and bandwidth that are obtained using this approach.

In the next section, we motivate of our work with an example.

12 A Motivating Example

To illustrate the problem addressed in this thesis, consider a mobile database where data pages A,
B, C, D, E and F are continuously broadcast over a push channel. Figure 1.3 gives the
representation of the push data, while its channel bandwidth usage is given in Figure 1.4(a). The
channel is allocated for the push data and the disks A-F continuously occupy this channel. The
channel bandwidth usage for broadcasting the disks once is equal to the sum of the sizes of all the
disks. It is assumed that there is no repetition of datain the disks. A time window occursin which
5 mobiles cannot retrieve the answers to their queries (Q1-Q5) from the push data and thus they

send pull requests to the server.

Contents of a Mobile Database

A,B,C,D,EF

Figure 1.3: Relationships between Queries and Broadcast Data



It is assumed that the answers to Q1 and Q5 are identical, the answer to Q2 overlaps that
of Q1, the answer to Q2 subsumes that of Q3 (i.e., answers for Q3 can be obtained by doing a
simple select or join operation on the result of Q2), and the answer to Q4 does not have any data
in common with any other query answers. The representation of these queriesis given in Figure
1.3. The universe of discourse is a mobile database, and the ellipses represent subsets of the
database.

The server processes the queries and sends the answers on a downlink channel in the
order the requests are sent. The channel bandwidth usage for the pull requests on a downlink

channel is shown in Figure 1.4(b).

(a) Bandwidth Usage for Push Data

< > < >4 > < >
Ql Q2 Q3 Q4 Q5

(b) Bandwidth Usage for Pull Requests on a Downlink Channel

+“———r 4“P><—>»
Q1, Q5 Q3 Q4
Q2

(c) Bandwidth Usage for Pull Requests on a Push-Pull (Broadcast) Channel

Figure 1.4: Bandwidth Usage for Different Channels

In our approach we apply MQP, which helps us in determining the commonalities

between queriesin the given time window. The resulting broadcast datais shown in Figure 1.4(c).



Since Q1 and Q5 are identical, the results are broadcast just once. The overlapping portion of Q1
and Q2 is broadcast just once. The result of Q3 is obtained from the result of Q2. Q4 is broadcast.
Channel bandwidth and wait time savings are expected to result from using MQP to form a

broadcast program.

13 General Research Objective
This thesis applies techniques from multiple query optimization to obtain bandwidth and wait

time reduction for answering pull requests in a mobile database environment.

14  Specific Research Objective
The specific research objectives are as follows:
a) To determine what techniques are proposed for processing pull requests and devise
improvements.
b) To measure the effectiveness of algorithms for processing pull requests.
¢) Todesign experiments to determine performance characteristics.
d) Toanalyze the results to determine conditions under which savings occur.

Our approach to meeting these abjectivesis given in next section.

15 Resear ch M ethodol ogy
The research methodology used to achieve our research objectivesis given here.
a) In order to define a new method for handling pull requests, we investigate the use of
multiple query processing techniques to process a set of requests.
b) In order to determine the effectiveness of algorithms for processing pull requests, we
i. propose characteristics such as bandwidth and wait time,
ii. develop metrics to calculate the bandwidth and wait time, and

iii. select atestbed to conduct the experiments.



¢) To conduct experiments, we develop a software system for implementing MQP
techniques that computes bandwidth and wait time.

d) To analyze the results, we examine them in the form of graphs and draw conclusions
about the savings in bandwidth and also see how the wait time varies under different

conditions.

16 Expected Contributions
By accomplishing our research objectives we expect to make the following contributions:
a) animproved method to handle the pull-requests using M QP techniques,
b) cost metrics to caculate the bandwidth and wait time and also define a testbed
appropriate for MQP scenarios,
c) asoftware system that implements MQP and also computes bandwidth and wait time in
both the methods, and

d) identification of the key factors that affect bandwidth and wait time.

1.7 Overview of the Thesis

In Chapter 2, we discuss multiple query processing, a multigraph MQP technique, and details of
our software implementation. In Chapter 3, we present the overview of our complete system, the
testbed, design of experiments, and the results and their analysis. In Chapter 4, we present

contributions of the thesis and discuss future work.



Chapter 2 Multiple Query Processing

Multiple Query Procesing (MQP) optimizes a set of queries together by exeauting the common
operations oncein order to save query exeadtion time and evaluation cost. It has been shown by
Sdlis that MQP typicdly offers substantial improvement to the performance of a system [S
199§. Exhaustive dgorithms have been proposed for doing MQP [SG 199(0. These ae
impradicd and explore an exporential search space Roy and ahers propcse heuristic dgorithms
that are pradical and provide significant benefitsin the optimization o queries[RSB 2000. We

adopt a heuristic gpproach here.

a) SELECT customer.name, customer.custkey, orders.orderkey,
orders.orderdate, orders.totalprice
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24;

b) SELECT customer.name, customer.custkey, orders.orderkey,
orders.orderdate, orders.totalprice
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24
AND orders.orderstatus = ‘shipping’;

Figure 2.1 Two Sample Queries
We illustrate MQP with an example. Figure 2.1 contains two queries that retrieve
information from an order processng database. The first query retrieves customer and ader
information for a particular quantity of items ordered. The second query retrieves customer and
order information for a particular quantity of items ordered and whose order status is shipping.
The answer for the second query is a subset of the results of first query. The results of the first

guery enable fast computation d the second. These requests can be optimized using MQP by first




finding the Customers whose lineitem quantity is 24 and then using this to find the Orders with
the additional constraint that the order statusis shipping.

Sedion 2.1 dscusses how MQP techniques can be gplied to mobil e databases. Sedion
2.2 gives an overview of MQP tedhniques from the literature and we seled one for our work;
Sedion 2.3 etail s the multigraph processng algorithms we use here. Sedion 2.4ill ustrates an

approach with an example, while Sedion 2.5gives the detail s of software implementation.

21 Applying MQP in Mobile Databases
In the mobil e database achitedure that we alopt, there ae hundeds of mobile users srved by a
central server (BS) that recaves requests on an ugdink channel and sends answers on the
downlink channel. In a naive gproad, when a server recaves an udink request, it processes the
request and sends a request for data to the data source, and oliains the answer from it. This
answer is ent to the mobile on a downlink channel. Figure 2.2 shows the information flow
between a mobile, a server, and a data source in the naive method (cdled PR here for pul
request). The verticd lines represent the information source, server, and a mohbile ad the
horizontal lines siow the data flow. The numbers on the lines show the sequence of the flow. A
dotted haizontal line shows that the link is an air link. The continuows horizontal lines sow that
thelink isawireline. The diredion d an arrow represents the diredion d the flow of data.
Significant channel bandwidth can be epended in sending query answers on the
downlink channel. If thereis an overlap in the results of the queries meant for diff erent mohil es,
channel bandwidth is wasted by sending the same data on the downlink more than orce
Resporse time and channel traffic ae bath increased. To address these isdales, we propcose a
multiple query procesing method for pull requests (cdled MQPR) to batch the queries and

perform common sub-expresson processng.

10



(1) Mobile sends an uplink query

(2) Request sent to information
source

(3) Resultsreturned by the source

(4) Final results sent to the mobile

_______________________________ >
Information Server ':3‘—:.!:"—"
Source
Mobile

Figure 2.2: Information Flow in PR

The mgjor tasks in MQP are common operation/sub-expression identification and global
plan construction. In our approach, MQPR, we develop a view from the results of various queries
and broadcast this view on a channel we call the push-pull channel. The push-pull channel
broadcasts information on abroadcast channel instead of sending answers on adownlink channel.
On a downlink channel, mobiles are sent a small packet containing information about when to
tune to the push-pull channel and which part of the view they need to download to find the results
to their queries. When there are subsumptions between queries, i.e., when the answer for a query
is to be obtained by doing a select operation on the answer being broadcast, we can sort the
answer before it is broadcast so that the mobile does not have to do aselect. It can just tune at the
time given in the packet and get its answer. Thisisreferred asfiltering of data[IVB1 1994]. This
method reduces the bandwidth that would previously be wasted by transmitting almost the same
information for different users separately. Figure 2.3 shows the information flow between the

mobile, the server, the data source, and the broadcast channel for MQPR.

11



(2) Queries are batched for common

subexpression evaluation, then . .

sub-queries(requests) are sent to L (1) Mobile sends an uplink query
information source

h

(3) Results returned by

individual source (4) Mobile sent a small packet
g >
(5) Fina results
broadcast
N >
(6) Mobile tunes to channel to get the query
answer
4. ____________________
MOBILE
BROADCAST
Information CHANNEL
Source quer ——
i T

MQP

Figure 2.3: Information Flow in MQPR

In Figure 2.3, the mobile initially sends an uplink query. The server collects all the
requests it obtains in a given time window, applies an M QP technique, and eval uates the common
expressions. It sends the requests for data to the information source and obtains the results. The
mobile is sent a small packet containing information regarding when and for how long to tune to
the channel to get the information. Later these results are broadcast on a broadcast channel. The
mobile then tunes to the channel according to the information in the packet and obtains the
information.

In the next section, various MQP techniques from the literature are reviewed and one is

selected for our work.

12



2.2 M QP Techniques

The problem of identifying common subexpressions is NP-hard [J 1985, RH 1980, SKL 1989].
Jarke indicates that multi-relation subexpressions can only be addressed heuristically since
determining subexpressions has an exponential search space [J 1985]. There are two main
heuristic approaches, one using AND/OR graphs and the other using multigraphs. In an AND/OR
graph, the AND nodes represent the relations and the OR nodes represent the operators [RC
1988]. Roy and others have demonstrated that multiquery optimization using heuristics with
AND/OR graphs is practical and provides significant benefits [RSSB 2000]. Their method
detects subsumption by comparing each pair of operator nodes from distinct queries. There may
be many AND/OR graphs corresponding to a particular set of queries; thus the performance of an
algorithm depends on the chosen representation. AND/OR graphs are also procedural (i.e., they
specify an evaluation order) so that some potential optimization choices are not considered. Both
of these disadvantages do not occur in the multigraph approach.

