
Proceedings of the 36t
0-7695-1874-5/03 $
Certification Support for Automatically Generated Programs

Johann Schumann†, Bernd Fischer†, Mike Whalen‡, Jon Whittle�

†RIACS / NASA Ames, {schumann,fisch}@email.arc.nasa.gov
‡Dept. of CS, Univ. of Minnesota, Minneapolis, whalen@cs.umn.edu

�QSS / NASA Ames, jonathw@email.arc.nasa.gov
Abstract

Although autocoding techniques promise large gains in
software development productivity, their “real-world” ap-
plication has been limited, particularly in safety-critical do-
mains. Often, the major impediment is the missing trustwor-
thiness of these systems: demonstrating—let alone formally
certifying—the trustworthiness of automatic code genera-
tors is extremely difficult due to their complexity and size.

We develop an alternative product-oriented certification
approach which is based on five principles: (1) trustwor-
thiness of the generator is reduced to the safety of each
individual generated program; (2) program safety is de-
fined as adherence to an explicitly formulated safety pol-
icy; (3) the safety policy is formalized by a collection of
logical program properties; (4) Hoare-style program veri-
fication is used to show that each generated program sat-
isfies the required properties; (5) the code generator itself
is extended to automatically produce the code annotations
required for verification. The approach is feasible because
the code generator has full knowledge about the program
under construction and about the properties to be verified.
It can thus generate all auxiliary code annotations a the-
orem prover needs to discharge all emerging verification
obligations fully automatically.

Here we report how this approach is used in a certifica-
tion extension for AUTOBAYES, an automatic program syn-
thesis system which generates data analysis programs (e.g.,
for clustering and time-series analysis) from declarative
specifications. In particular, we describe how a variable-
initialization-before-use safety policy can be encoded and
certified.

1 Introduction

Autocoding techniques (also called code-generation or
automatic program synthesis) are concerned with the trans-
lation of high-level specifications into code. These tech-
niques can improve productivity by allowing developers to
h Hawaii International Conference on System Sciences
17.00 © 2002 IEEE
specify software behavior at a high level of abstraction,
leaving the code generator to manage the implementation
details. If correct, these techniques also prevent errors from
being introduced in the implementation process, thus im-
proving software quality. Autocoding is therefore an entic-
ing approach for safety-critical or security-critical applica-
tion domains, e.g., spacecraft navigation and control. How-
ever, in these domains, it faces a crucial dilemma: can users
really trust the code generators? Demonstrating the trust-
worthiness of a code generator is extremely difficult due to
its complexity and size, so the use of autocoding approaches
in safety-critical domains has been minimal. In this paper,
we describe an alternative approach which demonstrates
trustworthiness for each generated program (i.e., the prod-
uct) separately, rather than for the entire generator system
(i.e., the process).

Trustworthiness is a multi-faceted software quality fea-
ture; typically, it involves questions like “Can the ven-
dor be trusted?”, “Can the user be trusted?”, or, obvi-
ously, “Can the code itself be trusted to behave as ex-
pected?” In this paper we focus on the last aspect; more
precisely, we focus on the certification of code with respect
to certain properties that are usually expected to hold for
trustworthy code. Typical properties, which our approach
can handle, are array bounds safety, operator safety, and
variable-initialization-before-use. Violations of these prop-
erties (usually “buffer overflow”, which is an array-bounds
violation) have caused several safety- and security-critical
incidents, including many Internet worms.

Due to the complexity and size of the generated pro-
grams, however, neither testing nor code inspections can
realistically be used to demonstrate that the selected proper-
ties hold. Our approach thus uses formal code certification.
Our basic idea is to extend the code generator such that it
provides formal proofs that the generated code satisfies the
selected properties. These proofs serve as certificates which
can be checked independently, by the code consumer or by
a certification authority, for example the FAA. Code cer-
tification is based on the same technology as Hoare-style
program verification; in particular, it also uses code annota-
 (HICSS’03)

Pro
0-7
tions to formalize the properties. The difference, however,
is in the details: the properties are much simpler and more
regular than full behavioral specifications. Both aspects are
crucial. Since the properties are simple and regular, the an-
notations can be derived schematically from a public safety
policy and automatically inserted into the generated code.
Proving these properties, given annotated programs, is then
straightforward, and can be performed by an automated the-
orem prover (ATP).

Our approach is similar to the concept of proof carrying
code (PCC) [16]. It also relies on a small, simple kernel
of trusted components. These components, the safety pol-
icy, verification condition generator (VCG), and the proof
checker, are very simple and can be verified using standard
software development techniques. Errors or malicious tam-
pering in the complex parts of the software (i.e., the code
generator and theorem prover) will cause the proof process
to fail at some step. Surprisingly, this holds even though
we use the code generator itself—and not the programmer,
as in PCC—to produce the auxiliary annotations (e.g., loop
invariants) which are required to make the proofs possible;
in particular, a wrong (i.e., too strong) loop invariant will
just cause the proof process to fail at a later step. Thus, if
we can prove several safety properties about the generated
code, we can gain a very high level of trust that this code
will, in fact, run safely.

