
Agent Approach for Service Discovery and Utilization

Paul Palathingal
Research Associate

Advanced Software Engineering Research Group
Bldg 6025, Room 14L, PO Box 2008

Oak Ridge National Laboratory
Oakridge, TN

Ph: 865-574-9790
Email: palathingalp@ornl.gov

Sandeep Chandra
Research Assistant

Advanced Software Engineering Research Group
Bldg 6025, Room 10K, PO Box 2008

Oak Ridge National Laboratory
Oakridge, TN

Ph: 865-576-1339
Email: chandras@ornl.gov

Abstract

There is an extensive set of published and usable services on the internet. Human based

approach to discover and utilize these services is not only time consuming, but also

requires continuous user interaction. In this paper we demonstrate the use of agent

technology and Web Service standards to enable automatic service discovery and

utilization. Our approach called the Agent Approach for Service Discovery and

Utilization (AASDU) focuses on using light weight autonomous agents, built into a

multi-agent community called the Multi Agent Referral System and Web Service

standards namely UDDI, SOAP, WSDL and XML.

In the AASDU approach, agents interact with the end user to discover services, to

specific queries, and efficiently manage their utilization. It uses intrinsic multi-agent

properties to allow agents to communicate and cooperate with one another. As the system

is agent driven, each agent conforms to a communication protocol that allows it to send

and receive messages from another agent, without needing to know the address of the

receiving agent. This paper also demonstrates the interoperability achieved between

heterogeneous software components through the use of Web Service standards and

protocols. We describe in detail the agent technology, Web Service standards and the

AASDU approach.

1 Introduction

Consider the following scenario. A Geographical Information System (GIS) analyst is

analyzing an environmental project for a particular geographical region. They would need

the following data 1. Orthographic images of the region, 2. Articles or documents on any

activity or construction in the region and 3. A visualization tool for this data. For these

tools to be located and used, they need to be registered as services with public registries

(e.g. UDDI) [1] on the internet. Current approach requires the user to search for these

services manually. In the near future, similar services are expected to grow exponentially

thereby making manual search extremely time consuming and laborious.

To address these issues we propose an agent-based approach through two concepts

namely autonomous and intelligence. Our approach is autonomous in that the agents act

on behalf of the user. The agents search for heterogeneous services based on the user

query. It entails intelligence because the agents are able to compose services based on a

particular query and provide results to the user. In our GIS analyst scenario, the user

agents talk to service registries, locating services that provide data sets 1, 2 and 3. The

services are then negotiated, composed and invoked by a composing agent, which utilizes

the Web Service protocols and returns the result to the end user.

2 Background

2.1 Agent Technology

Software agents are the subject of research in many inter-related fields. They are long-

lived, persistent computations that can perceive, reason, act, and communicate [2]. They

have the ability to make decisions independently without human intervention and without

influence from other agents.

Agent architectures provide several advantages over existing object-oriented

technologies. In object-oriented systems, objects communicate through messages. The

sender object must know the address of the receiver object, and the public methods of the

receiver object. On the other hand, agents conform to a communication protocol and

language (FIPA ACL) that allows an agent to send a message to agent(s) without needing

to know the address of the agent(s) or the specific methods available to the agent. This

allows agents to move, yet still be in contact with other agents, and allows for agents to

broadcast requests to some or all other agents.

Current agent research has concentrated on building exemplar agent systems, defining

theory of agent behavior and inter-agent communications. Most resulting systems are

closed systems which work well within an enterprise or in a homogeneous environment

like VIPAR [3]. There has been less emphasis on the interoperation of agents in a

heterogeneous and ever changing environment like the web. Also, agent systems that

work across enterprise boundaries need to overcome several challenges in service

discovery, communication and utilization. Right now there are only partial solutions to

the above problem, and mainly applicable to a closed multi-agent system.

