CAMELOT: Technology Focused Testing of CSCW Applications

Robert F. Dugan Jr., Ephraim P. Glinert, Edwin H. Rogers
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York 12180, U.SA.
{dugan, glinert, rogerseh} @cs.rpi.edu

ABSTRACT

In this paper we describe CAMELOT, a novel technology-
focused methodology for testing collaborative software that
contrasts with existing broad-based CSCW evaluation ap-
proaches. CAMELOT is intended for use by application de-
velopers, user interface specialists, performance engineers,
and quality assurance personnel. The evaluation of a CSCW
application is divided into two stages: single user and multi-
user. The single user stage is subdivided into general com-
puting and human-computer interaction testing. The multi-
user stage is decomposed into distributed computing and
human-human interaction testing. The methodology pro-
vides a detailed, codified, checklist of testing techniques
for each stage. We applied CAMELQT to a conventionally
tested, mature CSCW application. Our techniques uncov-
ered and classified over two dozen problems with the system.

Keywords

Computer Supported Cooperative Work, CSCW, Testing,
Distributed Computing, Human Computer Interaction, Eval-
uation

1 INTRODUCTION

Evaluating CSCW software is a daunting task. In addition to
a host of issues like functional and usability testing that are
relevant to any software system, the CSCW evaluator must
also consider problems such as scalability, synchronization,
and race conditions given the application’s distributed na-
ture, as well increased usability complexity when the appli-
cation becomes a vehicle for interaction between users. In-
dustry has provided execution based testing tools for general
application software. However, little guidance is offered for
effective use of these tools with a CSCW application. In
addition, there is no support for testing sophisticated interac-
tion among users which lies at the heart of CSCW [6].

Research into CSCW evaluation has been broad based, ad-
vocating the examination of both social and technological

Computer Human

General gkl

Single User . Computer
Computing .

Interaction

Distributed Human-

Multi-User I1Stri u_e Human
Computing .

Interaction

Figure 1: Intersecting CSCW Technologies

aspects of an application [1, 3, 4, 15, 17]. These broad based
approaches combined with the research community’s pref-
erence for social evaluation have created a lack of specific
techniques for the technological evaluation of CSCW soft-
ware.

In this paper, we present CAMELQT, a technology-focused
methodology for evaluating collaborative software. In con-
trast to existing techniques, our approach has a deliberate
technological focus and can be combined with CSCW en-
abled testing tools, such as Rebecca-J [6], for an effec-
tive evaluation. CAMELOQT is intended for use by applica-
tion developers, user interface specialists, performance engi-
neers, and quality assurance personnel.

CAMELOT decomposesa CSCW application into four inter-
secting software technologies (see Figure 1): General Com-
puting, Human Computer Interaction, Distributed Comput-
ing, and Human-Human Interaction. Techniques derived
from the literature are enumerated for each technology. Each
technique has a unique label that can be used to classify tests
and problems when using CAMELOT to evaluate an appli-
cation.

e General Computing describes software components
that provide general application capabilities. In its most
primitive form, this describes a Turing Machine that
takes input, performs operations on the input, and pro-
duces output. All software technology falls under this




broad category.

e Human Computer Interaction describes components
that deal with the interface between the user and the
software system. These components include: process-
ing user input from voice, mouse, joystick, and key-
board; graphical interfaces like windows, menu bars,
push buttons, and text fields; processing application
output like audio, video, and graphics.

e Distributed Computing describes components that are
responsible for multitasking and multiprocessing in the
application at the thread, process, processor, and ma-
chine levels. The main focus of distributed comput-
ing in the CSCW domain is the management of objects
shared across users.

e Human-Human Interaction describes components that
facilitate interaction between users during application
use. Examples include floor control, session manage-
ment, and shared windowing.

CAMELQOT is applied in two stages: single user followed
by multi-user. In the single user stage, the evaluation fo-
cuses on the single user problems in the application. For the
most part, these are described by general computing and hu-
man computer interaction techniques. Distributed comput-
ing and human-human interaction techniques are used to un-
cover flaws in the multi-user stage. The intersecting nature of
single and multi-user technologies may cause the techniques
from one to trigger the development of tests or discovery of
problems in another.

A unique code is associated with each test category. The
code provides a classification scheme for the tests used and
problems uncovered during application evaluation. We be-
lieve CAMELOT’s techniques are inclusive of most of the
technology tests an evaluator would want to perform on a
CSCW application. As new technologies are introduced,
however, we expect the list to expand.

CAMELOT provides a detailed set of techniques for detect-
ing problems in CSCW software. Our approach is not al-
gorithmic and cannot be fully automated. In order to guar-
antee that a program operates correctly, an automated test
system would have to try every possible combination of in-
put values or execution paths. Researchers have been unable
to identify a computationally feasible approach to automated
testing [11]. Like other intractable problems in computer
science, practical testing approaches use heuristics to reduce
the number of tests that must be performed. As with any
heuristic, practical testing approaches like CAMELOT can-
not guarantee that all application problems will be found.

2 Single User Evaluation

In contrast to previous CSCW evaluation approaches,
CAMELOT has a deliberate technological focus. The first
stage in our evaluation process views the CSCW application

from the perspective of a single user. There are two types
of single user evaluation: General Computing and Human
Computer Interaction. General Computing encompasses
testing techniques that can be used with any kind of soft-
ware application. Human Computer Interaction techniques
concentrate on identifying problems with application’s user
interface. Single user tests are simpler to create, execute and
analyze than multi-user tests. The insights gained during this
stage can be used later in the evaluation. For example, the
identification of shared objects used in the application can
be used for subsequent race condition and synchronization
tests. As another example, the single user performance of
an application function can give an indication of how that
function will scale.