This paper elaborates our approach in [22, 21] where
we described an extension of the program synthesis sys-
tem AUTOBAYES which is able to certify generated code
with respect to operator safety and array bounds safety. In
this paper we have a systematic look at certifiable program
properties and show an initial taxonomy of these properties
(cf. Section 2). Section 3 gives the necessary background
information on proof carrying code and program synthesis,
and describes the extended architecture of AUTOBAYES.
Section 4 then focuses on the formalization of the safety
policies, in particular variable-initialization-before-use, us-
ing an extended set of Hoare rules. Our approach allows us
to easily customize a safety policy in order to enforce ad-
ditional constraints, e.g., programming standards. In Sec-
tion 5, we describe how the code annotations are generated
within the synthesis system, and how the proof obligations
are produced by the verification generator and processed by
the automated theorem prover. Section 6 relates our work
to other approaches in verification, certification, and gener-
ation of trustworthy code; in Section 7, we summarize and
sketch current and future work.

2 Property Verification

Traditionally, program verification has focused on show-
ing the functional equivalence of (full) specification and im-
plementation. However, this verification style is extremely
ceedings of the 36th Hawaii International Conference on System Sciences
695-1874-5/03 $17.00 © 2002 IEEE
demanding, because of the involved specification and proof
efforts, respectively. Furthermore, many aspects of trust-
worthiness are usually not expressed in the specification and
thus not demonstrated explicitly. More recent approaches
thus concentrate on showing specific properties that are im-
portant for software safety and security.

While many mechanisms and tools for verifying pro-
gram properties have been published, especially for dis-
tributed systems (e.g., model checking), relatively little at-
tention has been paid to the properties themselves. The re-
lated work in this area is usually concerned with computer
security [19]; we are interested in all “useful” and “im-
portant” properties. To help guide our research, we have
created an initial taxonomy of verifiable properties of pro-
grams. A first attempt is shown in Figure 1.

Safety properties prevent the program from performing
illegal or nonsensical operations, such as access to unavail-
able memory addresses or division by zero. Within this
category, we further subdivide into five different aspects
of safety. Memory safety properties assert that all mem-
ory accesses involving arrays and pointers are within their
assigned bounds. Type safety properties assert that a pro-
gram is “well typed” according to a type system defined
for the language. This type system may correspond to the
standard type system for the language, or may enforce ad-
ditional type checking obligations, such as ensuring that all
variables representing physical quantities have correct and
compatible units and dimensions (cf. [14]). Numeric safety
properties assert that programs will perform arithmetic op-
erations correctly. Potential errors include (1) using par-
tial operators, like divide or square root, with arguments
outside their defined domain, (2) performing computations
that yield results larger (overflow) or smaller (underflow)
than are representable on the computer, and (3) performing
floating point operations which cause an unacceptable loss
of precision. Exception handling properties ensure that all
exceptions that can be thrown within a program are handled
within the program. Environment compatibility properties
ensure that the program is compatible with its target envi-
ronment. Compatibility constraints specify hardware, op-
erating systems, and libraries necessary for safe execution.
Parameter conventions define constraints on program com-
munication and invocation.

Resource limit properties check that the required re-
sources for a computation are within some bound. Live-
ness/progress properties are used to show that the program
will eventually perform some required activity, or will not
be permanently blocked waiting for resources. Security
properties prevent a program from accidental or malicious
tampering with the environment and from being modified
by an attacker.

Trustworthiness of a program cannot be related to just
one property; only if the software together its environment
 (HICSS’03)

Proceedings of the 36
0-7695-1874-5/03
Property-Based Verification

Safety:
Memory:

Array bounds checks
Pointer safety

Type
Narrowing Type-Cast
Units/dimensions

Variable initialization-before-use
Numeric:

Partial operator/function domain errors
Overflow
Underflow
Precision

Exception Handling
Environment Compatibility:

Correct Operating System
Correct Hardware
Necessary Libraries Installed
Correct Versioning
Correct Parameter Conventions

parameter ordering
parameter alignment

Communications
Integer byte-ordering
Integer/Floating Point size

Security:
Communications
File System Use
Printing
GUI
OS Environment
Authentication
Reporting/Logging

Resource Limits:
CPU (Termination)
Response time
Memory/Stack
Disk
Bandwidth
Bus

Liveness/Progress:
Deadlock
Livelock
Race Conditions/Critical Sections

Figure 1. Overview of verification properties
fulfills a set of properties it can be considered trustworthy.
Clearly, there is overlap between the properties in the dif-
ferent categories; for example, many security flaws are due
to safety violations (e.g., memory safety violations in form
of buffer overflows). We plan to extend and clarify this tax-
onomy in future work. For this project, we are interested in
non-trivial properties that are amenable to automatic verifi-
cation. Therefore, in this paper we concentrate our inves-
tigations on a particular safety property: variable definition
before use. Two other properties, operator safety and array-
bounds safety are already discussed in [22, 23].

3 Background

3.1 Proof-Carrying Code

PCC [16, 1] is a certification approach especially for mo-
bile code. Many distributed systems (e.g., browsers, cellu-
lar phones) allow the user to download executable code and
run it on the local machine. If the origin of this code is un-
known, or the source is not trustworthy, this poses a consid-
erable risk: the code may not be compatible with the current
system status, or the code can destroy critical data.

