
U n i v e r s i t ä t P o t s d a m

Christoph Lattemann, Stefan Stieglitz

Framework for Governance in Open Source
Communities

first published in:
Proceedings of the 38th Hawaii International Conference on System Sciences -
2005. ISBN 0-7695-2268-8

Postprint published at the Institutional Repository of the Potsdam University:
In: Postprints der Universität Potsdam
Wirtschafts- und Sozialwissenschaftliche Reihe ; 013
http://opus.kobv.de/ubp/volltexte/2008/1994/
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19941

Postprints der Universität Potsdam
Wirtschafts- und Sozialwissenschaftliche Reihe ; 013

Framework for Governance in Open Source Communities

Christoph Lattemann, Stefan Stieglitz

Potsdam University

August-Bebel-Str. 89, 14482 Potsdam
lattema@rz.uni-potsdam.de / stieglit@rz.uni-potsdam.de

Abstract

In recent years, the development of software in open
source communities has attracted immense attention from

research and practice. The idea of commercial quality,

free software, and open source code accelerated the

development of well-designed open source software such

as Linux, Apache tools, or Perl.

Intrinsic motivation, group identification processes,
learning, and career concerns are the key drivers for a
successful cooperation among the participants. These

factors and most mechanisms of control, coordination,

and monitoring forms of open source communities can

hardly be explained by traditional organizational

theories. In particular, the micro and macro structures of
open source communities and their mode of operation are

hardly compatible with the central assumption of the New

Institutional Theory, like opportunistic behavior.

The aim of this contribution is to identify factors that

sustain the motivation of the community members over the

entire life cycle of an open source project. Adequate
coordination and controlling mechanisms for the

governance in open source communities may be

extracted.

1 Introduction

The software industry is dominated by a strong

competitive influence. Recent years have been

characterized by a displacement of software companies,

resulting in segmentary oligopolistic or even monopolistic

structures. It is therefore all the more impressive that a

sustainable and successful development of open source

communities (OSCs) has been possible, even as open

source communities are characterized as non-profit

organizations [35].

The reason for participating in these kinds of

communities as an active worker can not be explained by

monetary incentives. Intrinsic motivation [59] and

learning [65] are the key drivers in this context. In

addition, non-monetary extrinsic motivations, like

reputation, group identification processes [52, 20], and

career plans [32] are most important for the successful

operation of open source communities.

A successful operation of net-based organizational

units, like in OSCs, has to consider that rules, motivation,

and incentive structure not only allow a coordination of

contributions, but also increase the involvement and thus

inspire people to create contributions. Traditional agency-

based governance approaches [10], which focus on
monitoring, control, and supervision of internal processes,
are often neglect this point1. In most cases these
approaches stress monitoring systems, incentive
contracting, or the use of sanctional mechanisms with a

mainly monetary aspect. In particular, the micro and

macro structures of open source communities and their

mode of operation are hardly compatible with these kinds

of governance instruments and with the central

assumption of the prevailing New Institutional Theory,

such as opportunistic behavior. These approaches and

their implications for options for actions will not work.

Although considerable research has been devoted to

the growth and expansion of open source communities

and the comparison between the efficiency of corporate

structures and community structures in the field of

software development [1], rather less attention has been

paid to their governance structures (control, monitoring,

supervision). Especially psychological and sociological

aspects must be considered. The Stewardship Approach,
developed in the 1990s, shows some starting points for
this discussion [13]. Donaldson and Davis are assuming a
different image of human behavior. Workers are
motivated by intrinsic incentives and not influenced by
opportunistic behavior. Following this, trust [15] and

intrinsic motivation are the key drivers for a new

coordination system which is used by OSCs.

In this context, psychological studies from the mid-

1980s on virtual communities show communication and

collaboration in computer-mediated environments as

being typically rather anomic [23], less tolerant [18], and

absent of transferable behavior [55]. Thus, the topic of

governance in open source communities faces a new

(mediated) organizational culture from the viewpoint of

business management sciences.

Additionally, new analyses show that open source

communities follow a life cycle [58, 67]. The internal

organizational structure is changing by going through

different life cycle stages. The implementation of

hierarchic structures, which can be observed in practice,

ensures that there are adequate controlling and

coordination mechanisms among all organizational units

[1].