General Computing

Decades of research have gone into the discipline of soft-
ware testing. A survey of this work was conducted prior
to developing CAMELOT [6]. Testing during the software
lifecycle is a process by which the behavioral properties of
the software are verified. There is little evidence that test-
ing methodologies that verify the system at the requirements,
specification, or design stages are used outside academia.
The extraordinary amount of effort required by these test-
ing methods, even for small software systems, is unattractive
to the commercial software community.

Taking its cue from difficulties with early life cycle testing,
CAMELOT focuses on execution based testing of software.
The structure of CAMELOT’s general testing methodology
comes from Meyer’s classic work "The Art of Software Test-
ing” [11]. The book presents a common sense approach to
verification of software systems that has stood the test of
time in both the commercial and academic communities. The
techniques listed in table 1 are used in later stages of the soft-
ware life cycle.

Performance tests are particularly critical for CSCW appli-
cations. There are two kinds of performance issues in CSCW
systems: single user and multi-user. For general testing, the
evaluator should focus on the response time, and resource
utilization of single user scenarios. Multi-user performance
will be discussed in detail in Section 3.

Although the techniques listed in Table 1 are organized by
life cycle stage, the tests can be performed at any point in the
cycle. For example, a security test might be performed dur-
ing the implementation phase to prototype an application’s
security features.

Human Computer Interaction

A great deal of work by the academic and commercial com-
munities has focused on testing human computer interaction
[6]. These efforts are concentrated in two main areas: gen-
eral computing and usability.



CAMELOT | Development Technique
Code Cycle
Implementation
GC.IM.1 Functional Test'
Integration
GC.IN.1 Bottom Up?
GC.IN.2 Top Down?
GC.IN.3 Sandwich?
System Test
GC.ST.1 Facility Test'
GC.ST.2 Volume Test!
GC.ST.3 Stress Test!
GC.ST.4 Security Test!
GC.ST5 Performance Test?
GC.ST.6 Configuration Test’
GC.ST.7 Memory Test!
GC.ST.8 Compatibility
Conversion Test
GC.ST.9 Install Test!
GC.ST.10 Recovery Test
GC.ST.11 Documentation Test!
GC.ST.12 Procedure Test'
GC.ST.13 Acceptance Test’

Table 1: General Computing Techniques from ![11] and 2[18]

General Computing U Human Computer Interaction Tech-
niques

General computing intersects human computer interaction
defining the correctness of the user interface as ”proper be-
havior of the graphical user interface and proper computation
of the underlying application.” [14] A general computing ap-
proach to human computer interaction testing exercises the
application using the techniques listed in Table 1.

Yip [24] and Schneiderman [19] provide some additional
techniques. Automated record/playback tools [6, 10, 13, 20]
allow the evaluator to create regression tests that ensure the
stability of a new code release.

CAMELOT Technique

Code

GC/HCI.1 Missing,invisible, unreachable components1 derived from:
(GC.IN.1UHCI) = GC/HCI.1

GC.HCI.2 Failure to respond to user inputs’ derived from:
(GC.IN.1UHCI) = GC.HCI.2

GC/HCI.3 Cross-wired components (e.g. button press displays wrong
component)® derived from: (GC.IN.1UHCI) = GC/HCI.3

GC/HCI.4 Incompleteness (e.g. close box present in some windows, but
not others)® derived from: (GC.ST.13UHCI) = GC/HCI.4

GC/HCI.5 Response time? derived from: (GC.ST.5UHCI) = GC/HCI.5

Table 2: General Computing U Human Computer Interaction
Techniques from '[24], 2[19]

General computing tests of user interfaces suffer from a com-
binatorial explosion of test cases due to the number of differ-
ent paths a tester can take to exercise the same application
function [23]. Like black and white box tests, CAMELOT’s
approach to Ul path testing requires evaluator judgment.
Path tests should be conducted where the evaluator believes

they will be the most fruitful in uncovering application flaws.

Usability Techniques

Usability testing evaluates a software application from the
user’s perspective. The correctness of an application is mea-
sured in terms of the user’s effectiveness and feelings about
the application, rather than a general computing standpoint.
Over the past two decades, Schneiderman has produced and
revised a thorough survey of user interface development
techniques [19]. CAMELOT’s usability techniques, shown
in Table 3, are taken from this survey.

Usability criteria represent a general set of questions the
evaluator should ask about a user’s use of the application.
The Golden Rules for Application Design are eight guide-
lines for the design of any application with a user inter-
face. User Interface Technology Guidelines is a list of spe-
cific techniques organized by the user interface technology.
Rather than repeating the guideline specifics here the reader
is referred to the original text for more detail [19].

CAMELOT Technique

Code
Usability Criteria

HCILUC.1 Time to learn system: How long does it take for a typical user
to learn to use the system?

HCIL.UC.2 Performance of tasks: How long does it take for a user to
perform a typical set of tasks?

HCILUC.3 User errors: How many and what kind occur while performing
a typical set of tasks?

HClLUC.4 Retention over time: Is it easy to remember how to use the
system with infrequent use?

HCI.UC.5 Subjective satisfaction: Do users like the system?
Golden Rulesfor Application Design

HCI.GR.1 Strive for consistency.

HCIL.GR.2 Enable frequent users to use shortcuts.

HCIL.GR.3 Offer informative feedback.

HCI.GR.4 Design dialogs to yield closure.

HCIL.GR.5 Offer simple error handling.

HCI.GR.6 Permit easy reversal of actions.

HCIL.GR.7 Support internal locus of control.