The PCC concept and system architecture (Figure 2)
have been developed to address the problem of showing
certain properties (i.e., the safety policy) efficiently at the
th Hawaii International Conference on System Sciences
$17.00 © 2002 IEEE
time when the software is downloaded. The developer of
the software annotates the program which is then compiled
into object-code using a certifying compiler, e.g., Touch-
stone [3]. Such a compiler carries over the source code an-
notations to the object code level. A VCG processes the
annotated code together with a public safety policy. The
VCG produces a large number of proof obligations. If all of
them are proven, the safety policy holds for this program.
However, since these activities are performed by the pro-
ducer, the provided proofs are not necessarily trustworthy.
Therefore, the annotated code and a compressed copy of the
proofs are packaged together and sent to the user. The user
reconstructs the proof obligations and uses a proof checker
to ensure that the conditions match up with the proofs as
delivered with the software. Both, the VCG and the proof
checker, need to be trusted in this approach. However, since
a proof checker is much simpler in its internal structure than
a prover, it is simpler to design and implement in a correct
and trustworthy manner. Furthermore, checking a proof
is very efficient, in stark contrast to finding the proof in
the first place—which is usually a very complex and time-
consuming process.

A number of PCC-approaches have been developed, par-
ticularly focusing on the compact and efficient representa-
tion of proofs (e.g., using LCF [16] or HOL [1]). However,
all of these approaches are in practice restricted to very sim-
 (HICSS’03)

Pr
0-
ple properties. More intricate properties require the pro-
ducer of the program to provide elaborate annotations and
to carry out complicated formal proofs manually.

and ...

policy

proof obligation

source code

Domain
theory

compressed

for I : int &
cdef(R17) = init

 x[i] =...

Certifying
Compiler

for (i=0; ...

Theorem

Prover

VCG

Proof Validation

proof

INVAR: R17 <> 0
05 3f 34 ae

codeannotated

untrusted

trusted

Safety

Figure 2. Typical architecture for proof carry-
ing code. Trusted components are below the
dot-dashed line.

3.2 Program Synthesis and AutoBayes

Automated program synthesis aims at automatically con-
structing executable programs from high-level specifica-
tions. It is usually based on mathematical logic, although
a variety of different approaches exist [13]. Here, we will
focus on a specific approach, schema-based program syn-
thesis, and a specific system, AUTOBAYES. AUTOBAYES

[6] generates complex data analysis programs from com-
pact specifications in the form of statistical models. It has
been applied to a number of domains, including clustering,
change detection, sensor modeling, and software reliability
modeling, and has been used to generate programs with up
to 1500 lines of C++ code.

AUTOBAYES synthesizes code by repeated application
of schemas. A schema consists of a program fragment with
open slots and a set of applicability conditions. The slots
are filled in with code pieces by the synthesis engine call-
ing schemas recursively. The conditions constrain how the
oceedings of the 36th Hawaii International Conference on System Sciences
7695-1874-5/03 $17.00 © 2002 IEEE
(* POST ...

FOR i:=1 TO N

max pr(x | mu..
x ~ N(mu,sigma)

input specification

forall I : int &

 and ...
 cdef(I) = init

first order logic

 mu[i] := ...

annotated code

VCG

Theorem Prover E−SETHEO

Synthesis System

AutoBayes

policy
Safety

theory
Domain

Figure 3. AutoBayes system architecture, ex-
tended for code certification

slots can be filled; they must be proven to hold in the given
specification before the schema can be applied. Some of
the schemas contain calls to symbolic equation solvers, oth-
ers contain entire skeletons of statistical or numerical algo-
rithms. By recursively invoking schemas and composing
the resulting code fragments, AUTOBAYES is able to au-
tomatically synthesize programs of considerable size and
internal complexity.

Figure 4 below shows in stylized Prolog-notation a
slightly simplified schema which is selected when a func-
tion needs to be maximized. It synthesizes a code fragment
C which calculates the maximum w.r.t. a single variable X
for a symbolically given function F. The applicability of this
schema is restricted to cases where a first derivative of F ex-
ists. The schema first tries to compute the maximum sym-
bolically by solving the equation ∂F/∂X = 0 for X. If that
succeeds, it returns a single assignment. Otherwise, an it-
erative numerical optimization routine must be synthesized
in order to solve the given problem. Such an algorithm con-
sists of three code segments: finding a start value x0, calcu-
lation of the search direction p, and the step length λ. Then,
starting with x0, the maximum is sought by iteratively ap-
proaching the maximum: xk+1 = xk + λkpk (for details
see [9, 17]). Our schema assembles this algorithm by re-
 (HICSS’03)

Pr
0-
cursive calls to schemas to obtain code fragments CInit,
CSteplength, and CStepdir for initialization, calcu-
lation of the step length, and step direction, respectively.
Instantiation of code fragments in the algorithm skeleton is
denoted by <...>.

schema(max F wrt X, C) :-
exists(first-derivative(F)),
symbolic_solve(d(F, X) == 0, Solution),
if (Solution != not_found)
C = "<X> := <Solution>";

else {
schema(getStartValue(F,X), CInit);
schema(getStepsize(F,X),CSteplength);
schema(getStepdir(F,X),CStepdir);
C = "{ <CInit>;
while(converging(<X>))

<X> := <X> +
<CSteplength>*<CStepdir>; }";

}.