We use a multigraph technique for processing subsumptions [CE 1994, CD 1998]. The
multigraph approach can be used to identify common subexpressions for identical, subsumption
and overlap cases. A multigraph is a non-procedural representation of multiple queries and the
representation of the multiple queriesis unique. We choose a multigraph for MQP in our work as
it represents queriesin a unique way compared to operator graphs and also because of the ease of
detection of common subexpressions. The detection of common subexpressions using a
multigraph is the same as the detection of common edges, i.e., edges connecting to the same
node(s) on the graph. The time and space complexities for processing common subexpressions
using a multigraph are much lower than those that use an operator graph [CE 1994]. In our work
we consider the identical, subsumption, and disjoint cases. We describe the multigraph technique

in the following sections.
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2.3 Multigraph Processing
A definition and common sub-expresson processng algorithms for multigraphs are given here

[CE 1994. A multigraph G(R, SE, JE) is defined as foll ows:

1. A nodg r OR, of the multigraph represents a relation a an intermediate result derived
from relational operation(s).

2. A seledion edge, sg [ SE, loops on a node and represents a seled operation onthe
relation. A seledion edgeislabeled with aquery ID and seledion condtion(s).

3. Ajoinedge, je O JE, between two relations represents the join operation. A join edgeis

labeled with a query 1D and ajoin condtion(s).

Risarelation, SEisaseled edge, JEisajoin edge and QL isthe query list.

A multigraphis constructed for a given set of queries. Each relation is represented as a noce.
A sdled edge is represented as a loop ona relation. A join edge is represented by a line
conreding two relations. When a relational operation is evaluated, the node(s) and edge(s)
related to the operation are mntraded into a new node. At the end of a sequence of operations,
the single remaining node represents the final result. The main idea of MQP is to exeaute the
common operations only once Two condtions may have nothing in common, keidenticd, or the
result of one @ndtion subsumes the result of other condtion; we refer to these relationships as
the commonality between two conditions. Chen's subsumption processng algorithm is ghown in
Figure 2.4. A group d edges and type of commonality among the edges in the multigraph are
seleded for processng based on the heuristics given in Figure 2.5. The type of commonality
among the alges is identified and the common operations are performed by cdling appropriate

procedures.
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Algorithm comsubproc
Input: A multigraph G(R, SE, JE)
Output: A multigraph G'(R’, SE’, JE') with norelated condtions on same type of edges (SE or
JE)
M ethod:
While common operations exist

Use the heuristics to seled agroup d edges/operations for processng;

Identify the type of edges/operations (seled or join) and the type of commonality

(identicd, subsumption a overlap) among the operations;
Perform the common operation for this group d operations and contrad the
nodfor this operation;

Figure 2.4: Common Subexpresson Procesgng Algorithm

Edge Processing Heuristics

1. Seled a group d edges SE(u, U such that they have identicd seled condtions and
QL{JE(u,Vv)} O QL{SE(u, u};

2. Seled a group d edges SE(u, u) such that they have identical seled condtions and
QL{JE(u, v)} O QL{SE(u, u};

3. Seled a group d edges SE(u, u) such that they have subsumed seled condtions and
QL{JE(u, v)} U QL{SE(u, u};

4. Seled a group d edges JE(u, v) such that they have identicd join condtions and
QL{JE(u,v)} O QL{SE(u, u} wherew Zu o w Zv.

5. Seled a group d edges JE(u, v) such that they have subsumed join condtions and
QL{JE(u,v)} OQL{SE(u, y} wherewZu o w#v.

Figure 2.5: Heuristics for Edge Processng

All six agorithms for procesdng the alges foundwith the heuristics are discussed by
Chen [CE 1994. The dgorithms are for processng (1) identicd seleds, (2) subsumption seleds,
(3) overlap seleds, (4) identicd joins, (5) subsumption joins, and (6) overlap joins. In our work,
algorithms (1), (2), (4) and (5) are implemented. Figure 2.6 describes the dgorithm for
processng identicd seled condtions. This agorithm is illustrative of other identicd and
subsumption procesgng algorithms. In the dgorithm for processng identicad seleds all the seled
operations with identica common subexpressons are performed just once and a cwntraded nock
iscreaed by removing all the identica edges representing the same cmmon subexpresgons. The

algorithm in Figure 2.4 cortinues to find the mmmon subexpresgons and processes them until no
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further common condtions exist. The output of this algorithm is a multigraph with al the
common condtions removed; it is a materialized view that can answer all of the queries

represented in the input multigraph.

Algorithm S identicd
Input: A multigraph
G(R, SE, JE), QL(sc, Ri) // list of query Ids and their associated
identicd seled operation o«(Ri);
Output: A contraded multigraph G'(R’, SE’, JE))
M ethod:
Perform o«(Ri) and crede a ontraded nock n for this operation;
Delete edges representing the ox(Ri) operation;
For all seledion edges (Ri,Ri) with guery ID in QL(sc,Ri) do
Move se(Ri,Ri) to se(n, n);
For all edges (t,Ri) wheret # Ri do
If query ID of edge (t,Ri) isin the QL(sc,Ri), change original links from (t,Ri) to
(t.n);

If there ae no remaining edges on noe Ri, delete node Ri;

Figure 2.6 Algorithm for Identicd Seled Processng

In the following sedion we give an ill ustrative example of the multigraph MQP technique.

24 IHlustrative Example

Consider the example Queries A and B shown in Figure 2.7. These queries are from an order-
processng database. The base relations underlying these queries are given in Figure 2.8. The
construction d the multigraph for these queries and the transformations are given here. First the
base relations for these queries are identified as Orders, Customers and Lineitem. In the
following figures O stands for Orders relation, C for Customer relation and L for the Lineitem
relation. Figure 2.9 shows the representation o Query A in the form of aquery graph. The nodes
are the relations, the edge joining two nodes is a join edge and the dotted edge looping to a
relation is a seled condtion. Figure 2.10 shows the query graph representation for Query B.

Figure 2.11shows the multigraph for Queries A and B.
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A) SELECT customer.name, customer.custkey, orders.orderkey,
orders.orderdate, orders.totalprice
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24;

B) SELECT customer.name, customer.custkey, orders.orderkey,
orders.orderdate, orders.totalprice
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24'
AND orders.orderstatus = ‘shipping’;

Figure 2.7: An Example

Part (partkey, name, mfgr, brand, type, size, container, retail price, comment)

Supgier (suppkey, name, address nationkey, phore, acdbal, comment)

Partsupp (partkey, suppkey, avail gty, supdycost, comment)

Customer (custkey, name, address nationkey, phore, acdbal, mktsegment, comment)

Nation (nationkey, name, regionkey, comment)

Lineltem (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discourt, tax,
returnflag, li nestatus, shipdate, commitdate, receptdate, shipinstinct, shipmode,
comment)

Region (regionkey, name, comment)

Orders (orderkey, custkey, orderstatus, totalprice orderdate, orderpriority, clerk, shippriority
comment)

Figure 2.8 Base Relations
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(Qa L.quantity="24")

Figure 2.9 Initial Query Graphfor Query A

(Qp, O.orderstatus="shipping’)

(Qp, L.quantity="24")

Q (Qp, C.custkey=0.custkey) Q (Qp, O.orderkey=L .orderkey) O
c o Ly

Figure 2.1Q Initial Query Graphfor Query B

(Qp, O.orderstatus="shipping’)

. (Qa L.quantity="24")
(Qa C.custkey=0.custkey) =< (Q,, O.orderkey=L.orderkey) "
@ (° @;::;.,
(Qu, C.custkey=0.custkey) (Qp, O.orderkey=L .orderkey)

(Qu, L quantity="24')

Figure 2.11 Initial Multigraph for Queries A and B
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(Qp, O.orderstatus="shipping’)

a (Qa C.custkey=0.custkey) (Qa, O.orderkey=L .orderkey)
NG © (D

(Qp, C.custkey=0.custkey) (Qp, O.orderkey=L .orderkey)

(Qp, O.orderstatus="shipping’)

(®)
"""""" L (Q, O.orderkey=L .orderkey)
(Qu, O.orderkey=L .orderkey)

(c) (Qp, O.orderstatus="shipping’)

Figure 2.12 Transformation Stepsin Processng Multigraph for Queries A and B

Figure 2.12 gives the transformation steps in the procesgng of the multigraph. In Figure
2.12a) the seled condtion ‘L.quantity=24" is processd and the noce L is replaced by the
reduced noce L’. In Figure 2.12b) the join condtion ‘ c.custkey=0.custkey’ is processed and the
node O isreplacad by O’. The mndtion*O.orderkey=L.orderkey’ isprocessed andthenode O’ is
replacal by node O”. The view in Figure 2.12c) is now broadcast. The broadcast is orted on
orderstatus so that the mobil es that have sent Query B can get the data without doing a seled
operation. A small padket is snt to the mobil es that have sent Query B when they need to tune in
so that they get the required information (i.e., they can tune when the information for ‘orderstatus
= shipping’ is being broadcast). For any seled condtions on dher attributes that canna be

reduced for different queries, the mobileis snt informationin order to perform a seled.
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25 Implementation

The multiquery processing algorithm is coded in C++. The algorithm takes a manually created

multigraph as input. Creating a multigraph from a given query set could be automated, but we

focus on the actual MQP coding rather than pre-processing.

MAX_SEL REL_SIZE N o] SELECTION LIST
REL_ID
MAX_JOIN ——> JOIN LIST
NEXT
I
(a) A Multigraph Node
(Query Number, Select Condition Number) —t—» Next
(b) A Nodein the Selection List
REL ID Num of Joins | ——» Next
JOIN PAIRLIST
(c) A Node in the Join List
(Query Number, Join Condition Number) ——» Next

(d) A Nodein Join Pair List

Figure 2.13: Data Structure for Representing a Multigraph

Figure 2.13(a) gives the data structure for our implementation of a multigraph. The data

structure is the same as that given by Chen [CE 1994] with small modifications. All the relations
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have a unique relation identifier, REL_ID. The sdled and join condtions are given seled
condtion nunbers and join condtion numbers, respedively. We introduce avariable REL_SIZE
to store the size of the node and a next pointer to fadlit ate traversal of the multigraph. Consider a
relation with REL ID R1. MAX SEL is the number of seled condtions on noe R1, and
MAX_JOIN is the number of relations that R1 is joined with. There ae two pdnters, ore to the
seledionlist and aher to the join list. Figure 2.13b) shows anoce in aseledion list. Each nock
in the seledion list stores the query number and the seledion condtion nunber along with a
pointer to the next node in the seledion list. Figure 2.13¢) shows a nocke in the join list. Each
node in the join list has the REL_ID of the node to which the node R1 is joined with. If node R1
isjoined with relation R2, REL_ID is R2 for thisjoin noce. The Num_ of _Joinsin the join noce
is the number of joins between noce R1 and nodk R2. There is a pointer to the join peir list anda
pointer to the next node in the join list. Join pair list has al the join pairs between the nodes R1
and R2. Figure 2.13c) shows anodein the join tuple list. Each nockin ajoin tuplelist isajoin

tuple that is a query number and ajoin condtion number.