HCIL.GR.8 Reduce short-term memory load.
User Interface Technology Guidelines

HCI.UITG.1 Data Display

HCLUITG.2 Getting the User’s Attention

HCI.UITG.3 Data Entry

HCLUITG.4 Menu Selection

HCLUITG.5 Form Fillin Design

HCIL.UITG.6 Command Languages

HCI.UITG.7 Direct Manipulation

HCI.UITG.8 Interaction Devices

HCIL.UITG.9 Error Messages

HCI.UITG.10 Color

Table 3: Usability Techniques from [19]

3 Multi-User Evaluation

The second stage in CAMELOT’s evaluation process ap-
proaches the CSCW application from a multi-user perspec-
tive. There are two types of multi-user evaluation: Dis-
tributed Computing and Human-Human Interaction. Dis-
tributed Computing focuses on the multi-thread, task, pro-
cessor, and machine challenges that occur in CSCW appli-
cations. Human-Human Interaction concentrates on testing
the software components that facilitate interaction between
users.

Distributed Computing



Distributed computing encompasses software written for
multithreaded, multitasking, multiprocessor, or multima-
chine architectures. The technology is concerned with
communication between one or more routines executing
in parallel. Communication consists primarily of requests
for/updates about some form of shared data. Distributed
computing software suffers from four common problems:
race conditions, deadlock, temporal consistency and scala-
bility.

Race Condition

When two or more routines executing in parallel are allowed
to simultaneously manipulate the same data instance without
proper control it is called a race condition. Lack of controlled
access to shared data may result in data corruption. A classic
illustration of this is the bank account withdrawal example
from database literature [7].

Deadlock

Synchronization eliminates race conditions by restricting ac-
cess to shared data in a controlled manner using synchro-
nization primitives such as mutual exclusion, semaphores,
or message passing [22]. Synchronization introduces the po-
tential for deadlock. Deadlock can occur when two or more
parallel routines share two or more synchronization prim-
itives. Deadlock can be avoided through careful software
design. Like race conditions, detecting deadlock is notori-
ously difficult because of subtle timing dependencies. It is
also difficult to debug because of complicated dependencies
between parallel routines and synchronization primitives.

Temporal Consistency

Temporal consistency is the ability to correctly order mes-
sages within the CSCW application. Temporal consistency is
especially important when providing communication, feed-
back for the manipulation of shared objects, and user aware-
ness. For example, consider a shared editing system with
three users. userA types the word “dessertation”. userB cor-
rects the word by moving the cursor after the first e’ and
changing it to ’i’. Because of a network delay between userA
and userC, userB’s corrections to the word arrive at userC
before the actual word arrives. Testing for temporal con-
sistency problems involve techniques similar to those used
for race conditions and deadlock. Network delay can be in-
troduced by artificially consuming bandwidth, or by instru-
menting the application to introduce artificial message de-
lays.

Scalability

Scalability is also an important consideration in distributed
computing. A system’s ability to scale as the number of users
is increased measured using performance evaluation tech-
niques. Although these techniques can be described gener-
ally, the actual evaluation is application specific. Jain’s well-
known text ”The Art of Performance Evaluation” presents a
general approach for most applications [9].

The key to the performance evaluation of CSCW applica-

tions is a thorough understanding of the application’s archi-
tecture and intended use. This understanding will reveal ser-
vices that are candidates for scalability testing. Creating user
scenarios that represent common user activity and then run-
ning these scenarios on the system using live or virtual users
will place the system under a "typical” load.

CSCW Architecture

The distributed architectures of CSCW systems fall between
two extremes: centralized and decentralized. A centralized
architecture concentrates the shared state in a single process
on a single machine. When a process in the system manipu-
lates shared data, it makes a request to the shared state pro-
cess. Centralization simplifies access control for shared data
by placing synchronization logic in a single process. Scala-
bility problems can occur as an increasing number of users
compete for the attention of the single state process.

A decentralized architecture replicates shared state within
each user process. A process manipulates shared data locally
and the results of the manipulation are broadcast to other pro-
cesses. Decentralization has scalability advantages because
the cost of data manipulation is distributed across many pro-
cesses. Shared data access control, however, is more chal-
lenging because the synchronization primitives must also be
decentralized.

Tightly coupled systems provide near instantaneous notifi-
cation to all processes when shared data changes. Loosely
coupled systems do not have strict temporal requirements.
Tightly coupled systems have to be examined closely for
scalability problems. The two areas to investigate are the
frequency and size of the messages necessary to maintain the
coupling. As the number of users in the system increases, the
communication necessary for state change notification will
also rise. At a certain point this communication will con-
sume all available network bandwidth.

Another area to investigate is the impact of network delay on
tightly coupled systems. In a typical development environ-
ment, there is almost no network delay because the equip-
ment used to develop the system is on the same LAN. If
the CSCW application is intended to deploy on the Internet
across LANs, WANSs, and backbones, then the application
should be tested with network delays. Network delays can
create untested timing configurations that trigger race con-
ditions and deadlock. Network delays can be inexpensively
simulated on a LAN by reducing bandwidth (downloading a
large file on the LAN during a test) or by instrumenting the
application with built in messaging delays.

Loosely coupled systems can also suffer from race condi-
tions. In a loosely coupled system, a shared object is manip-
ulated locally. Updates to the object are sent to the rest of the
system intermittently, perhaps as the result of a save, refresh,
or update command. The race condition occurs when two
users manipulate the same object simultaneously. Typically,
the system view will reflect the last user update of the shared



object. An example of this is loosely coupled editing of a
text document. If userA and userB are editing the same doc-
ument, then one of the user’s edits will be lost. The system
will only retain the document state from the last user’s save
command overwriting previous user saves.