2.2 Web Service

Web Services are software components that are self-containing, self-describing modular

applications that can be published, located, and invoked across the Web. They allow

applications to interoperate in a loosely coupled environment, discovering, and

connecting dynamically to services without any previous agreements having been

established between them. More importantly, a Web Service may combine several

applications that a user needs. For the end-user, however, the entire infrastructure will

appear as a single application. Web Services encompass just about any application

available over or delivered via the Web using standard protocols like Simple Object

Access Protocol (SOAP) [4], Universal Description, Discovery, and Integration (UDDI),

Web Services Description Language (WSDL) [5] and Extensible Markup Language

(XML) [6]. The Web Service itself is really nothing more than a software program; say a

java server page or a java servlet. The Web Services architecture is simply a wrapper for

accessing this pre-existing code in a platform and language-independent manner. These

technologies provide a standard means of communication among different software

applications involved in presenting dynamic context-driven information to the user.

Current work in the area of Web Services comprises of vendors and service providers

developing and publishing specialized services with private or public registries depending

on its usage [7, 8]. Also available are tools and standards that are built on top of current

standards to enable various inter-organizational and inter-disciplinary architectures. In

some cases agent technology has been used in collaboration with Web Service standards,

where semantic markup of Web services (DAMLS) enables a wide variety of agent

technologies to automatically discover and utilize services [9].

3 Agent Approach for Service Discovery and Utilization (AASDU)

Query Agent

FIGURE 1

D
E
P
L
O
Y

 Vipar Service

Astro Service

Image Service

R
E
G
I
S
T
E
R

 GUI

 Negotiations

Multi- Agent
Referral System

Service Information

Query
Distribution
 Channel

Registry
A

Registry
 B

Registry
C

SOAP
Server X

SOAP
Server Y

Service
Composition

 Agent

Invoke Services

Invoke Services

Query

Invoke Negotiated Service

The AASDU approach consists of three core elements in its Architecture:

1. Client Graphical User Interface (GUI) and Query Analyzer Agent (QAA)

2. Multi-Agent Referral System and Service Lookup

3. Service Registry, Negotiation and Composition

Refer to figure 1 for a detailed architecture.

3.1 Graphical User Interface (GUI) and Query Analyzer Agent (QAA)

The GUI is integral to the approach as it allows the user to interact with the system. The

GUI is implemented using java swing components. It provides a text field for the user to

input their query. To assist agents in the query lookup users are provided with an option

to select a specific domain. For example, in our GIS scenario the scientist might enter a

query in the geographical analysis domain.

Service invocation requires the user to enter method parameters within the service. For

example a data visualization service has a method called movie producer that requires the

number of time steps of data from a simulation. To incorporate entering parameters for

service invocation the GUI will have fields dynamically created for every input parameter

required by the composition agent.

The query is processed by a QAA. The QAA looks at each query and extracts service

information from them [10]. For example a query “satellite images in the Kentucky area”

has the term “images” in it. The QAA looks at the query and infers the relevance to the

“image to intelligence” web service that is registered on one of the registries.

The QAA uses a simple variant of the Term Frequency Inverse Document Frequency

(TFIDF) approach to index the query and rank the results [11]. An indexing table

contains a list of keywords in a particular domain. The agents from the multi-agent

referral system described in the next section create agent vectors. Every vector contains a

value for each keyword in the indexing table. Each agent is associated with a certain set

of registries. If a particular keyword occurs in more than one registry on one or more

services, the number of times it occurs is entered as the value in the agent vector.

The QAA processing occurs in three phases. In the first phase the query is run through a

term stemmer that returns a query that is stemmed and contains only potential key words.

A query vector is created based on the terms in the indexing table, where each scalar in

the vector takes on values based on the number of occurrences of an indexing term in the

query vector. In the next phase each word is compared to the agent vectors in the agent

vector repository. The QAA uses the TFIDF approach to determine the similarity of a

term to each agent vector. If the similarity is above a threshold value, the term is treated

as a query to a service in the registry associated with that agent.

The QAA framework is shown in figure 2.

3.2 Multi-Agent Referral System and Service Lookup

We use a multi-agent referral system to evolve an agent social community that

communicates with each other to effectively determine the service registry to look for a

particular service or services in a particular domain. Each agent maintains a profile of

itself and its immediate neighbors to assist in the referral chain [12]. The profile contains

the Agent ID, Neighbor agent list with profile, Services in the registry associated with the

agent and keywords in the registry associated with the agent. This is stored as a simple

text file local to each agent.