(Qb, Sb2)
(Qp, O.orderstatus="shipping’) (Qa, Sal)
o (Qa L.quantity="24")
EQa, Jal) . ) ) ((Qa Ja? k o N
Qa C.custkey=0.custkey) o g Qa O.orderkey=L .orderkey’
© (o) =
(Qp, C.custkey=0.custkey) \—/(Qb, O.orderkey=L .orderkey)
(Qb, Jb1) (Qb, Ib2) : ‘

(Qo, t’:quanti“f;/:’ 24
(Qb, Sb1)

Figure 2.14 Multigraphfor Queries A and B
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Sizeof C
0 1 » NIL
c
1 —|—» 0|2 ——» NIL
Qa, Jal p Qb, bl p NIL
Sizeof O
1 ——{ Qb, Sb2 4 NIL
o)
2 ——»{c|2 > L|2| | > NL
Qa, Ja2 »{ Qb, o2 - NIL
Qa, Jal p Qb, ol p NIL
\ 4
Sizeof L
2 ——»| Qa Sal P Qb, Sbl |+ NIL
L
1 — »l 0|2 —1—» NIL
|
i Qa, Ja2 » Qb, b2 H NIL
NIL

Figure 2.15: Data Structure Representation of Multigraph for Queries A and B
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In Figure 2.14, we repeat the multigraph of Figure 2.11 for Queries A and B given in
Section 2.4. We give selection condition numbers and join condition numbers for the selection
and join conditions. The data structure representing the multigraph is given in Figure 2.15. There
are three nodes representing the three relations in the multigraph. Each node has a selection list
representing the select conditions on that relation and ajoin list representing the joins it has with

other relations.

A multigraph such as that shown in Figure 2.15 is given as input to the MQPR algorithm.
The agorithm uses heuristics (Figure 2.5) to select a group of edges for processing. The type of
edge and commonality among the operations is identified and the common operations are
performed and a contracted node is obtained. The multigraph is modified (i.e., nodes are
constructed and edges are eliminated) when an operation is carried out. This processing of
common edges is done until no further common operations exist. The size of the result to be
broadcast for the given set of queries is computed from the final multigraph obtained after the
transformations. This is used in determining the channel bandwidth and the wait time; the cost

metrics for these calculations are discussed in the next chapter.
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Chapter 3 Performance Study

In this chapter the performance of algorithms to process pull requests are compared. Since the
algorithms determine the content of a push-pull broadcast channel, two relevant performance
criteria are bandwidth usage and wait time. We design simulations with different query workloads
to investigate the impact of the algorithms in different scenarios for these two metrics. Section 3.1
details the complete system. Section 3.2 gives the performance model. Section 3.3 gives the
testbed we use in our experiments. Section 3.4 outlines the design of experiments and Section 3.5

givestheresults and their analysis.

31 Overview of the System

There are two phases for the creation of a push-pull broadcast program. One is to determine the
content (answers to queries) and the other is to assign the broadcast elements to the available
push-pull channels.

In the PR method the elements to be broadcast are the answers to all the queries that the
server receives. In MQPR the queries are grouped based on subsumptions and the elements to be
broadcast are the answers of each of these groups. Figure 3.1(a) shows Phase 1 in MQPR. The
MQP algorithms are given in Chapter 2. The query workload is a form of an unreduced
multigraph. Figure 3.1(b) shows Phase 2, the channel assignment algorithm. Thisis the same for

both PR and MQPR; only the input values change.

Query MOP — Reduced
Workload > Q Multigraph

(a) Phase 1in MQPR
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Number of Number of Channels

Elementsto Available for

Broadcast Broadcast
Ordering of i i
Broadcast p| Channel —» Broadcast Program for
Elements Assignment Push-pull Channel

o —» Small Packet
Heu_rlstlcsfor for the Mobile
Assignment Stating when to
Tune
(b) Phase 2

Figure 3.1: Phasesin MQPR

In PR the ordering of the elements is the order in which the server received the queries.
In MQPR we define two ways of ordering the elements: MQPR; and MQPR, In MQPR;, the
elements are sorted in the order of their size and the smaller elements are given higher priority
for broadcast than the larger elements. MQPR; is an improved method for broadcasting the
elements. In this the elements to be broadcast are sorted in increasing value of the ratio of the
size of the element to the count of the number of users waiting for the element (S/Sc). The
element with smallest S/Sc; value has the highest priority to be broadcast. In our study,
significant lowering of the average wait time is obtained using this method.

The other input for the channel assignment agorithm is the heuristics of assignment.
These heuristics give us the strategy to assign elements to the channels. The heuristic we use here
takes one element at a time from the ordered list and assigns it to the channel with the least sum
of sizes of all the previously assigned elements.

Our channel assignment algorithm gives the broadcast program for each of the channels.

The results within a broadcast element are ordered so that the subsumed queries can avoid doing
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selects. Each mobile is sent a packet stating when to tune to get its answer. In the next section we

give the channel assignment algorithm.

3.2

Performance M odel

This section introduces terms and variables used for describing our performance model, followed

by an algorithm for calculating wait time.

The broadcast is done in the form of buckets that are the smallest logical unit of

broadcast. All buckets are the same size. Bucket size is given in bytes.

The parameters we use in this chapter and their explanations are as follows:
C: channel bandwidth usage in bytes,

N: number of requests,

b: the size of the that needs to be broadcast for aquery set in bytes,

L: bucket length in bytes,

B: the number of bucketsto be broadcast (B = b/L),

t: time to broadcast a single bucket,

T: time to broadcast the given data (T = B * t),

n: number of elements to be broadcast,

nc: number of channels available for broadcast,

S: sizeof thei™ element that is being broadcast,

Sc;: count of the number of users who are waiting for the i element, and

w;: wait time for amobile waiting on the i element.

The total channel bandwidth is the sum of the sizes of all the elements that are broadcast.

Access time is the time a mobile spends determining where in the broadcast the answer for its

guery can be obtained. In our system, access time is not computed because the mobile is sent a

packet detailing when the mobile can tune in to retrieve the desired information. Only tuning time
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is considered. Tuning time is measured in terms of the number of buckets. The wait time is the
time elapsed between the times a reguest is sent to the time the mobile starts downloading the
data. The algorithm for calculating the wait time is given in Figure 3.2. It takes as input the
number of elements to be broadcast, the element sizes in a given order, and the number of
available channels. It gives as output the wait time for each mobile waiting on these elements.
The algorithm combines our channel assignment heuristic with the computation of individual wait

times.

Assign and find
input: n, //number of elements that need to be broadcast
int size[] //array having sizes of elements to be broadcast in the order
float waittime[] //array to hold the calculated wait_times
nc /Inumber of channels available for broadcast
output: waittime[] //the wait times are returned
BEGIN
initialize the size of each channel to zero  //channel size is the sum of elements scheduled to
be broadcast on that channel
for each of the elementsin the array
compute the channel with smallest size
add this element to that particular channel, compute the new channel size
add this element in the element list of that channel
wait time for an element in the element list of a channel=
(sum of sizes of elements before it in the element list* t/L)
return waittime{]
END

Figure 3.2: Channel Assignment and Wait Time Calculation Algorithm

After obtaining the wait times for each mobile from the algorithm in Figure 3.2, the average wait

timeis caculated as follows:
N
Average wait time = ( Z W, )/ N

The next section gives the testbed for our experiments.
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33  Testhed

This thesis extends the TPC-H-SRJ query set [T 1999 to include alditional queries with
subsumption relationships. A detailed explanation d how the queries are derived and the
subsumption relationships between the queriesis described in Appendix A. TPC-H-SRJ contains
seled-projed-join (SPJ) subset of the TPC-H benchmark’s query set [TB 1999. The TPC-H-SPJ
query set modifies the TPC-H queries to dscard the aygregation, ORDERBY and GROUPBY
functions, bu retains the original schema. TPC-H benchmark is a deasion suppat benchmark
that consists of a suite of businessoriented ad-hoc queries with broad industry-wide relevance
We choose this benchmark as our basis snceit does not represent the adivity of any particular

business g#gment, bu rather an industry that manages, sell s, or distributes products worldwide.

Query Sizes
6000000
5000000 ]
—~ 4000000
(O]
S
£ 3000000
8
» 2000000
1000000 i
O I:I\l:l\ I I \D\D\ \D\ I \EI\ I \EI
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Query No.

Figure 3.3 Relative Query Sizes

Our testbed extends the TPC-H-SRJ query set to atotal of fifteen queries. The queries are

either the same or modifications of queriesin TPC-H-SPRJ benchmark. We introduce subsumption
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relationships in order to apply an MQP technique. A summary of the relative sizes of the queries

appears in Figure 3.3. The subsumption relationships are given as aVenn diagram in Figure 3.4.

@

Figure 3.4: Subsumption Relationships between Queries

¢

34 Design of Experiments

We design simulations to study the bandwidth savings between PR and MQPR, and study the
effect on wait time for the PR, MQPR; and MQPR; algorithms for different kinds of workloads at
the server. Some examples of loads that a server may have are light loads (small queries), heavy
loads (large queries) and balanced loads (all types of queries). For each experiment we vary the
number of user requests from one to fifty in increments of size 1. For a given number of requests,
we randomly select the queries from the testbed query set.

In the first experiment, we use abalanced load, i.e., al the queries have equal probability
of being selected. In the second one, termed Skewed Loadl, the first k queries have higher
probability of occurring than the rest. By increasing the probability of subsumption relationships
between queries, we can study how this impacts bandwidth. The third load, termed Skewed
Load2, k small queries (queries for which the results are small) have higher probability of

occurring than other queries. This query set helps us to determine how performance
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characteristics vary with a light load. In the fourth one, termed Skewed Load3, k large queries
(queries for which the results are large) have higher probability of occurring and this load depicts
the system performance with a heavier load. In the fifth one, termed Skewed Load4, k randomly
selected queries have higher probability than the rest. This query set is used to study the system
behavior for a skewed load with no particular pattern. The sixth experiment is conducted with
distinct queries, called Distinct Query Load that consists of queries with no subsumption
relationships between them, although some queries are repeated according to random selection.

Figure 3.5 summarizes all the query loads.