Distributed Computing Techniques

It is critical that the evaluator have a deep understanding of
the system’s architecture to test for race condition, deadlock,
and scalability problems. In particular, the evaluator should
understand the types of shared data in the system, the archi-
tecture that maintains the data, and user actions that trigger
manipulation of the data.

Table 4 reduces this section’s distributed computing discus-
sion to a codified table.

CAMELOT | Technique
Code
Race Conditions
DC.RC.1 Race Condition
DC.RC.2 Centralized Architecture
DC.RC.3 Decentralized Architecture
DC.RC.4 Loosely Coupled
Deadlock
DC.D.1 Deadlock
DC.D.2 Centralized Architecture
DC.D.3 Decentralized Architecture
Temporal Consistency
DC.TC.1 Temporal Consistency
DC.TC.2 Network Delay
Scalability
DC.S.1 Scalability
DC.S.2 User Scenario
DC.S.3 Stress User Scenario
DC.S4 Centralized Architecture
DC.S.5 Decentralized Architecture
DC.S.6 Tightly Coupled
DC.S.7 Tightly Coupled/Network Delay
DC.S.8 Loosely Coupled
DC.S.9 Synchronization

Table 4: Distributed Computing Techniques

In addition to pure distributed computing, Table 5 intro-
duces techniques resulting from the intersection with Gen-
eral Computing.

Table 6 presents techniques resulting from the intersection of
Human Computer Interaction and Distributed Computing:

Human-Human Interaction

Human-Human Interaction deals with functionality support-
ing interaction between application users. Much of this is so-
cial, and research has focused on studying the social aspects
of CSCW systems [15]. As mentioned earlier, CAMELOT
does not focus on higher levels of social interaction. How-
ever, there are core CSCW technologies supporting human-
human interaction that CAMELOT can be used to evaluate.

CAMELOT Technique

Code

GC/DC.1 Stresstesting: users on joining/leaving the application
Derived from: (GC.ST.3 U DC) = GC/DC.1

GC/DC.2 Sresstesting: multiuser user stress tests on shared objects
Derived from: (GC.ST.3 U DC) = GC/DC.2

GC/DC.3 Volume testing: Large shared objects consume resources
Derived from: (GC.ST.2 U DC) = GC/DC.3

GC/DC.4 Compatibility testing: incompatible versions of application
Derived from: (GC.ST.8 U DC) = GC/DC.4

GC/DC.5 Subclass of distributed compatibility testing: different
versions on-line documentation. Derived from:
(GC.ST.8U GC.ST.11 U DC) = GC/DC.5

GC/DC.6 Recovery testing: unexpected joining/leaving application
Derived from: (GC.ST.10 U DC) =-GC/DC.6

Table 5: General Computing U Distributed Computing Techniques

CAMELOT Technique

Code

HCI/DC.1 Race condition testing: for multithreaded GUIs. Derived from:
(HCl u DC.RC.1) = HCI/DC.1

HCI/DC.2 Deadlock testing: for multithreaded GUIs. Derived from:
(HClu DC.D.1) = HCI/DC.2

GC/HCI/DC.1 | Responsetimetesting: for tightly coupled GUI components.
Derived from: ((GC.ST.5UHCI).1 U DC.S.7)) = GC/HCI/DC.1

Table 6: Human Computer Interaction U Distributed Computing
Techniques

These technologies are the software components that facil-
itate communication, coordination, coupling, privacy, user
awareness, and scalability.

Communication allows one user to converse with one or
more users in the application. Communication can be in the
form of voice, visual, text, or gesture. Unless users share the
same location, the intersection between distributed comput-
ing and human-human interaction is critical. Some form of
network will be responsible for transportation of user com-
munications. In the case of high bandwidth communication
such as voice or visual, the tester should ensure that there is
enough network capacity as more users are added to a CSCW
session This is particularly important if the application was
developed in a lab with a high speed LAN but is to be de-
ployed across multiple LANs, WANS, or the Internet. The
impact of bandwidth consumption from user communication
on the rest of the application should also be studied. Reveal-
ing tests will be ones that exercise tightly coupled function
(such as remote cursor movement) during user communica-
tion.

Coordination of interaction focuses on how the software al-
lows users to work together. Examples of coordination in-
clude floor control policies and social protocols. From a
technology standpoint, coordination can be broken down
into components that provide group control and feedback
about that control within the application. Human-computer
interaction evaluation of these components is necessary.
Data associated with coordination can also be considered a
form of shared object, thus distributed computing evaluation
is also necessary. For example, the “floor” can be consid-
ered a shared object. What happens if two users try to grab



control of the floor at the same time?

Coupling defines how users see changes that others make
to the shared workspace. Tight coupling provides more fre-
quent change updates; loose coupling provides less frequent
updates. There is no single “correct” coupling for CSCW.
What kind of coupling should be used varies from appli-
cation to application, and even within a single application
[2]. Human computer interaction response time tests and
distributed computing scalability tests are useful with this
technology.

Security, privacy and trust are important to cooperating
users. Users should be able to work in a private area where
they feel confident that their activities are protected from
others. Access control for individual or group information
should be available to users [21]. In situations where anony-
mous input is supported, users should feel assured of their
anonymity [12]. General computing security tests help eval-
uate these issues.

Awareness of other users provides a social context in which
work is conducted. Many kinds of user awareness capabili-
ties that have been added to CSCW applications including
activity graphs, telepointers and cursors, user lists, multi-
user scrollbars, radar views, and fisheye views [8]. Given the
information richness of some forms of user awareness, the
evaluator should pay particular performance and scalability
issues.