Figure 4. Synthesis Schema (Fragment)

While we cannot present details of the synthesis process
here, we want to emphasize that the code is assembled from
building blocks which are obtained by symbolic computa-
tion or schema instantiation. The schemas clearly lay out
the domain knowledge and important design decisions. As
we will see later on, they can be extended in such a way that
the annotations required for the certification are also gener-
ated automatically.

3.3 AutoBayes/CC

The architecture of our certifying synthesis system (see
Figure 3) is similar to the typical proof-carrying code ar-
chitecture shown in Figure 2. However, since we are cur-
rently not dealing with proof validation aspects, we only
have three major building blocks: the synthesis system
AUTOBAYES (which replaces the certifying compiler), the
verification condition generator, and the automated theorem
prover.

The system’s input is a specification of a statisti-
cal model. This specification need not be modified for
certification—the process is thus completely transparent to
the user. AUTOBAYES then attempts to synthesize code us-
ing the schemas described above. These schemas are ex-
tended appropriately to support the automatic generation of
code annotations. AUTOBAYES produces Modula-2 code1

which carries the annotations as comments. Annotations
and code are then processed by the verification condition

1Since MOPS works on Modula-2, we extended AUTOBAYES to gen-
erate Modula-2 code. Usually, AUTOBAYES synthesizes C++/C programs
for the Octave and Matlab environments.
oceedings of the 36th Hawaii International Conference on System Sciences
7695-1874-5/03 $17.00 © 2002 IEEE
generator MOPS[11]. Its output is a set of proof obligations
in first order predicate logic which must be proven to show
the desired properties. In order to do so, a domain theory
in form of a set of axioms must be added to the formulas.
Finally, these extended proof obligations are fed into the
automated theorem prover E-SETHEO[2].

4 Safety Policies

The first step in our approach is to define precisely what
constitutes our properties by formulating them as predicates
within a logic. Then, we must define some mechanism to
transform a program into a series of verification conditions
that are valid if and only if the safety properties are satisfied.

Hoare rules [25] form the foundation of our approach.
They are triples of the form {P} C {Q} where C is a
statement in an imperative programming language, and P
and Q are predicates. The statement acts as a predicate
transformer, that is, it describes how (the state described
by) predicate P is transformed into predicate Q by the ex-
ecution of C. Our idea is to add explicit constraints to the
predicates in the rules to ensure that each statement fulfills
the required properties. We use a predicate SafeExprP(E)
which is true iff property P holds for the expression E.
For the most part, these modifications are in the form of
strengthened preconditions. In the sections below, we will
give a formal definition of this predicate for our selected
safety policy.

4.1 Variable Initialization Before Use

At first glance, an initialization-before-use safety policy
may seem unnecessary for two reasons: First, modern com-
pilers can detect many violations of this property. How-
ever, more intricate cases (e.g., within loops and arrays)
are not handled by the usual compilers. Second, for full
functional equivalence proofs, uninitialized variables will
in many cases cause proof obligations to be unprovable.2

However, when proof obligations are relatively weak, as it
is for safety policies, uninitialized variables do not neces-
sarily cause proof obligations to fail but can still cause a
program to yield incorrect results. Therefore, an explicit
initialization-before-use property is an important aspect of
any safety policy.

To formalize the policy, we must first add the notion of
variable initializations, rather than simply variable values,
to the logic. This could be accomplished by adding an ex-
plicit bottom-value to the domains, as usual in denotational
semantics. However, this complicates reasoning about the
proof obligations unnecessarily. We thus use shadow vari-

2If the obligations remain provable, the use of an initialized variable is
irrelevant to the specified functionality and could be removed.
 (HICSS’03)

Proceedings of the 36th Hawa
0-7695-1874-5/03 $17.00
Scalar Assign {P [e/x, INIT/xinit] ∧ SafeExprI(e)} x := e {P}

Array Assign




P [x{(e0, . . . , en) → e},
xinit{(e0, . . . , en) → INIT}]

∧ SafeExprI(e)

∧ SafeExprI(e0)

· · ·
∧ SafeExprI(en)




x[e0, . . . , en] := e {P}

Conditional
{P ∧ b ∧ SafeExprI(b)} s {Q} (P ∧ ¬b ∧ SafeExprI(b) =⇒ Q)

{P ∧ SafeExprI(b)} if b then s {Q}

While Loop
{P ∧ b ∧ SafeExprI(b)} c {P ∧ SafeExprI(b)}

{P ∧ SafeExprI(b)} while b do c {P ∧ ¬b ∧ SafeExprI(b)}

For Loop 


P [INIT/xinit] ∧
e0 ≤ x ≤ e1 ∧
SafeExprI(e0) ∧
SafeExprI(e1)




s




P [(x + 1)/x] ∧
SafeExpr(e0) ∧
SafeExpr(e1)







P [e0/x, INIT/xinit] ∧
SafeExprI(e0) ∧
e0 ≤ e1 ∧ SafeExprI(e1)


 for x := e0 to e1 do s




P [(e1 + 1)/x] ∧
SafeExprI(e0) ∧
SafeExprI(e1)