When a term from the query is input to an agent, it first looks up its own services list in

its profile. If it finds a match it will go out to the registry and lookup the service. If the

term is a keyword, the agent looks up the keywords list in its profile. If it finds a match it

QAA

Update

Matched
query terms
to possible
agents

Query

TFIDF
search

Agent
vectors

Stemmer
Key
words in
query

Registries
Referral
System

FIGURE 2

will go out to the registry, search through all the possible services on that registry and

come up with a matching service. If however the term is in neither of the lists, the agent

looks up its neighbor agent list and the profile associated with each neighbor. The

neighbor profile contains a value called the knowledge value of a particular service or

keyword. If any of the neighbor agents contains a knowledge value for the term and is

above a threshold, the term is forwarded to that agent. To see the real usefulness of the

referral system, if the neighbor agent has inadvertently advertised a wrong value for the

knowledge value, it could look up in its own neighbor profile and check for possible

neighbors who have a neighbor value for the query term. The matching neighbor agent

list is returned to the querying agent, who adds the new agents to his neighbor profile and

forwards the query term to the new agents. The referral chain is forwarded for a

maximum of six steps. The referral system framework is shown in figure 3.

 Agent
 Profile

 Neighbor
 Agent
 Profile

Query
 Term

 Check agent profile to
 See if agent has
 Expertise in query term
 Service lookup

 Neighbor Agents
 .
 .

Check neighbor profile for
expert neighbors to lookup
service/Check for neighbors
who have probability of
knowing about the service

FIGURE 3

An example scenario of the referral system:

 Agent ID Profile Immediate Neighbor Profile

 1 Queries on Orthographic images.
 Looks up registry C

2, Queries on articles. Looks up
 Registry A.

 2 Queries on Articles.
 Looks up registry B

3, Queries on Visualization tools.
 Looks up Registry B.

 3 Queries on Visualization Tools.
 Looks up registry A

 No Neighbors

Consider the case where agent 1 would like to locate services on visualization. 1 refers 2

to find that 2 has 3 in its immediate neighbor list and 3’s profile matches queries on

visualization. 1 then asks 3 for a registry name which it uses to look up services for

visualization. Also at this point 3 is added to 1’s immediate neighbor list. The results of

the lookup are service information or description in a Web Service Definition Language

format. The description contains service parameters such as 1. Service URL 2. Service

methods and parameters 3. Other relevant service invocation information.

3.4 Service Registry and Deployment

Every Organization exposes and registers its services, which may have been developed

on different platforms, with the UDDI registry. The service provider has to publish

specifications, and the messages it can exchange, about the service namely access point

(where it’s been hosted and deployed), methods implemented, input/output parameters,

negotiable quality of service parameters and other service related information. This can

be a description in natural language, an XML document or in Web Services Definition

Language. The service is deployed to a SOAP router. The SOAP router is a Remote

Procedure Call (RPC) router that accepts and invokes agent requests.

Each organization can access and use a template to create an agent that can easily join the

multi agent community. The created agent will take the registry information with itself

and join the multi agent community. This will help in evolving and growing the agent

community with information on multiple registries. In essence, we will have an agent for

every organization that would plug itself into the multi agent community.

The client can use the agent system to query the UDDI, find services of interest and

compose and execute services. To find services our approach uses the Java API for XML

Registries (JAXR), which provides a uniform and standard Java API for accessing

different kinds of XML registries including the UDDI registries. The client need not

know the implementation details of a service. The agent gathers service parameters, from

the service description file, namely service name, method name, input method parameters

and SOAP URL, and creates a SOAP call that is sent to the SOAP router. The SOAP

router calls the appropriate service based on the parameters it receives in the SOAP

message. Finally, it returns the result to the agent who passes it to the end user.

3.3 Service Negotiation

Consider a case where we have two web services that perform a clustering operation on

documents. One service uses the genetic algorithm and the other uses a hierarchical

approach model in the background. Both these web services are registered with the UDDI

registry and deployed to a SOAP router. Once the client inputs a query to look for

services that perform clustering, the query agent distributes this to the agents in the multi-

agent referral system. The agents in the multi-agent system interpret the query and search

for the required service in their profile or their neighbor’s profile. Once the services are

found, the agents retrieve service information published in the WSDL and supply it to the

service composition agent. The service composition agent carries out the negotiation with

the client. Parameters that are part of the negotiation could be quality of service, response

time, maximum load, etc. In our example two services will be retrieved. Their service

details and negotiation parameters are passed to the service composition agent. The

service composition agent would pass these parameters to end user and negotiate on a

particular service to be selected for invocation. Once the end user selects a service out of

the available services, the composing agent invokes the service. The service composition

agent will also temporarily keep the details of the backup services and automatically

invoke them incase the main service fails, thus demonstrating that the system is fail safe.