Tests that examine combinations of technologies discussed
in this section may also be necessary. Are coordination
mechanisms available in the application to control commu-
nication? For example, can two users talk at the same time?
How tightly coupled is the act of communication to its de-
livery? If users have an expectation of instantaneous com-
munication, what is the impact of network delays? If the
system supports private or anonymous communication, can
it be subverted? When communication occurs, can the user
determine whom it came from?

4 Evaluation

Despite acknowledging a technological aspect to CSCW, ex-
isting methodologies provide little guidance to applications
developers, user interface specialists, performance engineers
and quality assurance personnel. CAMELOT provides this
guidance by organizing a technical evaluation into two stages
and four intersecting technologies and providing detailed
techniques for each. In this section we discuss the steps in-
volved in an evaluation using CAMELOT and demonstrate
its applicability on a mature CSCW application.

Organizinga CAMELOT Evaluation

Application evaluation using CAMELOT should proceed in
the following manner. Ordering of the techniques in each
technology category is not important, but the order that the
categories are used in an evaluation is critical.

The application should be examined from a single user per-

CAMELOT Technique

Code

Communication

HHI.CM.1 Network bandwidth sufficient to support user
communication.

HHI.CM.2 Impact of user communication on other communication in
the application.

HHI.CM.3 Impact of user communication on tightly coupled
functions.

DC/HHI.1 Distributed computing scalability tests. Derived from:
(DC.S.1 U HHI.CM) = DC/HHI.1

DC/HHI.2 Distributed computing temporal consistency tests.
Derived from: (DC.TC.1 U HHI.CM) = DC/HHI.2

HHI.1 User communication and coordination. Derived from:
(HHI.CM U HHI.CD) = HHI.1

HHI.2 User communication and coupling. Derived from:
(HHI.CM U HHI.CP) = HHI.2

HHI.3 User communication and security. Derived from:
(HHI.CM U HHL.S) = HHI.3

Coordination

HCI/HHI.2 Human computer interaction issues related to group
control. Derived from: (HCI U HHI.CD) =- HCI/HHI.2

DC/HHI.3 Distributed computing race condition and deadlock tests
for coordination shared objects. Derived from:
(DC.RC.1U DC.D.1 U HHI.CD) = DC/HHI.3

Coupling

GC/HCI/HHI.1 Human computer interaction response time tests. Derived
from: (GC/HCI1.5 U HHI.CP) = GC/HCI/HHI.1

DC/HHI.4 Distributed computing scalability tests. Derived from:
(DC.S U HHI.CP) = DC/HHI.1

DC/HHI.5 Distributed computing temporal consistency tests.
Derived from: (DC.TC U HHI.CP) = DC/HHI.2

Security

GC/HHI.1 General computing security tests. Derived from:
(GC.ST.4 U HHI.S) = GC/HHI.1

Awar eness

GC/HHI.2 General computing performance tests. Derived from:
(GC.ST.5 U GC/HCL.5 U HHI.A) = GC/HCI/HHI.2

GC/HCI/HHI.2 Human computer interaction response time tests. Derived
from: GC/HCI.5 U HHI.A) = GC/HCI/HHI.2

DC/HHL.5 Distributed computing scalability tests. Derived from:
(DC.S U HHI.CP) = DC/HHL.5

DC/HHI.6 Distributed computing temporal consistency tests. Derived
from: (DC.TC U HHI.CP) = DC/HHI.6

Table 7: Human-Human Interaction Techniques

spective first because multiuser problems are more difficult
to detect. This will familiarize the evaluator with applica-
tion function, architecture, and user interface before tackling
more complicated testing issues associated with distributed
computing and human-human interaction. Within the sin-
gle user stage, general computing tests should be performed
before investigating human computer interaction. This will
familiarize the evaluator with application functionality and
provide a context for the user interface. The stress tests and
general performance of the application during the single user
tests will give the evaluator valuable insight into the applica-
tion’s ability to scale with multiple users.

During the multiuser testing stage, distributed computing
problems should be investigated first to provide context for
later human-human interaction testing. As mentioned earlier,
the intersecting nature of single and multi-user technologies
may cause the techniques from one to trigger the develop-
ment of tests or discovery of problems in another.

The Reconfigurable Collaboration Network
CAMELOT was applied to a conventionally tested, mature
CSCW application to determine the methodology’s efficacy.



Figure 2: The Reconfigurable Collaboration Network

The Reconfigurable Collaboration Network (RCN) was de-
veloped as part of the Collaborative Classroom research ef-
fort at Rensselaer Polytechnic Institute [16]. The goal of the
research was to develop a classroom where the learning came
from group participation rather than lecture. The classroom
design consisted of a unique combination of hardware, soft-
ware, and physical architecture to promote group activity [5].

System Overview

Each RCN user has a private computer, keyboard, mouse,
and display. The private keyboard and mouse are used to re-
motely control a public machine. Each user is required to
have an additional, direct hardware connection to the pub-
lic machine’s display. Figure 2 depicts an RCN configu-
ration with two private laptop systems and a shared public
machine display below table’s surface. Users are organized
into teams. Each team has descriptive information and one
or more administrators that control who is on the team. The
first time a user selects a public machine a session is created.
Additional users (registered or guests), may join or leave a
session at any time. Multiple public machines are supported
with one public machine per session. Finally the concept of
a super session is supported. This allows users from different
sessions to join together in a single meta-session for shared
control of a public machine.

RCN differs from traditional remote windowing systems in
several respects. Foremost, because users can see the public
machine’s display, there is no need for remote viewing capa-
bility. Second, unlike other remote windowing systems, the
RCN views the public machine as a shared resource. Session
and floor control functionality are included for management
of the public machine during meetings.