1
 Control, monitoring, and supervision mechanisms are

collectively defined as governance in the remainder of this

paper.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

The aim of this article is to examine central structures

and coordination patterns in open source communities.

These results allow further studies and help open source

members to understand the role of governance within

their community. Therefore, the evaluation is based on a

systematic review of relevant literature and empirical

studies related to open source communities and to virtual

organizations. The focus is to identify mechanisms that

work as open source-specific governance tools. One of

the most important characteristica of these tools is that

they are of a non-monetary nature. Therefore the question

has to be answered by which incentices the absence of

money is compensated. Subsequently, a heuristic

approach is presented to categorize open source projects

in order to derive the need for governance actions.

All control, monitoring, and supervision structures are

gathered in the underlying definition of governance of this

paper. Therefore, chapter 2 examines the specific

conditions for the governance in OSCs.

Chapter 3 analyzes which motivation factors are

important to particular member groups of the OSCs in

different life cycle stages, to create a positive added

value. By knowing more about motivation factors,

mechanisms and procedures can be developed and

implemented to increase organizational efficiency. To

examine this, an individual, situation-based, and

behavioral approach, which considers micro-

organizational aspects as well, is developed, while

traditional governance theories apply a holistic view of

stakeholders.

This contribution is based on the assumption that open

source actors differ in their motivation and that these

motivations are related to their function and duties within

the community.

Therefore, we show a classification of different open

source actors on the basis of functional characteristics. In

addition, we consider different motivation factors,

referring to life cycle stages of open source projects.

Additional information from analyses of project life

cycles and the roles of governance tools in specific life

cycle stages will be discussed. Finally, a summary is

provided and open research questions are named.

2 Conditions for Governance in Open

Source Communities

2.1 General Characteristics of Open Source

Communities
Open source software differs from commercially

produced software among other criteria in the following

ways [1, 58]:

- the permission for free propagation of software,

- the free availability of the source code,

- the right to change the source code, and

- the free propagation of the software license for

anyone who wants to use the program.

In most cases these rights are guaranteed by the use of

the GPL (General Public License) [18, 58]. As a legally

binding contract, the GPL guarantees that all software

containing parts covered by the GPL are themselves also

subject to the GPL and must fulfill the criteria mentioned

above [47].

This basic concept of the development of free software

and open source code on the basis of volunteers not

financially remunerated directly influences the

organizational strutures.

OSCs differ from common enterprises in their

coordination and organizational structure. The work is

done on a voluntary basis, and there are no guidelines

regarding time and intensity of work.

Due to the decentralized and computer-based value

creation process, personal contacts while working on the

project take place only on a small scale. Despite these

differences OSCs succeed in manufacturing marketable

and competitive products (e.g. Linux, Apache, Mozilla,

etc.).

This is made possible by characteristics which are

featured by software development process in general.

Software development differs from the production of

other goods, such as manufactured products and most

services, in the following ways:

- A common product is developed by a community or

organization, but the individual parts are produced

(geographically) decentralized. Communication and

coordination of the project are based on modern

communication technologies which makes teamwork

possible for members worldwide.

- The contributions required for further development of

the software are sequential, meaning innovation is

based on preview development and does not making

radical leaps. This kind of work can then be

characterized as complementary because a rising

number of solutions develop synergies for the

optimization of the product [47].

- Software programming can be divided into

subprojects, which can continue to be developed

independently (granularity).

- Software can be development with no chronological

order, meaning that elements or modules which are

programmed later can be integrated into already active

software (modularity) [58].

These criteria of the software development process in

general and open source products in particular fulfill the

necessary conditions which offer the participants of the

project the most decision-making freedom. They can

decide on their own in which part of the project they will

become involved, where they complete their work, and

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

what resources they will contribute. The high degree of

self-determination of each individual user that is based on

granularity and modularity is essential for the OSCs to

maintain the motivation of volunteer workers. Thus, self-

determination can be understood as a fundamental

prerequisite for governance in open source environments.

There are basically two sources in OSCs which motivate

open source members to participate [11, 17, 47]: The first

is motivation of an extrinsic nature, which is quite

important in profit-oriented companies and is adopted

there as a dominant control tool. Extrinsic motivation

means engaging in an activity to receive rewards for the

activity. These rewards can be of a material nature, like

money, or of a social nature, like growing reputation or

prestige. Especially Lerner and Tirole attribute much

individual motivation to reputation building [32]. A

second source for contributing may be based on intrinsic

nature, i.e. engaging in an activity out of pure pleasure.