3.5 Service Composition

The service composition agent can assist the end user create a pipeline of services. Users

can specify the services and the order in which they would want to invoke them. The

composition agent will negotiate the services to invoke; it would validate the input and

output parameters, check for data type matching and pipeline the services in the order.

Once the pipeline is created from the selected services the agent would invoke the service

and pass the result to the client.

4 Discussion

There are a number of architectures that are trying to address the same problem of service

discovery and utilization. One such work is the markup of web services in the DAML

family of semantic web markup languages. The markup proposed enables agent

technologies for web service discovery and execution [9]. Our approach is similar in the

use of agents and service descriptions to support interaction with the services. We focus

on quicker and more efficient lookup of web services. With the above approach laying

much emphasis on markup, we concentrated our attention more towards the agents being

associated with individual registries and the agent maintaining information of individual

services in the registry. The referral system module provides easier lookup of services

and greater scalability. Every time a new registry is created all it needs to do is create an

agent in the referral community for itself. The agent gets plugged into the community

with a default set of neighboring agents and their respective registries. Another module

that impacts the service composition in particular is the query analyzer agent. Using a

vector space model in the QAA guarantees quicker breakdown of a query into possible

service lookup and in composing resultant services.

5 Conclusion

We have introduced a novel approach for a multi-agent based system for automatic

service discovery and utilization. The approach is flexible and scalable allowing for new

services and agents to be inserted into the system. The proposal to integrate a referral

system to our approach gives the system greater power in the discovery of services.

References

[1] Universal Description, Discovery and Integration, Executive White Paper, 14 Nov

2001. http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf

[2] Michael N. Huhns and Munindar P. Singh. Agents and multiagent systems: Themes,

approaches, and challenges. In [9], chapter 1, pages 1–23. Morgan Kaufmann, 1998.

[3] Thomas E. Potok, Mark Elmore, Joel Reed, and Frederick T. Sheldon, "VIPAR:

Advanced Information Agents discovering knowledge in an open and changing

environment", Proceedings of the IIIS Agent Based Computing, Orlando, July 27-30,

2003.

[4] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,

Satish Thatte, Dave Winer and Henrik Nielsen. “Simple Object Access Protocol (SOAP)”

08-May-2000. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[5] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana “Web

Services Description Language (WSDL)”, 15-Mar-2001, http://www.w3.org/TR/wsdl

[6] Tim Bray, Jen Paoli, C. M. Sperberg-McQueen, Eve Malor “Extensible Markup

Language (XML) 1.0, 6-Oct-2000, http://www.w3.org/TR/REC-xml

[7] Huhns M. N, “Agents as Web services”, Dept. of Computer Science, South Carolina

Univ., Columbia, SC. Internet Computing, IEEE On page(s): 93- 95 Volume: 6, Issue:

4, Jul/Aug 2002

[8] Sheng-Tzong Cheng; Jian-Pei Liu; Jian-Lun Kao; Chia-Mei Chen, A new framework

for mobile Web services Applications and the Internet (SAINT) Workshops, 2002.

Proceedings. 2002 Symposium on, 28 Jan.-1 Feb. 2002

[9] Mcllraith S. A, Son T. C., Honglei Zeng, “Semantic Web services” Knowledge

Systems Lab., Stanford Univ., CA; Intelligent Systems, IEEE On page(s): 46-53 Volume:

16, Issue: 2, Mar/Apr 2001

[10] Tak W. Yan and Hector Garcia-Molina, “Index structures for information filtering

under the vector space model”, Technical report, Department of Computer Science,

Stanford University, Stanford CA

[11] Todd A. Letsche and Michael W. Berry, “Large-scale information retrieval with

latent semantic indexing”, Information Sciences, 100:105-137, 1997

[12] Bin Yu and Munindar P. Singh, "Emergence of Agent-based Referral Networks." in

Proceedings of AAMAS-2002