Sequence
{P} s0 {R} {R} s1 {Q}

{P} s0; s1 {Q}

Conseq. Rule
P ′ =⇒ P {P} s {Q} Q =⇒ Q′

{P ′} s {Q′}

Figure 5. Hoare rules with init-before-use safety policy extensions
ables in the specification that keep track of the status of pro-
gram variables. In our case, for each variable x, we asso-
ciate a shadow variable xinit, where xinit can either have
the value INIT or UNINIT. Whenever the variable is assigned
a value, the shadow variable is set to INIT; whenever the
variable is used, an obligation is added to ensure that the
shadow variable is equal to INIT. The shadow variables are
pure specification-level variables, i.e., they are not accessi-
ble by the program.

More concretely, to check safety, we define a function
VariableRefs, that returns all variable references (including
array subscripts) within an expression. Then, a safe expres-
sion, with respect to our initialization policy can be defined:

SafeExprI(E) ≡ ∀v ∈ VariableRefs(E) : vinit = INIT

The SafeExprI predicate is higher-order, as it quantifies
over expressions in the program syntax. However, since
VariableRefs(E) yields a finite set, we can expand these
quantified predicates over variables and expressions into a
sequence of first-order predicates. For example, given the

s

T
p

4

H
a
e
w
p
a
c
b
w
c

ii International Conference on System Sciences
© 2002 IEEE
tatement:
q[k, c[k]] := 1.0;

hen, SafeExprI(q[k, c[k]]) yields the following safety
redicate, once expanded:

kinit = INIT ∧ cinit[k] = INIT ∧ qinit[k, c[k]] = INIT.

.2 Modified Hoare-Rules

Figure 5 specifies the entire safety policy via modified
oare-rules. The first rule describes scalar assignments,

nd is the same as the standard Hoare assignment rule,
xcept that it has a strengthened precondition that checks
hether all variables referenced within the assignment ex-
ression have been initialized. The second rule describes
ssignment of array cells. Unlike scalar assignment, array
ell assignment cannot be handled by simple substitution,
ecause of the possibility of aliasing of array cells. Instead,
e think of the array as describing a mapping function from

ells to values. An assignment to a cell is an update of
 (HICSS’03)

Proc
0-76
the mapping function, written as x{(e0, e1, . . . , en) → e}.
This approach is the standard extension of the Hoare cal-
culus to handle arrays and is described fully in [15]. We
strengthen the precondition of this rule to ensure that both
the subscript expressions in the left-hand side and the as-
signment expression are safe.

The next three rules describe conditional and loop state-
ments. They are the same as the standard Hoare rules,
with strengthened preconditions to show that their expres-
sions are safe. Finally, we define the standard Hoare rule
of consequence, which states that we can always legally
strengthen the precondition or weaken the postcondition of
a statement. Soundness of all rules is obvious.

4.3 Customizing the Safety Policy

Coding standards are a traditional way to increase the
trustworthiness of software systems. They prohibit the use
of certain legal but error-prone coding practices. Most soft-
ware processes for safety-critical applications thus require
that the developed software follows a given coding stan-
dard. Obviously, automatically generated code must also
adhere to these standards. By formalizing the coding stan-
dards as safety policies and by extending the Hoare-rules
described above, we can in fact demonstrate formally that
the generated code follows customized coding standards.

As an example, we will customize our policy such that it
supports the following coding standard: “Index variables
for for-loops shall not be used outside their enclosing
loops.” This standard prohibits situations where the loop
index variable is abused to force a premature loop exit and
its value is later used to check whether the loop was aborted
or finished properly (Figure 6A).

(A) FOR i := 1 TO N DO
<...>
IF <...> THEN

i := N + 2 (* abort *)
END

END
IF i = N + 2
THEN <...> (* aborted? *)
ELSE <...> (* terminated? *)
END

(B) FOR i := 1 TO N DO
<...>
FOR i := 1 TO M DO

<...>
END
<...>

END

Figure 6. Violations of the coding standard

The code example in Figure 6B shows another effect of
our extended safety policy. Here, the two nested loops erro-
eedings of the 36th Hawaii International Conference on System Sciences
95-1874-5/03 $17.00 © 2002 IEEE
neously use the same index variable which can lead to un-
intended program behavior. Such improperly constructed
loops can easily arise if the code generator is not imple-
mented carefully. However, our extended safety policy
catches this situation.

The policy is implemented by adding two more values
to the domain of our shadow variables: LOOP and STALE.
These values represent the state of a loop-index variable
within the loop and following the loop, respectively. We
then modify the definition of SafeExpr to allow expressions
inside a loop to use loop variables:

SafeExprI(E) ≡
∀v ∈ VariableRefs(E) : (vinit = INIT ∨ vinit = LOOP)

Next, we need to modify both the assignment rules and
the for-loop rule in order to distinguish between loop vari-
ables and variables assigned by other means. These changes
are shown in Figure 7. For scalar and array assignments,
we can only assign variables which have not been used as a
loop index (i.e., INIT or UNINIT). In the for-loop rule, we add
a constraint that our loop variable has not previously been
assigned a value. Within the loop, we assert that the vari-
able is being used as a loop counter (P [LOOP/xinit]), and
outside the loop, that the variable is “stale”, and cannot be
used (P [STALE/xinit]).