Beyond these core motivators in open source projects,

further incentive mechanisms can be identified, which

focuses on the intrinsic as well as extrinsic motivation of

coworkers.

While it can be assumed in the context of monetary

incentives that each individual is generally interested to a

certain degree in maximizing his financial resources, this

does not apply for different, non-material incentives. It is

therefore necessary to take a close look at the individuals

summarized in an open source community and to

categorize them in order to determine their motives more

thoroughly on the micro level.

Through the identification of clear functions in open

source communities it is possible to recognize situation-

specific motives and to activate them purposefully by

governance instruments.

2.2 Participants and Working Groups of Open

Source Communities
OSCs integrate heterogeneous member groups, who

have different tasks within open source projects [1, 22,
19]. In reality, individuals can not be fixed to one

specified member group. Usually one individual fulfills

functions in different groups and is therefore a member of

serveral of these categories.

On an aggregated level, three typical member groups

can be identified: bug fixers, programmers, and

coordinators.

 “Bug fixers” contribute irregularly and rarely to the

open source organizations. They are actually software

users who communicate errors to the community.

Raymond assumes that this group represents on average

more than 75% of all open source members [52]. An

essential component of bug fixing is finding software

errors and deficiencies and communicating these to

programmers and managers. Furthermore, many bug

fixers provide solutions to the problems they find. Bug

fixing is an essential aspect for success in OSCs.

Especially the beta testing phase, when bug fixing occurs,

uses many organizational resources in software

development. The acceptance of software is

fundamentally influenced by the intensity of beta testing

[47, 52]. Through constant checking and adjusting,

software can be modified and optimized during the

creative process [1].

Optimizing open source software for better usage is the

most important incentive for bug fixing [21]. Other

motivational aspects such as increasing reputation are

supported by the publication of the names of the most

active bug fixers [33, 41]. These motivational factors

exhibit a non-monetary extrinsic nature. They can

therefore not be controlled directly by management of

open source organizations, in contrast to management in

profit-oriented companies.

The targeted use of governance instruments can

increase the commitment of bug fixers, if these

instruments are adequate and specific.

Because an application of inadequate governance

instruments may crowd out intrinsic motivation, while

extrinsic incentives may be stimulated. Overall, the level

of motivation may decrease.

Programmers, the second group of community

members, develop OSC software by contributing their

knowledge. In many cases programmers worked as bug

fixers at the beginning of open source projects.

Programmers are characterized by working more

regularly and more frequently than bug fixers. Dempsey

estimated that 8.5% of all open source workers belong to

this category [12].

Lerner and Tirole assume that one core motivational

aspect to programmers comprises of signaling knowledge

to potential employers of profit-oriented companies [32].

By working on open source projects, programmers have

the opportunity to convey specific knowledge to people

outside the project. Therefore, programmers participate

not only because of a strong intrinsic motivation but also

because of extrinsic aspects.

Programmers, in contrast to bug fixers, are much more

integrated in organizational coordination and

communication processes. Governance tools should

ensure that there are coordination mechanisms which

facilitate working processes and communication among

other programmers, bug fixers, or managers.

Founders and programmers in open source projects

often change roles as a system grows to managers. Their

tasks are extended to a strategic focus, such as

implementing coordination mechanisms. Often these

managers are elected by the community or by some of the

registered community members2
. Elections guarantee

reputation and prestige within the community. Often

2
 E.g. Apache board of directors is elected by members who are

proposed to be “Foundation Members” of Apache

organization [see http://apache.org].

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

managers are paid employees in companies or universities

and are assigned to work on open source projects [53].
The motivation of managers as well as of programmers

can be traced back to career plans. This is a reason why

investing in reputation is an important factor for open

source managers. Therefore, in some ways, financial

incentives and strategic decisions gain in priority.

The classification of these three important member

groups shows the heterogeneity found in open source

communities of motivational aspects and reasons for

participating. It is necessary to consider these

characteristics when examining the usability of

governance tools. It must determined whether

coordination structures, adequate to all groups, can be

implemented, or whether these structures should be

applied to single groups.

2.3 Life Cycle Stages in Open Source

Communities
To assess the situation-based and adequate application

of governance tools for controlling community members

and contribution level, it is not enough to consider various

member groups. Because of changes caused by different

staged of project life cycles, it is possible that

motivational basis of member groups could diverge or

clash, which may lead to stagnation of project

development.