Type of Load L oad Description Rationale

Balanced All queries have equal probability Genera workload

Skewed Loadl First k queries have higher probability | Increased subsumptions

Skewed Load2 k small queries have higher Lighter load
probability

Skewed Load3 k large queries have higher Heavier load
probability

Skewed Load4 k random queries have higher Random skewed |oad
probability

Distinct Query Load | All the queries are disjoint queries No subsumptions

Figure 3.5: Query Loads

For our study, we double the likelihood of a query occurring in a workload if it has a
higher probability according to a particular strategy for that workload. We let k=7 for our study
since it represents approximately half of the queriesin the testbed. In Figure 3.6 we give the fixed
parameters that are constant for all the experiments. These parameters are identical to those used
in other performance studies in the literature [IVB 1994]. For each query set we vary the number
of channels available for broadcast as shown in Figure 3.7. The value 10 is chosen for PR, but a

smaller number of channels for MQPR is sufficient to give comparable or better performance.
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Variable Description Value

C Channel bandwidth 10K bps
L Bucket length in bytes 128 bytes
t Time to broadcast a single bucket 0.1 sec

Figure 3.6: Fixed System Parameters

M ethod Number of Channels
PR 10

MQPR; 3,5

MQPR, 3,5

Figure 3.7: Number of Channels for Broadcast

Each experiment has a given number of requests (from 1 to 50), and we group the
selected queries so that queries with subsumptions fall in a particular group. We construct a
multigraph for each of these groups and use it as an input to our MQP algorithm given in Section
3.1. The MQP agorithm computes the size of elements that needs to be broadcast. The elements
are ordered for the different methods (PR, MQPR;, MQPR;), and passed to the channel
assignment algorithm for computing broadcast plan. The bandwidth is computed for PR and
MQPR methods. The bandwidth is same for MQPR; and MQPR,, they only differ in the ordering
of the elements in the broadcast. Wait times are computed for PR, MQPR; and MQPR;

techniques.

35 Results

For different numbers of user requests, for each of the channel number variations and push-pull
broadcast (program creation algorithm), the bandwidth usage and the wait times are calculated.
Thus 600 simulations are conducted for bandwidth and 1,500 simulations are conducted for wait
time. The complete results are tabulated in Appendix B. Representative examples are given in
this section. We plot three graphs for each type of load. The first one is the bandwidth usage

graph, the second graph gives the average wait time with 3 channels, and the third graph givesthe
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average wait time with 5 channels. The complete graphs are given in Appendix C. We introduce

an example of each of these graphs and analyze the results in the foll owing subsections.

3.5.1 Bandwidth Usage
Figure 3.8 shows the bandwidth usage graph for a balanced load. The queries are randomly
selected for a given number of user requests (from 1 to 50). On the x-axis is the number of user
requests and on the y-axis is the bandwidth usage in bytes. The bandwidth plot for MQPR levels
out after a certain number (in this case 39) of user requests. The bandwidth plot for PR continues
to increase. The bandwidth usage in MQPR is always less than or equal to that of PR. In some
points the plot in PR increases but the plot of MQPR decreases (e.g., where x=18 and x=19). The
reason for thisisthe savings due to identical queries (at x=19 there are more repetitions of certain
gueries than at x=18). Figure 3.9 gives the percentage savings of MQPR compared to PR. On the
x-axis is the number of user requests and on the y-axis is the percentage savings in MQPR
compared to PR. The findings from the graph are tabulated in Figure 3.10. We observe that
significant savings result from MQPR for any type of load. The savings are lowest for queries
with smaller sizes (Skewed Load2) and highest for the load with large queries (Skewed Load3).
We have aso computed the bandwidth usage in the Digjoint Query Load and similar
results are observed. The percentage savings are 47.35% for up to 30 requests and 59.86% for up
to 50 requests. The results of this experiment depict the savings in the channel bandwidth usage
when there are no subsumptions (but there are identical queries); we cannot compare the results
directly to those of the other workloads since the Distinct Query Load has only 8 possible queries

to choose from and the repetitions of individual queriesis higher.
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Figure 3.8: Bandwidth Usage
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Figure 3.9: Percentage Savingsin MQPR Compared to PR

33



Type of Load Upto 30 Up to 50
requests requests
Balanced 39.44% 51.21%
Skewed Loadl 40.39% 50.95%
Skewed Load2 30.83% 42.63%
Skewed Load3 41.12% 55.21%
Skewed Load4 43.23% 53.74%

Figure 3.10: Percentage Savings of Bandwidth in MQPR Compared to PR

352 Wait Time

For calculating wait times, we assume that 10 channels are available for broadcast in PR. In
MQPR; and MQPR,, we vary the number of channels as 3 and 5. In Figure 3.11 the number of
user requests is on the x-axis and the average wait time in secondsis on the y-axis. The wait times
are reduced using MQPR; although just 5 channels are used for broadcast compared to 10 for PR.
It is further observed that the wait times with MQPR; are dlightly lower than MQPR;. The
average wait times in PR and MQPR; are almost the same up to 17 user requests. After that the
wait time calculated for MQPR; remains almost the same but the wait time calculated for PR
increases rapidly. Figure 3.12 gives the plot of average wait time. Thisis similar to Figure 3.11,
but only 3 channels are used for broadcast in MQPR; and MQPR,. Even when using just 3
channels for broadcast the average wait times are either below PR or comparable. Wait times
increase up to a certain maximum value (in this case 250 seconds) for 12 requests and after that

they remain almost constant using either MQPR technique.
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Figure 3.11: Average Wait Time with 5 Channels
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Figure 3.12: Average Wait Time with 3 Channels

Figure 3.13 compares the average wait times for the mobiles for up to 30 requests (which

we refer to as Case 1). We do the comparison for varying loads, broadcast methods, and
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broadcast channels. The same comparisons for up to 50 requests (which we refer to as Case 2) are

givenin Figure 3.14.

Type of Load Avg Wait Avg Wait Avg Wait Avg Wait Avg Wait
Timein PR Timein Timein Timein Timein
with 10 MQPR; with | MQPR, with | MQPR; with | MQPR, with 3
Channels 5 Channels 5 Channels 3 Channels Channels
Baanced 64.61 4,98 417 638.19 61.89
Skewed Loadl 81.92 4.36 3.34 51.08 43.64
Skewed Load2 31.50 3.10 2.77 36.97 31.49
Skewed Load3 105.82 6.53 5.38 78.62 66.85
Skewed Load4 98.57 3.93 3.21 58.21 48.27
Figure 3.13: Average Wait Times for up to 30 Requests
Type of Load Avg Wait Avg Wait Avg Wait Avg Wait Avg Wait
Timein PR Timein Timein Timein Timein
with 10 MQPR; with | MQPR, with | MQPR; with | MQPR, with
Channels 5 Channels 5 Channels 3 Channels 3 Channels
Baanced 208.11 7.51 6.91 86.05 81.31
Skewed Loadl 221.04 7.19 5.37 76.59 64.28
Skewed Load?2 121.35 4.80 4.35 52.10 47.48
Skewed Load3 346.53 9.15 8.33 118.77 110.36
Skewed Load4 262.28 591 4.09 78.55 63.54

Figure 3.14: Average Wait Times for up to 50 Requests

The wait times for PR are high even though it uses 10 channels. These wait times are

comparable to the wait times in MQPR approaches with just 3 channels in Case 1, but they are

much higher in Case 2. The wait times for MQPR; are uniformly lower than wait times cal culated

for MQPR; The large impact of a small increase in the number of channels using MQPR

techniques is evident from the relatively lower wait times. The average wait times computed by

MQPR approaches remain almost the same in Case 1 and Case 2, but the average wait times
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computed by PR are higher for large number of requests than smaller number of user requests. In
Case 1 the wait times calculated for Balanced and Skewed Load2 using MQPR; are dslightly
higher than those calculated using PR, but this is still reasonable since we are using just 3
channels in MQPR; compared to 10 in PR. MQPR, overcomes this and the wait times in these
cases are almost the same as those in PR. In other words, MQPR, always outperforms MQPR;
and PR in our study for average wait time calculations. Figure 3.15 gives the percentage
reduction of the average wait time for MQPR, compared to PR. It can be seen that reasonably

good reduction in wait time is obtained by using MQPR.,.

Type of Load Upto30 Upto 30 Up to 50 Up to 50
Requestswith | Requestswith Requestswith | Requestswith
3 Channels 5 Channels 3 Channels 5 Channels
Balanced 4.21% 93.55% 60.93% 96.68%
Skewed Loadl 46.73% 95.92% 70.92% 97.57%
Skewed Load2 0.03% 91.21% 60.87% 96.42%
Skewed Load3 36.83% 94.92% 68.15% 97.60%
Skewed Load4 51.03% 96.74% 75.77% 98.44%

Figure 3.15: Percentage Reduction in Average Wait Time using MQPR, Compared to PR
We have seen that MQPR techniques outperform PR for both bandwidth and wait time
calculations. MQPR; performs well in wait time calculations. We have seen that by grouping the
gueries and adopting the push-based broadcast mode for pull queries, we obtain reduction in the
bandwidth usage. Wait times computed by MQPR approaches are lowered in case of higher
number of requests and they are comparable to the wait times computed by PR approach in case

of lower number of queries.
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Chapter 4  Conclusions

We present the contributions of our thesis, followed by a discussion of open research questions.

41

Contributions

We give below the contributions of the thesis.

We investigate MQP techniques, adopt a multigraph technique, and use it to propose an
improved method for handling pull requests that creates multiquery materialized views to
be broadcast.

We give cost metrics to calculate bandwidth usage and wait time for materialized views
that are broadcast to answer queries.

We extend the TPC-H-SPJ query set with additional subsumption queries to test MQP
scenarios.

We devel op a software system to implement MQP using multigraphs.

We conduct a performance study for different types of loads and see how the bandwidth

and wait time are affected by the type of method used and the nature of loads.

In our performance study, we observe that by grouping queries and creating materialized

views to broadcast, we obtain reductions in bandwidth usage and also lowering of wait times.

MQPR techniques outperform PR for both bandwidth and wait time calculations in our study;

MQPR; performs better than MQPR; in all cases. More savings in bandwidth usage are obtained

for heavy load compared to the lighter load, the reason for this being more bandwidth is used for

large size queries and by taking care of repetitions and subsumptions a lot of savings are

obtained.
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4.2 Future Work
In this section, we outline future problems that can be investigated in the framework presented
here.