5 Processing Annotated Code

5.1 The Verification Condition Generator

In the typical proof-carrying code architecture as shown
in Figure 2 the safety policy is a separate component. In
practice, however, it is hardcoded into the verification con-
dition generator component of the certifying compiler. In
our current implementation, all required annotations are
generated so that in principle any VCG can be used. For the
experiments, we used the VCG of the Modula Proving Sys-
tem MOPS [11]. MOPS is a Hoare-calculus based verifica-
tion system for a large subset of the programming language
Modula-2. It uses a subset of VDM-SL as its specification
language; this is interpreted here only as syntactic sugar for
classical first-order logic.

5.2 Annotations and their Propagation

Annotating the large programs created by AUTOBAYES

requires careful attention to detail and many annotations.
There are potentially dozens of loops requiring an invari-
ant, and nesting of loops and if-statements can make it dif-
ficult to determine what is necessary to completely anno-
tate a statement. For this reason, we split the task of creat-
ing the statement annotations into two parts: creating lo-
cal annotations during the run of AUTOBAYES, i.e., the
 (HICSS’03)

Proceedings of the 36th
0-7695-1874-5/03 $1
Scalar Assign

{
P [e/x, INIT/xinit] ∧ SafeExprI(e)

∧ (xinit = INIT ∨ xinit = UNINIT)

}
x := e {P}

Array Assign




P [x{(e0, . . . , en) → e},
xinit{(e0, . . . , en) → INIT}]

∧(x{(e0, . . . , en) → e} = INIT∨
x{(e0, . . . , en) → e} = UNINIT)

∧ SafeExprI(e)

∧ SafeExprI(e0)

· · ·
∧ SafeExprI(en)




x[e0, . . . , en] := e {P}

For Loop 


P [LOOP/xinit] ∧
e0 ≤ x ≤ e1 ∧
SafeExprI(e0) ∧
SafeExprI(e1)




s




P [(e1 + 1)/x] ∧
SafeExpr(e0) ∧
SafeExpr(e1)







P [e0/x, STALE/xinit] ∧
(xinit = UNINIT ∨ xinit = INIT) ∧
SafeExprI(e0) ∧
e0 ≤ e1 ∧ SafeExprI(e1)




for x := e0 to e1 do s




P ∧
SafeExprI(e0) ∧
SafeExprI(e1)




Figure 7. Modified Hoare rules for coding standards safety policy
proper synthesis process, and then propagating the annota-
tions through the code. The schema-guided synthesis mech-
anism of AUTOBAYES makes it easy to produce annotations
local to the current statement, as the annotations are tightly
coupled to the individual schema. The local annotations for
a statement describe the changes in variables made by that
statement, without needing to describe all of the global in-
formation that may later be necessary for proofs. Then, the
propagation algorithm (see [22] for details) pushes the an-
notations through the program until they are needed.

Figure 8 shows a small piece of annotated code which
initializes a matrix q for an iterative statistical algorithm.
A value of one is set to exactly one element in each row
pv57; the column of this element is given by the value of
c[pv57] (for details see [6, 23]). All annotations are writ-
ten as Modula-2 comments enclosed in (*{. . . }*). Pre-
and post-conditions start with the keywords pre and post,
respectively, loop invariants with a loopinv, and addi-
tional assertions with an assert.

5.3 The Automated Prover

In order to process the generated proof obligations, we
are using the automated theorem prover E-SETHEO, ver-
sion csp01 [2]. E-SETHEO is a high-performance theorem
prover for formulas in first order logic. Out of the 70 gen-
erated proof tasks of our example, E-SETHEO could solve
 Hawaii International Conference on System Sciences
7.00 © 2002 IEEE
68 automatically with a run-time limit of 60 seconds on
a 1000 MHz. SunBlade workstation. The remaining two
proof tasks required some preprocessing before they could
be proven automatically. These preprocessing steps have
been done manually for this experiment; for future versions,
we will automate these additional steps. Most of the proof
tasks could be solved in about two seconds, but several tasks
took up to 20 seconds CPU time. The overall runtime of the
prover for all proof tasks was roughly 400 seconds, demon-
strating the practical feasibility of our approach.

6 Related Work

The approach most closely related to ours is proof-
carrying code which has already been discussed in Sec-
tion 3.1. However, due to its focus on mobile code, PCC
covers many aspects we are not yet interested in, e.g., effi-
cient proof representation and proof checking. It also works
on the level of object code or typed intermediate languages
(e.g., Flint [20]) and is thus complementary to our approach.
Certifying compilers as Touchstone [3] or Cyclone [10]
could consequently be used to show that the safety policy
established on the source code level is not compromised by
the compilation step.