The RCN system was implemented almost entirely in
Java supporting multiple platforms including: Windows
95/98/NT, MacOS, and Linux. The architecture consists of
three core components: 1SServer, RCNPublicServer, and rc-
nClient. ISServer is responsible for session management. It
keeps track of all active publics, sessions, teams, and users. It
also maintains persistent store information about teams and
users. RCNPublicServers register with the ISServer to ad-
vertise their availability to users. rcnClients must locate an
ISServer to register as an active user and to find publics, ses-
sions, teams and other users.

An RCNPublicServer runs on each public machine. It is re-
sponsible for receiving remote mouse and keyboard events
from rcnClients and translating them to local events. If user
selects ghosting, the software translates remote mouse events
into move commands for a ghost icon associated with the
user.

An rcnClient runs on each user’s machine. The rcnClient
presents the user with an array of session management func-
tionality. Session management commands are sent from the
rcnClient to a remote 1SServer. When the user joins a session
and selects the Interrupt button, his or her mouse and key-
board events are sent to a remote RCNPublicServer. Only
one session member at a time can have this control. How-
ever, if any session member presses the ghost button, his or
her mouse events are sent to the remote public machine.

CAMELOT and RCN

RCN was fairly mature at the time we evaluated it using
CAMELOT. The application had been in development for
over two and a half years, and there were plans to commer-
cialize the system. During the school semester, the software
was used daily by students in several courses. The develop-
ment team was reasonably confident of the stability of the
system. One team member suggested it might be necessary
to deliberately introduce bugs into the software for the eval-
uation.

CAMELOT provides techniques for the tests that should be
performed on a CSCW application. We used Rebecca-J, a
Java-based implementation of our CSCW testing architec-
ture to execute the tests [6]. Using these tools, two-dozen
problems were discovered with the RCN system (see Table
8). Some of the problems were serious enough to jeopar-
dize the planned commercialization of the software. This
section discusses how the problems were uncovered using
CAMELOT. Our detailed evaluation of RCN is beyond the
scope of this paper, and the reader is referred to a sepa-
rate document [6]. Instead, we summarize the problems un-
covered using CAMELOT, and highlight several interesting
ones.

Sngle User Tests

Single user testing focused on the General Computing and
Human Computer Interaction aspects of RCN’s three main
components: 1SServer, RCNPublicServer, and rcnClient.



Id Bug Description CAMELOT Code
Al Error message displayed when starting up

RCNPublicServer GC.ST.9, HCI.GR.3
A2 Configuration of PATH shell variable

necessary for NativeLibrary.dll for

RCNPublicServer in Win95/98 GC.ST.9, HCI.GR.3
A3 1SServer does not always flush terminated

RCNPublicServer GC.ST.9,DC.TC.1
A4 Documentation Errors GC.ST.11
A5 Inconsistent use of Quit, Exit, Leave,

Cancel HCIL.GR.1
A.6 ”Pick a IS” is grammatically incorrect. HCI.GR.1
AT No version number displayed in

RCNPublicServer, rcnClient, 1SServer GC.ST.9, GC/DC .4
A8 Preference Dialog Displays Invalid Colors HCI.GR.7
A9 Preference Dialog Displays Too Many Colors | HCIL.UITG.10
A.10 | Preference Dialog Allows Same Color for

Two Users in Same Session HHI.A, HCI.UITG.10
A.11 | No lock mechanism for simultaneous edits

of Team Information DC.RC.4
A.12 | Race Condition Joining a Session DC.RC.2,DC.RC.3
A.13 | Ghost Cursor Hidden By New Applications HCLUITG.7
A.l4 Sticky Mouse Buttons GC.IM.1, DC.RC.2
A.15 | Multiple Client Control of Public Machine GC.IM.1
A.16 | Incorrectly Translated Keys GC.IM.1
Al7 Sticky Shift, Alt, and Ctrl Keys GC.IM.1, DC.RC.2
A.18 | Race Condition in rcnClient’s User

Interface HCI/DC.1
A.19 Race Conditions Joining Sessions, Users,

Teams, Publics GC/HCI/DC.1
A.20 Inconsistent use of OK, Okay HCI.GR.1
A.21 | Flickering Ghost Cursor DC.S.2, HCLUITG.7
A.22 | Confusing Display of Session Clients HCLUITG.1, HHIL.A
A.23 | Memory Leaks in Public and Client When

Ghosting DC.S.2, GC.ST.7
A.24 | Can’t play Indiana Jones from rcnClient GC.IM.1

Table 8: Bugs discovered in RCN using CAMELOT

These tests were not concerned with distributed or multiuser
computing issues, although they were occasionally revealed.

General Computing Tests

The first test conducted investigated problems users might
encounter installing and operating the RCN system for the
first time. Several were uncovered (see entries A.1, A.2, A.3
in Table 8).

Functional testing of RCN focused on validating the sys-
tem’s core capabilities. In particular, RCN’s ability to pro-
vide keyboard and mouse input to a public machine from a
remote client was examined. This led to the discovery of
incorrect numeric keypad translation between the client and
public machine (A.16), and the discovery that if one client
changed the public keyboard state (e.g. CAPS_LOCK), that
state would unexpectedly carry over to other clients (A.17).

Experiences with keyboard functional testing were used to
develop mouse tests. To test for mouse state problems,
Rebecca-J was used to make a recording of an RCN client’s
mouse movement with the left mouse button pressed (i.e.
Java MOUSE _DRAGGED events) while controlling a pub-
lic machine. A ”sticky” experiment with mouse events was
attempted using Rebecca-J’s triggering facility [6], with re-
sults similar to the keyboard tests (A.14). In addition to ver-
ifying the state problem, as long as the mouse button from
one client stayed pressed down, both additional clients could

also control the public machine (A.15).