In our work we do not consider the case of queries with overlap. A performance
evaluation including this type of query relationship can be done using our framework. The study
can be done using the AND/OR operator graphs and applying M QP techniques suggested by Roy
and others [RSSB 2000] instead of muligraphs to compare their relative merits.

Determining optimal time window is an important issue and algorithms can be devel oped
to determine the length of time window for which the server needs to wait. In our work we
assume a centralized architecture but a distributed architecture is a more realistic one and work
can be done on how different requests can be handled in this environment.

Algorithms can be devel oped to study the frequency of pull requests and determine what
to broadcast on the push channels to reduce the number of pull requests. Dynamic broadcasting
techniques can be developed and broadcast disks can be reorganized so that the number of pull
requests remains low.

Subieta proposes a method based on stored queries in a cache, which is a <query,
response> pair [SR 1987]. When a collection of stored queries is available, responses to some
gueries may be obtained locally. In the mobile environment algorithms can be developed for
updating the views stored in the cache so that the cache can answer future queries. This may

reduce the number of pull requests that a mobile needs to send to aremote server.
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Appendix A Testbed

This appendix gives the base relations and the database schemathat are used in the experiments.

A.1l BaseRelations
The testbed schema shown in Figure A.1 has eight relations [TB 1999]. The base relations along

with the attributes of each where the primary keys are in bold and the foreign keys arein italics.

Part (partkey, name, mfgr, brand, type, size, container, retailprice, comment)

Supplier (suppkey, name, address, nationkey, phone, acctbal, comment)

Partsupp (partkey, suppkey, availqgty, supplycost, comment)

Customer (custkey, name, address, nationkey, phone, acctbal, mktsegment, comment)

Nation (nationkey, name, regionkey, comment)

Lineltem (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, tax,
returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstinct, shipmode,
comment)

Region (regionkey, name, comment)

Orders (orderkey, custkey, orderstatus, total price, orderdate, orderpriority, clerk, shippriority
comment)

Figure A.1: Testbed Schema

In the next section, the adaptation of TPC-H-SPJ benchmark and the definitions of the selected

queries that are used as materialized views in this thesis are given.

A2  Views

We present the definitions of fifteen queries we selected and modified from the TPC-H-SPJ
benchmark. The fifteen queriesthat are used as materialized views are presented in SQL. We give
below the queries we considered in our test bed. The explanation of how these queries are derived

from the TPC-H-SPJ [T 1999] query set isgivenin Figure A.2.
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Testbed TPC-H-SPJ
Q1 Same & Q2
Q2 Seled clause alded to Q2
Q3 Seled clause removed from Q3
Q4 Same & Q3
Q5 Same &8 Q4
Q6 Seled clause alded to Q4
Q7 Seled clauses added to Q4
Q8 Same & Q5
Q9 Seled clause alded to Q5
Q10 Seled clause removed from Q6
Q11 Same & Q6
Q12 Same & Q7
Q13 Seled clause alded to Q7
Q14 Seled clause removed from Q8
Q15 Same & Q8

Figure A.2: Testbed Derivation from TPC-H-SPJ Query Set

Ql) CREATE VIEW extended price AS
SELECT part.type, lineitem.extendedprice
FROM lineitem, part
WHERE li neitem.partkey = part.partkey
AND lineitem.shipdate = '199509-01

Q2) CREATE VIEW extended_pricel AS
SELECT part.type, lineitem.extendedprice
FROM lineitem, part
WHERE li neitem.partkey = part.partkey

AND lineitem.shipdate = '199509-01
AND part.retail price> 50,000

Q3) CREATE VIEW parts_suppier_relationship AS
SELECT part.brand, part.type, part.size
FROM PartSupp, @t
WHERE PartSupp.partkey = part.partkey
AND part.brand = 'brandno45

Q4) CREATE VIEW parts_suppier_relationshipl AS
SELECT part.brand, part.type, part.size
FROM PartSupp, @t
WHERE PartSupp.partkey = part.partkey
AND part.brand = 'brandno45
AND part.size="'45

Q5) CREATE VIEW important_stock_identification AS
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SELECT PartSupp.partkey, PartSuppsuppycost, PartSuppavail gty
FROM PartSupp, supgier, nation
WHERE PartSuppsupgkey = suppier.supgkey

AND supgier.nationkey = nation.rationkey

AND nation.rame = 'germany’

Q6) CREATE VIEW important_stock_identification1AS
SELECT PartSupp.partkey, PartSuppsuppycost, PartSuppavail gty
FROM PartSupp,supgier, nation
WHERE PartSupp suppkey = suppier.supgkey
AND supgier.nationkey = nation.retionkey
AND nation.reme = 'germany’
AND suppycost > 12,000

Q7) CREATE VIEW important_stock_identification2AS
SELECT PartSupp.partkey, PartSuppsuppycost, PartSuppavail gty
FROM PartSupp, supgier, nation
WHERE PartSupp supgkey = suppier.supgkey
AND supgier.nationkey = nation.rationkey
AND nation.rame = 'germany’
AND suppycost > 12,000
AND availqty > 10

Q8) CREATE VIEW large volume_customer AS
SELECT customer.name, customer.custkey, orders.orderkey,
orders.orderdate, orders.totalprice
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24

Q9) CREATE VIEW large volume _customerl AS
SELECT customer.name, customer.custkey, orders.orderkey,
orders.orderdate, orders.totalprice
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND lineitem.quantity = '24'
AND orders.orderstatus = ‘ shipping’

Q10) CREATE VIEW shipping_priority AS
SELECT lineitem.orderkey, orders.orderdate, orders.shippriority
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND orders.orderdate = '199503-15
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AND lineitem.shipdate = '199503-15

Q11) CREATE VIEW shipping_priorityl AS
SELECT lineitem.orderkey, orders.orderdate, orders.shippriority
FROM customer, orders, lineitem
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND orders.orderdate = '199503-15
AND lineitem.shipdate = '199503-15
AND customer.mktsegment = 'buil ding'

Q12) CREATE VIEW returned_item_reporting AS

SELECT customer.custkey, customer.name, customer.acabal,
nation.rame, customer.address customer.phore

FROM customer, orders, lineitem, nation

WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND customer.nationkey = nation.rationkey
AND orders.orderdate = '199410-01

Q13) CREATE VIEW returned_item_reportingl AS
SELECT customer.custkey, customer.name, customer.acabal,
nation.rame, customer.address customer.phore
FROM customer, orders, lineitem, nation
WHERE orders.custkey = customer.custkey
AND lineitem.orderkey = orders.orderkey
AND customer.nationkey = nation.rationkey
AND orders.orderdate = '199410-01
AND nation.rame="canada

Q14) CREATE VIEW cost_supgier AS

SELECT supgier.acdbal, supgier.name, nation.rame, part.partkey, part.mfgr
supdier.address supier.phore, supgier.comment

FROM part, supgier, PartSupp, ration, region

WHERE PartSupp.fartkey = part.partkey
AND PartSupp.suppkey = suppier.supgkey
AND supgier.nationkey = nation.rationkey
AND nationregionkey = region.regionkey
AND part.size="15

Q15) CREATE VIEW cost_suppierl AS
SELECT supgier.acdbal, supgier.name, nation.rame, part.partkey, part.mfgr
suppier.address supdier.phore, supgier.comment
FROM part, supgier, PartSupp, ration, region
WHERE PartSupp.partkey = part.partkey
AND PartSuppsuppkey = suppier.supgkey
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AND supgier.nationkey = nation.rationkey
AND nation regionkey = region.regionkey
AND part.size='15

AND region.rame=" europe’

Figure A.3 gives the subsumptions introduced in the testbed query set.

Query Subsumes
1 2
3 4
5 6,7
6 7
8 9
10 11
12 13
14 15

Figure A.3: Subsumption Relationshipsin the Testbed

Figure A.4 gives the sizes of the queries.

Query Sizein Bytes
Q1 105,035
Q2 94,532
Q3 1,440,000
Q4 28,800
Q5 1,024,000
Q6 512,000
Q7 460,800
Q8 5,201,053
Q9 520,106
Q10 18,000
Q11 12,000
Q12 244,122
Q13 9,765
Q14 1,312,000
Q15 262,400

Figure A.4: Query Sizes

The ordering of the queries computed in deaeasing order of their final sizesis asfoll ows:

Q8, Q3, Q14,Q5, Q9, Q6, Q7, Q15,Q12, Q1, Q2, Q4, Q10,Q11, Q13.

The distinct query load considered includes the foll owing queries:

Q1,Q3,Q5,06,08,0Q10,Q12,Q14.

These queries do nd have any subsumption relationships between them.
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Appendix B Resultsfrom the Experiments
The results of al the experiments are given in the following tables for different kinds of loads.
Table B.1 gives the results for the Balanced Load. Table B.2, Table B.3, Table B.4 and Table B.5
give the results for Skewed Loadl, Skewed Load2, Skewed Load3 and Skewed Load4,
respectively. Table B.6 gives the results for the Distinct Query Load. The description of these

loadsis given in Chapter 3. The following are the notations used in the tables.