Our methodology uses domain knowledge, built into the
synthesis system to automatically generate all the required
annotations. In contrast to this, many reverse engineering
 (HICSS’03)

P
0

(*{loopinv
(forall j: int & (0 <= j and j < N) =>
(c_init(j) = init)) and

0 <= pv57 and pv57 <= N and
pv57_init = init and N_init = init and
C_init = init and
(forall a, b: int & (0 <= a and a < N
and 0 <= b and b < C) =>

q_init(a, b) = init) }*)
FOR pv57 := 0 TO N - 1 DO

(*{assert
(forall j: int & (0 <= j and j < N) =>
(c_init(j) = init)) and

(forall a, b: int & (0 <= a and a < N
and 0 <= b and b < C) =>

q_init(a, b) = init) and
N_init = init and C_init = init and
0 <= pv57 and pv57 < N and
pv57_init = init and
c_init(pv57) = init}*);

q[pv57][c[pv57]] := 1;
END;
(*{assert

(forall j: int & (0 <= j and j < N) =>
(c_init(j) = init)) and
(forall a,b: int & (0 <= a and a < N

and 0 <= b and b < C) =>
q_init(a, b) = init) and

N_init = init and C_init = init }*);

Figure 8. Excerpt of synthesized code with
annotations. Actual Modula-2 statements are
underlined.

approaches try to recover formal specifications and annota-
tions from pure code. Gannod and Cheng [8] use a strongest
postcondition predicate transformer to support different re-
verse engineering tasks but their approach still requires ad-
ditional manual annotations (e.g., loop invariants). Ernst
et al. [4] try to infer such invariants dynamically, using a
generate-and-test approach: potential invariants are gener-
ated from a set of patterns and checked against previously
collected run-time trace information. However, the inferred
predicates are not proven to be actually invariant so that the
approach is not suitable for certification purposes. Flana-
gan and Leino [7] describe a similar system, Houdini, to
support their ESC/Java verification system. Houdini also
uses a generate-and-test approach but the test phase relies
on ESC/Java to prove the invariants. However, Houdini
does not use domain knowledge in the generate phase and
is thus restricted in the kind of invariants it can recover.

Obviously, our research is also related to standard pro-
gram verification. However, program verification concen-
trates on showing full functional equivalence rather than
roceedings of the 36th Hawaii International Conference on System Sciences
-7695-1874-5/03 $17.00 © 2002 IEEE
property verification. Lowry et al. [14] present an ap-
proach for certifying domain-specific properties which is
based on abstract interpretation. They check programs for
frame safety, an extended type safety property. Other safety
properties can also be encoded in extended type systems
and then checked via (extended) type inference algorithms.
Such approaches have been used to show, for example, unit
and dimensional safety [18, 12] and memory safety [26].
However, these approaches usually also require additional
annotations, e.g., type declarations. Moreover, most of
them are restricted to a specific safety policy and thus less
general than proof-based certification approaches.

7 Conclusions

In this paper, we have described a novel combination of
automated program synthesis and automated program ver-
ification with the aim to increase trustworthiness of auto-
matically generated code. Our basic idea is to generate the
program together with detailed formal annotations which
are required for a fully automatic proof of safety properties.
This approach is facilitated by the knowledge of the domain
and the program under construction which is formalized in
the program synthesis system. Since it is virtually impos-
sible to re-generate this information from the synthesized
program only, our approach is much more powerful and
“smarter” than a certifying compiler and allows us to certify
complex properties for mid-sized programs fully automati-
cally. It also overcomes the burden of manually annotating
the program; the expansion of the original 290 lines of code
in our example into more than 1,700 lines of code with an-
notations is a clear indication that manual annotation is out
of question.

This independent verification complements the notion of
“correctness-by-construction” generally built into program
synthesis/generation systems. This notion means that the
system always produces code which correctly implements
the user’s specification. However, its validity depends on
the correctness and consistency of the underlying synthe-
sis engine and the domain theory. Because these are large
and complex artifacts—comparable to a compiler—current
technology cannot guarantee their correctness. Thus, a user
must in reality “trust” that the synthesis system produces
correct code. Here, our approach provides a means to for-
mally and automatically (i.e., at no cost for the user) demon-
strate trustworthiness of the synthesized program, even if
the synthesizer itself might not be fully trustworthy.

The work described in this paper is only a first step to-
wards this goal. In our current prototype, the safety-policy
is hard-coded in the way the annotations for each individual
property are generated within the synthesis schemas. We
work explicit representations of safety policies (e.g., using
higher-order formulations) and their use to tailor the anno-
 (HICSS’03)

P
0

tation generation in AUTOBAYES.
Although our approach has the potential to increase

trustworthiness of the synthesis system and the code-
generator, our architecture still relies on the correctness of
E-SETHEO and MOPS. We are planning to implement a
small and trustworthy verification condition generator and
a small and verified proof checker which is able to give us
the certainty that the proofs produced by E-SETHEO are in-
deed correct. Future work will also address issues related
to proof-carrying code, in particular, a compact representa-
tion of the proofs and performing the proofs on annotated
object-code.

With the emerging feasibility for the automatic genera-
tion of safety critical, non-trivial software components (e.g.,
for navigation/state estimation [24]), our approach to certifi-
cation is able to substantially increase trustworthiness of au-
tomatically synthesized code and facilitates the use of syn-
thesis systems in proof-carrying-code environments.

References

[1] A. W. Appel and A. P. Felty. A semantic model of types
and machine instructions for proof-carrying code. In Proc.
27th ACM Symp. Principles of Programming Languages, pp.
243–253, ACM Press, 2000.