Other manual functional tests were conducted to observe
how well an RCN client could control a representative set
of applications on the public machine. Additional problems
were detected using this technique (A.24).

During the general computing analysis, several other
CAMELOT tests were conducted including: stress, docu-
mentation, compatibility, and volume. Stress testing was ap-
plied to mouse and keyboard control of the public, and in-
teraction with RCN client’s user interface revealing a multi-
threaded user interface problem (A.18). Documentation test-
ing examined RCN'’s online help systems. A large number
of errors were uncovered and reported (A.4). Compatibility
testing considered problems that might occur between dif-
ferent versions of RCN’s client, public, and ISServer. With
many different public machines, client machines, and IS-
Servers it seemed likely that versions could get out of synch
and there was no way for the user to determine the version of
an RCN component (A.7). Volume testing investigated how
the RCN application handled large data volumes. Some of
the client’s user interface form fill-in fields were selected for
the test and no problems were observed.

Human Computer Interaction Tests

After completing the general computing tests, a thorough ex-
amination of RCN’s human-computer interaction was con-
ducted. User interaction with RCN takes place through a
series of dialogs triggered from a central panel. Each dialog
was exercised and Schneiderman’s rules for dialog design
were applied uncovering several problems (A.5,A.6, A.20).

During dialog design testing, a problem with renClient’s user
preferences dialog was detected. The dialog allowed each
user to select a ghost color preference. This selection de-
termined the color of text associated with the user (e.g. the
user’s id in a team or session panel), and of the icon dis-
played when the user was ghosting on the public machine.
Several problems were discovered with the system’s color
assignment mechanism (A.8, A.10).

These color problems caused the development of a human-
human interaction test: Can two users share the same or simi-
lar color? A test was created where a user in the same session
selected the same color as another user from the preference
dialog. RCN provided no warning that the color was already
being used. Shared colors could be confusing, particularly
during simultaneous ghosting (A.10).

Multiuser Tests

Multiuser testing focused on the Distributed Computing and
Human-Human Interaction aspects of the RCN application.
These tests were not concerned with general computing or
human-computer interaction issues covered during single
user testing.

Distributed Computing Tests



Multiuser race condition testing looked for problems with
several users sharing access to the same data object. The
first step in a race condition test was to identify shared data
objects in the application. For RCN these objects were: per-
sonal information, team information, list of sessions, list of
users, list of teams, and a list of public machines. The sec-
ond step was to create a scenario that would likely trigger
a race condition with the object. Simultaneous read/write
or write/write operations on a shared object provide fruitful
scenarios. The third step was to use Rebecca-J to record and
instrument the scenario. Finally, Rebecca-J was used to re-
peatedly exercise the scenario in an attempt to trigger a race
condition.

The first race condition test examined the Session List object.
After logging into RCN, a user joined or created session.
To join a session, the user selected a session from the Ses-
sion List object displayed in the Sessions pane of the RCN
client’s Join A Session window. The 1SServer maintained a
”golden” copy of the object protected from race conditions
by synchronization primitives. This eliminated the possibil-
ity of a race condition occurring in the 1SServer. Unlike pre-
vious objects, however, clients maintained a local copy of
the Session List that was updated from the 1SServer when-
ever change occurred. This raised the possibility of a race
condition if a client manipulated a local copy of the object
after it was changed on the 1SServer but before change no-
tification was received (A.12). Similar tests were conducted
on the other list objects shared by RCN clients: users, teams,
and public machines resulting in race conditions (A.19).

Other race condition tests examined manipulation of the per-
sonal and team information objects. No race conditions or
deadlock were uncovered. Further considration of RCN’s
editing model, however, uncovered a problem. If two clients
were simultaneously editing an object, then one saving the
object first would have his/her edits overwritten by the other
client (A.11).

Scalability testing focused on the performance of the RCN
application as the number of users increased. The primary
scalability concern was multi-client ghosting on a single
public machine. Because of tight coupling between the client
mouse and the public ghost icon, users would not tolerate
high response times. While other clients were ghosting, one
client was used to take control of the public and the same
qualitative observations were made. The test revealed scala-
bility problems with just two ghosting clients (A.21). Mem-
ory leaks on both the public and client machines were also
discovered (A.23). After some investigating, it was also de-
termined that any application window created after a client
began ghosting would hide the client’s ghost cursor (A.13).

Human-Human I nteraction Tests

Although RCN is a CSCW application, most human-human
interaction is supported directly by the architecture of the
physical space. Users can interact using voice and gesture

because they are located in the same physical space. Only
one user is allowed control of the public machine (and its
system cursor) at any time. RCN software technology sup-
ports limited human-human interaction in the form of a ghost
cursor. This cursor appears on the public machine, but can-
not interact with any applications. Several ghost cursors can
appear on the public display, manipulated by users that are
not in control of the public machine. The human-human in-
teraction tests performed on ghost cursors were covered un-
der scalability testing.

Nine virtual users were configured with Rebecca-J to be used
during the scalability test. The users were labeled clientl,
client2, etc. The User List pane didn’t list these clients in
any particular order. For a large number of clients, it might
be difficult for a specific user to be located in the list (A.22).

Discussion

We believe the application of our methodology and testing
architecture to a mature, conventionally tested CSCW appli-
cation was a success. Unsolicited correspondence from the
RCN team showed gratitude for the problems uncovered by
the CAMELOT and Rebecca approach [6]. Two-dozen bugs
were discovered in this mature CSCW application. Some of
the problems were cosmetic. However, some of them were
serious and should be corrected to make RCN a robust appli-
cation.