* N Number of queries

* (1-19) Frequencies of queries 1-15

« BW(N) Total bandwidth used in PR (in bytes)

« BW((M) Tota bandwidth used in MQPR (in bytes)

*  Wait(N)10 Average wait time in PR (in secs)

e Wait(M)5 Average wait timein MQPR; using 5 channels (in secs)
«  Wait(NM)5  Averagewait timein MQPR; using 5 channels (in secs)
*  Wait(M)3 Average wait time in MQPR; using 3 channels (in secs)

Wait(NM)3  Averagewait timein MQPR; using 3 channels (in secs)

47



© o ~NoOUNWNRZ

O AR A AR ARS8 LYY YRR RYNNNRENYNNRNNBSE R BB R
S o oAU O WNRBSOoOId N DN PRPO OO NOARDODNROOONOUO N~N®WRN PR O
OWNRNWNWNNRARNOWRARNNRN®WARNAMNONROOROONNRINRREROOWROOONEROOO O R

N OO WERNANWANOWWWWWWENORPRERERPNMNMNMWORMNORLPLPONMOOORRLRPOOOOOOOON

W WWHEWNNNBENWBABNDENMNOBEBNENMNNWODNWOWWONEPEERPNNMENWOOOOWRENOOOOOOOOW

P O WEREFPNOANWOWRPORR WONOONNERWONWONWNMNONORPRONEFEWNDMRPPRPORPRRPPOOOOREOOSMN

G NDNNAENDMOWNMNMNMOAOBRMRPOURPRMNMNMNOMNRPRPRPRWOORNRPPRPOOMNMNPORPORPREPPONMOOOORELOOOWM

N OO WWNDDWAMNONREPRPRPOWNMDMNMNNMNMMNMNOPRPPERPPWOWMANMNOWOORLPNORPPEPPEPNPPOOOMNMOOORP,LROOOOO

B W DO WMNMDIDNWNNWWANOPMNWONMAENOOPRPR OORFRPRPOWNWEFRFONREPREPNOOORRERPRPRPLROOOOOOOS-N

W NEFPWEAWWERERWONWPRPRPOOBRAMNMNDNMNMMNOWRARONPREWONRERPRWMNMDNONMPOOPRPRREPENOMNMOMNMORLOOOOO

0

9
0
0
0
0
0
1
0
1
0
0
0
1
3
1
0
1
1
1
0
2
3
1
1
1
2
2
2
1
1
2
2
4
0
3
2
2
4
3
0
1
3
4
3
5
3
2
2
2
3
1

P P DNONNMNNNDMERPRPEPNNMNMNDAONONMOOOERNMNNMNENORRRPRPRERPORPRWMONOOR, OOOWOOOTLRDO

0

AP ONMNOUUOOWED™MWUUAOWWOANNIEONDMNMNPEPEPNMNWRFRPROPRPWRRPPPONMOMNMOWOOR,RPEPLORL,PEL OO

0

N OO NNDNNOONDOORFRPNMNOWNWEWONWMNENNRPEPPOORPMNMMNMNOOOORPRPFPOOPRP, WO OOOLPRO

Table B.1: Balanced Load

0

GO WNDMOAODMDMNMNNNENORPNMNRE WOWONWMNDMNERERWWNEPEPOAONRPERPNOORREPREPLOOOOOOOOLPR

1

W WEPNWOWNWOAOOOR,R WOREPFPNMNUOOERPNORMANMNOMNMOUNEPPERPNOPRPORPRPREPEPNMNOOOONMEOOODO

10 11 12 13 14 15

0
1
0
1
1
1
1
0
1
1
0
1
1
3
1
2
1
1
1
1
0
2
1
2
1
1
1
2
1
2
2
3
1
1
4
5
2
3
2
1
1
5
2
5
4
4
5
5
2
8

BW(N)
10250
2126
2272
10368
14964
58637
23065
94745
39020
115950
15173
151613
79519
81623
67918
36678
54428
97769
121771
74499
141165
151593
184248
146955
168835
83699
197582
175389
138893
91353
231142
242802
143104
163506
175841
191981
272946
295435
175897
256970
223218
253590
192963
240040
250486
289039
281441
163400
238135
280600

BW(M) Wait(N)10 Wait(M)5Wait(NM)5 Wait(M)3Wait(NM)3

10250
2126
2272

10368

10964

51703

10390

46234

19945

62753

12287

72040

61109

60069

56022

23575

22400

73001

64719

31611

67170

71088

72919

73001

73001

24149

69001

73001

64801

36431

73001

69001

32368

61976

73001

71170

69001

64801

73001

73001

73001

64801

73001

69001

73001

73001

73001

73001

73001

73001

0

O OO OO0 Ooo oo

0.69354
16.5291
2.02915
9.4774
8.125
7.75854
19.7195
33.4213
31.3426
127.847
87.6975
171.349
110.327
149.447
101.002
164.218
190.453
362.804
104.006
240.168
198.813
494.005
292.784
206.831
256.835
367.64
353.333
322.457
424.955
396.25
480.186
421.653
569.974
587.302
438.759
443.91
704.185
363.499
536.404
607.704

0

OO OO0 O0OO0OOo0O o oo

2.88462
2.00893

0.625
4.06714
5.41199
11.4614
9.99441
1.40625
4.43806
2.26438
14.6783
8.01009
15.9419
18.1248
17.2794
7.36802
10.9134
12.8161
17.6968
19.2687
2.55682
4.54963
12.1906
2.41016
20.4029
18.3857
5.70984
9.61211
11.7221
15.6854
9.59557
16.5178
12.1911
11.9261
10.2256
6.88647
10.6692
7.68969

0

OO OO0 O0OO0OO0oOOoOoo

2.88462
2.00893

0.625
2.30933
1.27597
10.6801
9.99441
1.40625
2.48605
2.26438
14.6783
8.01009
14.8169
3.92224
16.7585
7.36802
10.9134
12.8161
17.2432
19.2687
2.55682
4.54963
11.7888
2.41016
18.8826
18.3857
3.90695
8.90898
11.7221
15.6854
9.59557
16.5178
12.1911
11.9261
10.2256
6.88647
9.80828
7.68969

0

0

0
2.34375
3.75

0

0
3.51562
88.1911
57.4117
1.38707
247.68
63.587
22.1691
10.3456
22.8677
82.8028
132.918
65.5741
70.0143
110.537
118.527
178.531
109.423
179.929
91.3291
116.134
100.686
67.3478
98.8313
191.925
132.414
52.5791
447177
147.256
103.105
134.923
83.8798
83.181
109.152
138.602
86.9218
118.641
114.114
139.561
137.394
123.003
87.613
126.31
101.529

48

0

0

0
2.34375
3.75

0

0
3.51562
71.7793
57.4117
1.38707
263.573
63.587
22.1691
10.3456
13.4146
28.0223
130.659
65.5741
70.0143
42.0474
118.527
178.531
103.757
176.675
50.8845
112.11
100.686
67.3478
98.8313
188.42
132.414
52.5791
447177
144.151
103.105
119.755
83.8798
69.25
103.718
138.602
86.2522
118.641
114.114
139.561
137.394
123.003
87.613
119.657
101.529
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GO oo MMNIIONDWDANWOWPMNOONOTOWORNMNUUOWERNAMNENMNNORPWORPROORENRPRPRPPOOORORO

WODOTOOWRARIUONUODMIIORARWWWWEPRNWWRPFRPORPRPPODMEFNOFPONMENFPOPRPNORPFPOOOODO

WOAODhOWROFRPROUODWRAROODOBRANNOORPEPNMIONDMNPRPBPAPORPPWORPPWORPPPNOPOPRPOPFRPOOOOOO

OWNOOWRARDRWUAOWNWNWWNWWWOUNRPEFPRERPENNWOMNMNMNOWERARPRDMRPPOPOOONREFPWEREFP OO

7

NNNDOOOOWOOWANOWRARPEPNOOUONORPREPRERPPEPNWOWWONRPFPOORPNOONORFRPROOOOO

=
» O

8 9 10 11 12 13 14 15 BW(N)

PRPNNWORONRPRARPEPNWRPNANPRPORPRNWAOREPNOOORREPEPRPNPWORPROOOOOOOOO

NOWBNNUONNRPOWRWWNENNMNNNORPROORPROOORPROONOOORPROOOOOOOOOOR, OO

NOBDMRPFPONMWONMNNREPERPNOWORNREPRERPEPNOWOOWOORRFRPOOOORPROORRPFRPOONORPROODO

10250
12070
8139
15466
13559
8926
18427
35384
22876
56263
45400
151463
81663
106678
75901
76057
94408
121103
47341
125015
82944
150022
104659
146898
301530
176468
171441
164104
131484
155683
125815
179176
271353
190352
173822
268973
226188
152849
194859
299322
148136
234232
149964
226074
111211
254506
286424
270224
169822
220185

P NNEFEPFNMNENNNMNPEPNPRPORPRPPRPORPEPNNPORPNEPPRPOFRPNONPNOONOWPRPROOOOOOOOOO
WOAONNENNEPENRPRPRPORPNOFRPEPNNORPREPDMNNRPORPREPNONORPRORPRWRPRPOONMNOOOOOOO
PRPPRPPRPOWONNNMNBNENONNMNMNORPEPNPRPPOFRPOPRPORPORPORPPPOOOOOPRPOONOORREFR OO
WNDBPRPNOWRPRRFRPROWWWNRPRPPRPOORPRNORPRORPROOWWNWNORPRPOOOOROOORPROOOOOOR
NNNEFEFNMNNPFPORPNOMNMWANOPFRPWORPRPPPPPPNOOOOOOOOMNWRPFPOOORLRPFPOOOOOO

Table B.2; Skewed Loadl

BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3

10250
12070

8139
15466

4820

5186
10351
27827
20211
52920
22118
67734
64661
53694
51728
62611
60098
72954
20211
32368
36384
72872
67094
72954
64754
64801
72954
64801
32368
62970
61976
73001
64801
64754
73001
72954
73001
69001
73001
73001
64801
73001
36431
73001
28231
73001
73001
73001
61976
73001

0

[eNeoNeoNeoNoNoNoNeNo]

1.27841

1.5625
9.14255
3.95089
29.2588
10.3206
23.0928
85.3466
24.9491

184.77
82.8372
104.923
43.1365
203.434
340.868
70.9195
250.166
369.149
202.608
415.895
196.159
293.011
280.854
270.803
314.042
472.466
459.314
287.708
521.165
537.778
364.938
443.209
344.655
517.418
275.961
419.285
824.916
547.081
556.671
667.343

0

[cNeoNeoNeoNeNoNoNoNoNo]

2.34375
6.3122
6.83036
0

0
1.00023
15.2389
0
4.92188
24.7846
9.69688
0.61141
5.37223
21.5691
10.55
6.77286
7.87026
3.87931
3.18633
3.53831
12.0151
18.3288
8.61914
10.2479
16.0202
14.1295
7.64947
11.3009
11.0184
6.74676
9.82403
23.2271
14.0662
15.5772
11.9765
14.3652
11.1845
1.60714
7.17352

0

[eNoNeoNeoNeNoNoNoNoNo]

2.34375
6.3122
6.83036
0

0
1.00023
14.1973
0
1.40625
5.24684
7.56619
0.61141
5.37223
21.5691
10.55
6.77286
7.87026
0.96983
1.66055
3.53831
4.32214
15.3459
8.61914
7.43538
14.4577
13.3694
6.53927
10.2192
9.26055
6.74676
8.48475
2.56241
12.4682
5.83455
10.1422
11.074
10.3056
1.60714
6.32977