[2] CASC-JC theorem proving competition, 2001.
http://www.cs.miams.edu/˜tptp/CASC/JC.

[3] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and
K. Cline. A certifying compiler for Java. ACM SIGPLAN
Notices, 35(5):95–107, 2000.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Trans. Software Engineering,
27(2):1–25, Feb. 2001.

[5] M. S. Feather and M. Goedicke (eds.) Proc. 16th Intl. Conf.
Automated Software Engineering. IEEE Comp. Soc. Press,
2001.

[6] B. Fischer and J. Schumann. AutoBayes: A system for
generating data analysis programs from statistical mod-
els. J. Functional Programming, 2002. To appear.
http://ase.arc.nasa.gov/people/fischer/.

[7] C. Flanagan and K. R. M. Leino. Houdini, an annotation as-
sistant for ESC/Java. In J. Oliveira and P. Zave (eds.), Proc.
Intl. Symp. Formal Methods Europe 2001: Formal Methods
for Increasing Software Productivity, LNCS 2021, pp. 500–
517, Springer, 2001.

[8] G. C. Gannod, Y. Chen, and B. H. C. Cheng. An auto-
mated approach for supporting software reuse via reverse
engineering. In D. F. Redmiles and B. Nuseibeh (eds.), Proc.
13th Intl. Conf. Automated Software Engineering, pp. 79–
86, IEEE Comp. Soc. Press, 1998.

[9] P. Gill, W. Murray, and M. Wright. Practical Optimization.
Academic Press, 1981.

[10] L. Hornof and T. Jim. Certifying compilation and run-time
code generation. Higher-Order and Symbolic Computation,
12(4):337–375, 1999.
roceedings of the 36th Hawaii International Conference on System Sciences
-7695-1874-5/03 $17.00 © 2002 IEEE
[11] T. Kaiser, B. Fischer, and W. Struckmann. Mops: Veri-
fying Modula-2 programs specified in VDM-SL. In Proc.
4th Workshop Tools for System Design and Verification, pp.
163–167, Reisensburg, July 2000.

[12] A. Kennedy. Programming Languages and Dimensions.
PhD thesis, University of Cambridge, Apr. 1996. Published
as UCCL TR391.

[13] C. Kreitz. Program synthesis. In W. Bibel and P. H. Schmitt
(eds.), Automated Deduction - A Basis for Applications, pp.
105–134. Kluwer, 1998.

[14] M. Lowry, T. Pressburger, and G. Rosu. Certifying domain-
specific policies. In Feather and Goedicke [5], pp. 118–125.

[15] D. C. Luckham and N. Suzuki. Verification of array, record,
and pointer operations in Pascal. ACM Trans. Programming
Languages and Systems, 1(2):226–244, Oct. 1979.

[16] G. C. Necula and P. Lee. Efficient representation and vali-
dation of logical proofs. In Proc. 13th Annual IEEE Symp.
Logic in Computer Science, pp. 93–104, IEEE Comp. Soc.
Press, 1998.

[17] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C. Cambridge Univ. Press,
Cambridge, UK, 2nd. edition, 1992.

[18] M. Rittri. Dimension inference under polymorphic recur-
sion. In Proc. 7th Conf. Functional Programming Lan-
guages and Computer Architecture, pp. 147–159, ACM
Press, 1995.

[19] F. B. Schneider. Enforceable security policies. Computer
Science Technical Report TR98-1644, Cornell University,
September 1998.

[20] Z. Shao, C. League, and S. Monnier. Implementing typed in-
termediate language. In Proc. 1998 ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’98),
pp. 313–323, Baltimore, Maryland, Sept. 1998.

[21] M. Whalen, J. Schumann, and B. Fischer. AutoBayes/CC
— combining program synthesis with automatic code cer-
tification (system description). In A. Voronkov (ed.), Proc.
18th Intl. Conf. Automated Deduction, LNAI 2392, pp. 290–
294. Springer, 2002.

[22] M. Whalen, J. Schumann, and B. Fischer. Synthesiz-
ing certified code. In L.-H. Eriksson and P. A. Lindsay
(eds.), Proc. Intl. Symp. Formal Methods Europe 2002: For-
mal Methods—Getting IT Right, LNCS 2391, pp. 431–450.
Springer, 2002.

[23] M. Whalen, J. Schumann, and B. Fischer. Synthesiz-
ing certified code. RIACS Technical Report 03.02, 2002.
http://www.riacs.edu.

[24] J. Whittle, J. Van Baalen, J. Schumann, P. Robinson,
T. Pressburger, J. Penix, P. Oh, M. Lowry, and G. Brat.
Amphion/NAV: Deductive synthesis of state estimation soft-
ware. In Feather and Goedicke [5], pp. 395–399.

[25] G. Winskel. The Formal Semantics of Programming Lan-
guages: An Introduction. The MIT Press, 1993.

[26] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. In Proc. ACM Conf. Programming
Language Design and Implementation 1998, pp. 249–257.
ACM Press, 1998. Published as SIGPLAN Notices 33(5).
 (HICSS’03)

	HICSS36 2003
	Return to Main Menu