5 Conclusion

Ramage believed that CSCW applications had both social
and technological components. He found that most prior
work in CSCW evaluation focused exclusively on the social
aspects of the system. On the technological side he cautioned
that:

It may well be the case that a computer system
will be designed perfectly, with all of the right sort
of software engineering procedures, requirements
analysis and usability testing, but that the system is
introduced insensitively, or it cuts across the way
people have become used to working or it changes
the power relationships between workers [15].

CAMELOT’s deliberate technological focus is not con-
cerned with higher-level social aspects of a CSCW system.
CAMELOT’s main contribution is an organization and de-
tailed description of the technologies that comprise CSCW
software and the problems that should be tested for using
these technologies. Following Ramage’s concept of multi-
plicity, CAMELOT should be used in conjunction with other
methodologies for a complete evaluation of a CSCW system.

6 ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under awards CDA-9634485 and CCR-9527151.
The authors would also like to thank software developer J.J.
Johns for his support and advice during the evaluation of
RCN using Rebecca-J.



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

P. Checkland. Soft systems methdology. Human Sys-
tems Management, 8(4):273-289, 1989.

P. Dewan and R. Choudhary. A high-level and flexible
framework for implementing multiuser user interfaces.
ACM Transactions on I nformation Systems, 10(4):346-
380, 1992.

J. Drury, L. Damianos, T. Fandercla, L. Hirschman,
J. Kurtz, and B. Oshika. Scenario-based evaluation of
loosely-integrated collaborative systems. In Proceed-
ings of Conference on Human Factors in Computing
Systems (CHI ' 00). ACM Press, 2000.

J. Drury, L. Damianos, T. Fanderclai,
L. Hirschman, J. Kurtz, and B. Oshika. Method-
ology for evaluation of collaborative systems,
http://www.mitre.org/support/papers/tech_papers99_00
/damianos_evaluating/index.shtml, 1999.

R. F. Dugan, E. A. Breimer, D. T. Lim, E. P. Glinert,
M. K. Goldberg, and M. V. Champagne. Exploring
collaborative learning in rensselaer’s classroom-in-the-
round. Technical Report 98-1, Rensselaer Polytechnic
Institute, April 1998.

R. F. Dugan Jr. A Testing Methodology and Architec-
ture for Computer Supported Cooperative Work Soft-
ware. Doctoral thesis, Rensselaer Polytechnic Institute,
Department of Computer Science, 2000.

R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. The Benjamin/Cummings Com-
pany, Inc., Redwood City, California, 1994.

C. Gutwin, S. Greenberg, and M. Roseman. Support-
ing awareness of others in groupware: A short paper
suite. In Proceedings of Conference on Human Fac-
tors in Computing Systems (CHI ’96), pages 205-215.
ACM Press, 1996.

R. Jain. The Art of Computer Systems Performance
Analysis: : Techniquesfor Experimental Design, Mea-
surement, Smulation, and Modeling. John Wiley and
Sons, New York, New York, 1991.

Mercurylnteractive. Winrunner. User’s guide, Mercury
Interactive Corporation, 2000.

G. J. Meyers. The Art of Software Testing. John Wiley
and Sons, New York, 1979.

B. Myers, J. Hollan, and I. C. E. Al. Strategic direc-
tions in human-computer interaction. ACM Computing
Surveys, 28(4):794-809, 1996.

10

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

H. Okada and T. Asahi. Guitester: A log-based us-
ability testing tool for graphical user interfaces. IE-
ICE Transactions on Information and Systems, E82-
D(6):1030-1041, 1999.

T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A
visual test development environment for gui systems.
In ACM SIGSOFT Inter nation Symposium on Software
Testing and Analysis, volume 23, pages 82-92, Clear-
water Beach, Florida, 1998. ACM Press.

M. Ramage. How to Evaluate Cooperative Systems.
Doctoral thesis, Lancaster University, Department of
Computing, 1999.

E. H. Rogers, C. Geisler, J. Farley, J. Johns, and
C. Parker. The reconfigurable collaboration network,
a demonstration of collaborative system sharing. In
Proceedings of the European Computer Supported Co-
operative Work Conference 1999, Amsterdam, Nether-
lands, 1999.

S. Ross, M. Ramage, and Y. Rogers. Petra: Participa-
tory evaluation through redesign and analysis. Interact-
ing with Computers, 7(4):335-360, 1995.

S. R. Schach. Chapter 3: Software life-cycle models. In
Software Engineering, pages 41-68. Aksen Associates
Incorporated Publishers, Homewood, Illinois, 1990.

B. Schneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley, Harrow, England, 3rd edition, 1997.

SegueCorporation. Silkperformer user’s guide. User’s
guide, Segue Corporation, 2000.

H. Shen and P. Dewan. Access control for collabora-
tive environments. In Proceedings of ACM Conference
on Computer-Supported Cooperative Work (CSCW 92
), Building Real-Time Groupware, pages 51-58. ACM
Press, 1992,

A. S. Tannenbaum. Modern Operating Systems. Sec-
ond Edition. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 2nd edition, 1992.

L. J. White. Regression testing of gui event interac-
tions. In International Conference on Software Main-
tenance, pages 350-358, Monterey, California, 1996.
IEEE Computer Society Press.

S. W. L. Yip and D. J. Robson. Applying formal speci-
fication and functional testing to graphical user inter-
faces. In 5th Annual European Conference on Ad-
vanced Computer Technology: Reliable Systems and
Applications, pages 557-561, Bologna, Italy, 1991.
IEEE Computer Society Press.