49

0

0

0
1.90723
0
4.6875
3.26953
44.3547
4.6875
2.93203
20.0334
123.349
78.7182
60.2584
14.4706
47.8207
12.2546
173.846
2.22039
78.4736
162.096
142.682
26.3611
92.1154
109.663
53.1125
83.6318
81.4939
62.6359
45.3517
35.652
131.678
104.75
81.0271
120.134
192.018
168.353
82.5104
138.184
128.869
70.6014
113.705
141.492
161.315
76.4925
139.527
164.057
134.624
20.8651
91.2211

0

0

0
1.90723
0
4.6875
3.26953
44.3547
1.5625
2.93203
20.0334
123.349
78.7182
59.0996
14.4706
32.4347
10.9083
161.772
2.22039
51.3082
86.6645
113.19
26.3611
92.1154
112.57
53.1125
83.6318
53.694
37.7296
37.2654
35.652
63.0524
101.037
57.9952
98.4018
173.908
160.199
73.9319
125.859
115.286
58.9923
103.357
48.9261
148.967
48.8853
125.354
134.436
125.196
20.8651
84.7014
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NBWOONUUUUBRDMWWWRUNWNPWERNENENMNNREPRPONMNMMNMNMNNWERENOORPOOOOOOODO

WORPRFPNOWOORFPEPEPNNOMNOORPROOROWNRPRRERPONRFPWONRPPOOOORPRPLROOONORPROOO

NNWWWOWNAARWRMNAODWAONORPRPFPWOWONNEPEPNWOWODMNPRPWORPNDARPEPNWOMMRWOORPRORPPOOOOOOR OO

APRPODMFPRPPADMPOFRPDNPFPOUORPREPNOOAMNOORPRPPOOONRPARPPOFRPONRPORPPOOORPRFRO

NWRFRPRMNOVORPPPARPWWONPEPNMNNWONMPPOWRPPOOOORRPPFPOORPRPFPPOORLRFRPOFRPROOODO

NWNNMNNORPRWNWNOORNMONMNOORPRRPPORPRWWRERPNRPRPORPRPOPRPOOPRPOORPROOOOOOOO

NWWNWWRERPNBANREPNRPWORPNPWONMNOMRPRPORPPOORPRRPORPRPORPNNPOOOOOOOOOOOLR

ANOFRPRFPONEPEBANNMNREPONNMNNENENOOOWRRFRPWWRNORPRORRERPPRPORRPRPOOOOOORLROODO

QO WANOOWWUWOND®MUIUONWRFRORPPEPNOMWPARPRWOMNMNUIUOWOOONORNNRPEFPONMNENRPERPORO

BW(N)

40633
8140
10132
17361
7009
22904
24514
16408
26760
21497
41826
15088
70617
106014
100569
87127
60838
86587
101600
36077
88452
67112
73976
59015
111838
111987
31446
99683
124095
182624
128811
132155
172339
133051
183325
102948
202402
102887
200406
126141
181691
242017
170594
143524
200479
223591
195882
249539
221201
219497

OO WWOANNOAORMNWANDMDMNOWAPRNWWNOWEREPNRPRREPPRPORPRPONMNNORPRWEFERONOOOOO
ONNOODOOUTWONOOWRARWWRMNIAORMPMNOWNWWWEANBDBNMNNMNMNMNNPEPNOOORPFPOORFPORRELPEPOO
WWNOAODRAWONNOAONDMNOONOWDRADREDMNWNOAONDWONENMNNMNNENOOWROWOWORERLRERPLOOOOO
NWFRPNMNMNNEPENNOWONORPOPRPPFPOOONWRFRORPNONOORFRPOOORPRONRPFPOOONMNORFRPROOOOOO
NOWNDMDMNWONPEPNOOWUONDMNORPRORPREPNRPNRPRPPOMPRPPOOORPRORPROONOORPROOOOOOO

Table B.3:; Skewed Load?2

40633

8140
10132
17361

6868
11466
20297
12097
14764
20287
27411
10931
60069
51873
49670
72954
26041
62704
62751
27968
60401
49376
36431
28231
73001
69001
12806
72954
61976
57976
60801
53729
53776
73001
61976
60801
73001
64801
72954
62751
73001
53776
61976
73001
61976
73001
73001
73001
61976
73001

0

[eNeoNeoNeoNoNoNoNoNo]

[E
N
1N
£
fuary

1.27148
3.53365
2.55385
3.71328
15.4426
20.6159
26.2717
33.0287
15.7484
42.0879
67.8048
71.5207
102.4
92.3398
50.8438
34.6393
68.2684
173.331
118.372
90.7042
137.466
115.691
129.242
481.18
131.814
206.516
132.32
365.232
162.698
259.242
365.611
171.368
222.891
231.014
259.931
314.737
589.072
342.642
413.133

0

[eNeoNeoNeoNoNeoNoNeNo]

2.55682
0
2.16346
0

0
12.6011
0
0.52083
1.48026
1.40625
13.7316
2.68466
11.9261
9.7679
9.37719
8.47566
3.02083
4.26995
3.20043
5.90625
11.9491
3.28125
5.96591
6.89499
4.58036
7.61947
12.6093
4.37983
7.27374
1.05469
10.0636
6.62946
2.87791
7.83212
7.0625
8.66406
6.43459
14.8483
5.7398
11.2533

0

[eNeoNeoNeoNoNoNoNeNo]

2.55682
0
2.16346
0

0
11.4292
0
0.52083
1.48026
1.40625
13.7316
2.68466
8.96977
7.42415
8.25219
7.39393
2.39583
3.60031
3.20043
5.90625
11.9491
3.28125
3.83523
5.24058
4.58036
7.61947
12.6093
4.37983
7.27374
1.05469
9.72066
4.62054
2.87791
6.55371
3.9375
8.66406
6.43459
14.8483
4.30485
10.972

50

0

0

0
3.51562
2.8125
0
2.00893
3.51562
2.08333
3.57539
90.5658
9.18197
16.5186
2.97405
3.82969
160.281
85.0561
34.9521
43.1505
27.981
67.0252
30.2727
91.0916
68.8319
114.804
69.1273
30.0637
63.3526
27.8043
54.9749
52.4707
35.5788
50.0384
79.5874
43.805
36.4702
145.454
47.7859
97.5107
27.3738
120.082
55.897
29.704
96.1298
63.4256
104.056
78.1687
161.045
45.6414
125,574

BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)3

0

0

0
3.51562
2.8125
0
2.00893
3.51562
2.08333
2.93203
58.4462
9.18197
16.5186
2.97405
3.82969
146.698
35.3537
26.8762
32.4142
27.981
73.501
27.0767
81.1057
59.7767
106.111
60.7688
20.973
55.5911
27.8043
54.9749
59.0509
34.4069
41.0143
66.8037
43.805
36.4702
150.967
47.7859
97.5107
27.3738
117.432
47.3886
29.704
92.1148
31.172
104.056
78.1687
161.045
39.564
123.401
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GOBEANODOWWWNUIONWOOIWOWOOWOWNENEFRENNNOORFRPONRPEPNORFRPORPNPEPNRENOOOOO
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8

OO DDAOBRMNOPRPODMDMBENAEADIDNDPONPAPONEPRPPOMNOFRPNORPRPPRPPOONOORPOR,PORL, OO

=
=

9 10 11 12 13 14 15

PBANNMNNANOORPNOUUOWOWRWRWWWWNNNWOWANRPRAPRPOOWWR WREPENEPNPOOORLROOORO

WWDHRONWPAERPRNEPNENOWNRPERPOWWNNRPEPNOOORRERPWNONNNRPOORPROOOOOOORRER OO

BW(N)

738
15313
40998
29640
62840
13202
71797
45396
50700
134129
32307
41364
106857
90542
84090
85652
74703
151871
118644
209798
218542
211626
133900
147424
158399
208741
235389
273815
199544
202906
281660
249730
275477
314057
206449
263057
326079
270472
378151
205454
346522
255527
334794
363589
336440
398933
350425
329259
360687
625315

WOOOFRPOFRPNPFPFEPNNMNMNNWRFRPPEPEPNNNOMNMOMNMNPOPRPOORPRPOPRPOWORPOORPORLRPFPOOOODO
PRPAEDMNIAOPRWOPRPPOOFRPWRPNMAMPRPONPEPENWONPEPRERPNRPPPORPOORPOMNMMNONRPOPRPOOOR,ROOOO
WWDBARRPNEPRMMNOWWERERNNNEPNORPRONRPRPRPONOWRORPRWENRPOOOOOORPROORPROOOOOOO
AR WWBANOOONWWNOORPDMWONWRAPUOWOAOODOWWNREPNMAPORAMRPPPNORPPFPWFRPNPFPORPEPLOOO
PODMOOOWFRONDMOFRPEPNPFPONMEPENFEPREPNARPONMNFPFONOFRPORPOPRPOORRFPRPPRPPOOOORLROOODO

Table B.4; Skewed Load3

BW(M) Wait(N)10 Wait(M)5 Wait(NM)5 Wait(M)3 Wait(NM)z

738
15313
40998
29640
60790

9202
59797
19146
31500
58883
21041
36349
62753
60884
57894
60069
36349
60063
62103
73001
67170
73001
69001
72954
68954
72872
73001
72919
73001
73001
73001
72181
71123
73001
72919
73001
72954
73001
73001
71170
71170
73001
73001
72919
73001
72919
72861
73001
73001
73001

0

[eNeoNeoNeoNoNoNoNolNol

°
fox}
Q
jov}
g

2.65625
23.9864
16.3015
42.0816
19.5021
70.8566
77.6451
80.1277

145.78
80.6384
205.018
170.283
224.881
270.368
492.598
346.019

448.52
264.827
191.905
378.981
546.219
568.844
493.475
387.543
350.054
728.272
553.531
825.464
605.587
745.664
592.537
656.969
1007.43
751.672
918.115
911.861
635.476
994.711
1499.62

0

[cNeoNeoNeoNeNoNoNoNoNo]

14.6526
0

0
3.9375
3.51562
10.343
5.60156
1.60609
13.715
3.04185
17.4766
19.6731
8.01009
11.722
17.4036
20.3186
16.8301
12.7732
15.5514
19.4366
2.19727
3.60689
19.7896
7.93741
17.1277
11.5958
16.5963
24.587
3.82588
5.04621
6.86579
18.8102
12.7082
16.7757
12.1556
10.4756
13.1388
15.6932
23.0691

0

[cNeoNeoNeoNeNoNoNoNoNo]

8.49818
0

0
3.9375
0.87891
10.343
5.17773
1.60609
13.715
212277
6.28675
19.6731
8.01009
11.347
5.00397
20.3186
16.8301
12.7732
15.0827
19.4366
2.19727
2.91335
18.5488
7.93741
17.1277
11.5958
16.5963
24.587
2.87227
5.04621
6.86579
18.8102
12.7082
15.5257
12.1556
10.4756
13.1388
15.6932
21.1003

51

0

0

0
3.51562
38.1441
6.875
13.0619
1.90723
22.2328
0
49.5962
109.179
66.2443
29.2547
43.1029
25.4365
103.133
30.4015
47.9422
161.109
85.3765
191.531
133.441
114.146
101.898
219.002
226.958
203.638
159.42
172.125
211.628
156.558
192.401
220.243
109.055
187.598
136.792
182.003
261.551
142.921
249.776
94.991
211.426
164.173
183.923
152.753
140.442
148.628
181.701
251.604

aoNeNe]

3.51562
38.1441
6.87%
13.061¢
1.90722
22.232¢
C
49.5962
80.3004
66.2443
29.2547
38.227¢
14.2692
85.7561
29.9327
47.1392
161.10¢
38.8664
91.712€
128.5¢8
114.14€
97.552
97.1892
226.95¢
197.611
157.07€
168.502
211.62¢
151.037
185.792
202.10€
105.841
187.59€
132.991
182.002
261.551
134.421
249.77€
94.991
203.68<
164.172
174.264
152.752
140.442
148.62¢
181.701
247.27
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0

ONDBNNEFEPNEPRANOFRPPFPEPNOOFRPRWONMNRFPORPPEPPPPONPEPNRPPPOOOONRPEPRERRPLOOOODO

0

A NP WOWNMNNOOOOWONENNREPENRPEPPRPOPRPNMNNOPRPNPFPOPOPFPOPFPOORPPFPOPOPOOOOOOLR

0

P NWPRPRWOWORPNMNREPNWORPEPNMNNPEANMNENRPPRPONMRPRPPRPONMMNMPORPNMNOOROPRPWREPOPRPORL, OO

0

OMNONDNNORPNWNREPWMNWORPRPPWWRPREPPEPNNMNWONMPORPRPNOOMNOOPFPOOPRFPROOOOOODO

10 11 12 13 14 15

A NMNNMNNNWOWOFRPPFPNMNONMNRPOPRPOORPPFPPWWRPEPMARPNNMPOPRPNPOOPRPONMNOOMNMNOOOOOOOLRODO

BW(N)
820
2645
17363
12301
71483
56009
28377
50060
21711
27197
31376
37100
54153
94053
95547
45263
89751
105316
60954
133343
126314
218558
113544
155186
131514
267178
104914
206624
185932
185294
179054
199514
134904
109231
174026
175946
184046
269883
239962
225974
225034
189683
239547
237982
272147
273334
195048
188951
269725
221581

BW(M) Wait(N)10 Wait(M)5Wait(NM)5 Wait(M)3 Wait(NM)3

820
2645
17363
8301
59883
55559
16164
19466
17296
15466
24091
19295
26181
64801
34395
21953
58704
33703
36431
62841
73001
71030
28321
69001
73001
71170
32286
73001
72861
71123
72954
73001
36431
36431
62751
73001
36431
73001
71170
73001
71123
71170
71170
62970
72954
73001
32368
64801
72954
64801

0

[eNelelNolNelNeNeNoNo]

0.69354
3.75
3.98618
23.1158
62.1859
15.387
18.9691
156.329
42.238
94.3057
34.1738
219.153
171.233
110.68
131.061
495.47
321.307
190.195
412.813
450.062
298.509
543.657
355.656
180.615
213.539
328.392
571.773
497.461
500.202
610.446
562.426
394.274
603.478
704.599
805.914
574.955
541.091
489.296
659.573
721.118

Table B.5; Skewed Load4

0

O OO OO0 oo

1.04167
0
7.45987
0
3.24519
20.5974
1.875
2.60229
0.55147
0
18.7558
2.37598
7.25577
1.38707
2.03804
15.4342
6.65734
4.80424
1.5625
12.3076
5.65921
2.34687
7.10862
8.64429
13.2854
20.1351
1.20536
15.3033
23.3182
18.0766
4.15024
13.0698
2.81793
2.09431
3.46493
3.06658
4.11519
14.3718
3.88963
6.64176
7.12859
5.81359

0

O OO OO0 Ooo

1.04167
0
7.45987
0
1.08173
20.5974
1.25
1.64868
0.55147
0
9.37788
2.37598
5.24684
1.38707
1.63043
15.4342
5.53234
2.7503
1.5625
9.79646
5.65921
1.83828
7.10862
6.00757
5.39938
5.24058
1.20536
12.5689
3.358
16.2263
2.19411
11.6636
2.25972
1.73103
1.33594
0.81259
2.86519
11.9261
1.19681
4.00505
5.7893
5.81359

0

0

0
3.51562
38.1441
6.875
13.0619
1.90723
22.2328
0
49.5962
109.179
66.2443
29.2547
43.1029
25.4365
103.133
30.4015
47.9422
161.109
85.3765
191.531
133.441
114.146
101.898
219.002
226.958
203.638
159.42
172.125
211.628
156.558
192.401
220.243
109.055
187.598
136.792
182.003
261.551
142.921
249.776
94.991
211.426
164.173
183.923
152.753
140.442
148.628
181.701
251.604

0

0

0
3.51562
38.1441
6.875
13.0619
1.90723
22.2328
0
49.5962
80.3004
66.2443
29.2547
38.2279
14.2693
85.7561
29.9327
47.1392
161.109
38.8664
91.7126
128.55
114.146
97.552
97.1892
226.958
197.611
157.076
168.503
211.628
151.037
185.793
202.106
105.841
187.598
132.991
182.003
261.551
134.421
249.776
94.991
203.685
164.173
174.264
152.753
140.442
148.628
181.701
247.27
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Table B.6:

140
19250
54883
61273
28211
65931

144970
50477
74892

143477
94925

117106

119658

220861

164956

104385

159236

174449

191917

296643

194236

276059

174436

282185

233587

200739

264330

296115

234332

272248

312094

178372

378973

322196

256153

292482

478165

261476

347148

436807

263790

442759

315420

455233

374983

407852

353374

412300

556079

501086

[eNelelNelNeNeNeNeNeNeo e NeNe N o Ne e Ne No e Ne No o e Ne No e Ne Ne Ne e Ne Ne No Neo e Ne o e Ne Neo o oo oo Neo e NoNe)

BW(M) Wait(N)10 Wait(M)5Wait(NM)5 Wait(M)3 Wait(NM)3

140
19250
54883
51023
20211
61931
59703
32227
62751
71094
72861
62751
73001
72181
72861
73001
73001
73001
73001
60844
73001
72861
73001
73001
69001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001
73001

0

(el elNeNeNoNol

0
0

0
7.45987
8.01009
31.505
17.6407
56.4793
19.7805
70.4132
167.951
75.0229
285.437
165.16
342.879
119.025
210.695
155.908
234.864
471.854
470.161
723.025
663.888
412.296
267.632
719.829
531.547
481.744
569.799
1064.54
553.676
940.039
1203.19
723.64
926.225
646.362
1186.65
921.185
1227.57
909.192
1152.54
1891.64
1143.27

Distinct Query Load

0

O OO OO0 oOo

1.5625
2.8125
7.45987
2.34375
9.55739
4.01786
10.9411
6.00757
10.4812
9.89887
15.177
0
9.82403
14.9197
9.58118
17.6815
13.6919
8.47566
11.7218
13.7316
8.08378
9.61211
15.0498
4.7616
14.9899
10.8948
9.04252
9.89887
18.5025
6.53927
10.5797
14.1245
5.37481
14.6809
7.03316
12.2013
9.4816
9.27548
7.6314
9.71965
14.5926
12.097

0

O OO OO0 oOo

1.5625
2.8125
7.45987
2.34375
8.47566
1.00446
10.9411
6.00757
10.4812
9.89887
13.6968
0
9.82403
3.72994
7.74694
6.3488
5.53234
7.39393
10.6801
13.2294
8.08378
9.61211
14.1425
3.44324
14.5638
10.8948
7.83717
9.89887
7.47614
5.79914
9.85857
11.312
5.37481
14.6809
7.03316
11.5621
9.4816
8.96977
6.73379
9.71965
13.4446
12.097

0

0

0

0
2.8125
34.1305
35.168
44.3547
34.9963
180.63
104.985
42.1406
122.502
270.445
175.711
79.9427
125.608
127.747
165.929
26.0238
127.661
183.861
109.97
190.73
85.4133
102.06
139.575
155.848
106.083
116.107
163.472
63.8838
175.14
126.39
104.122
110.293
203.43
84.9275
124.497
169.621
77.0726
160.798
88.3296
148.088
117.606
114.182
96.7445
113.634
169.283
145.505

53

0

0

0

0
2.8125
34.1305
35.168
44.3547
34.9963
187.43
104.985
42.1406
114.144
114.648
141.264
79.9427
121.472
127.747
154.491
26.0238
125.653
85.9598
95.7969
86.8397
58.6123
93.7014
127.359
151.967
106.083
116.107
156.461
53.6968
168.012
126.39
94.8085
110.293
102.348
79.2084
118.924
156.371
77.0726
160.798
85.3863
143.149
117.606
111.82
89.8087
113.634
160.413
145.505



Appendix C Graphs
This appendix gives the graphs plotted for different loads. Section C.1 shows the graphs for a
Balanced Load and Sections C.2 to C.5 give graphs for Skewed Loads 1-5. Section C.6 givesthe
graphs for aDistinct Query Load. There are three graphs plotted for each type of load: bandwidth

usage, average wait time with 5 channels, and average wait time with 3 channels. Discussion of

these graphs appears in Chapter 3.

C.1 Balanced L oad

Balanced Load
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Figure C.1: Bandwidth Usage for Balanced L oad



Average Wait Time (secs)

Wait Time (5 Channels)
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Figure C.2: Average Wait Time with 5 Channels for Balanced Load

Average Wait Time (secs)

Wait Time (3 Channels)
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Figure C.3: Average Wait Time with 3 Channels for Balanced L oad
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Cc.2 Skewed Loadl

Skewed Load 1
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300000
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Figure C.4: Bandwidth Usage for Skewed Loadl

Wait Time (5 Channels)
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Figure C.5: Average Wait Time with 5 Channels for Skewed Loadl



Wait Time (3 channels)
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Figure C.6: Average Wait Time with 3 Channels for Skewed Loadl
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