The identification of life cycle stages is often based on

revenue or sales numbers in conventional companies.

However, open source organizations do not have these

figures because no product has been sold. Therefore, the

only possibility is to use an auxiliary variable such as the

number of downloads of open source software. Variances

of downloads can be used as one important indicator to

identify individual life cycle stages.
3
 A continuously

increasing number of downloads suggests a growing

interest among software users [67]. Other indicators

suggested by Schweik and Semenov, such as (1) annual

growth of participant base, (2) annual growth of user

community, (3) growth in “market share,” (4) user

satisfaction with the product, and (5) peer recognition of

the product, can be used as a measure of project success

as well. However, theses criteria are quite difficult to

measure [58].

Scientific literature differs between three and eight

project life cycles [67, 34, 58]. For the explanation of

different governance actions in OSCs, it seems

appropriate to concentrate on four clearly specifiable life

cycle stages (see fig. 1):

3
 Most open source projects and number of downloads are

published at http://sourceforge.net.

Figure 1: Life cycle stages [67]

1. Introduction

2. Growth

3. Maturity

4. Decline or Revival

The introduction stage is characterized by the

generation of ideas by the founders. The core group

negotiates an informal structure consisting of relatively

general roles for each member. Trust is the key factor in

the coordination process. All participants are mainly

intrinsically motivated in this stage, while extrinsic

incentives hardly exist. The fun of programming,

conversion of creativity, and noticeable software

advancement are key drivers for motivated workers [64].

Most important to enter the next stage is to attract more

developers to make sure that a critical mass of community

members is reached. This allows a constant development

of the open source software [58].

Because of the increased size and the transient nature

of the team membership, there is a need for a more

formalized structure in the growth stage. Reliance on

information and communications technology (ICT) such

as concurrent versions systems (CVSs), discussion

groups, and mailing lists becomes important for

coordinating the efforts of the community as can be seen

in complex projects like Linux, Apache, or Mozilla. By

riding the life cycle the tasks of the founders change.

They may assume the role of “accelerators,” employing

systems and structures to enable and manage the project’s

growth [66, 58]. At this stage, the increased amount of

work allows members to choose their own more

specialized roles such as code tester, release manager,

interface designer, support manager, documentation

writer, or bug fixer. The resultant structure is still

relatively centralized, with the core developers retaining

overall project control, but lesser functions being

delegated to others outside the core group. Using a more

specialized work model has the consequence of splitting

member groups. Each of these previously mentioned

groups contributes due to other project motivational

reasons.

In the maturity stage, the number of users (combined

with the number of downloads) and developers reaches its

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

maximum [67]. The importance of trust as a coordination

and controlling instrument decreases while extrinsic

factors become more important. A high degree of

delegation and self-management leads to a very high level

of task specialization.

The central focus of the administrative core group

during this stage is to sustain the project [66]. Because of

the larger project size, there is a need for highly

sophisticated mechanisms to coordinate and control the

diverging structure [54].

Decline stage or revival stage is marked by decreasing

users and developers. There are fewer downloads of the

product as users become less interested in the project.

This has different possible reasons, such as better

competing systems or departure of founding members.

Another reason may be that managers want to influence

product development in ways different from the

community. To avoid the slowing or stagnation of

software advancement, it is necessary to generate a

reconcentration of diverging concerns [67].

It can be deduced that many open source projects are

affected by these heterogeneous changes of motivational

aspects in each member group. Bug fixers and

programmers are not integrated in management tasks, and

they are basically intrinsic motivated. As shown, they are

extrinsically motivated too, but even this is a non-

monetary factor. This may be different from the case of

members with managerial responsibilities. They likely

want to earn money over the long term which may lead to

decisions not compatible with the interests of other

community members.

These differences in goals and motivational incentives

may lead to the collapse of a project. This can be reduced

by the implementation of adequate control, supervision,

and monitoring instruments.

2.4 Motivation and Objectives of Member in

Changing Life Cycle Stages
The effectiveness of governance tools is influenced by

other aspects, such as the number of members or the

complexity of the software, which are determined by life

cycle stage. There is therefore an interaction between

these factors and the motivation and participation

objectives of members [see table 1]. Schweik / Semenov

and Wynn describe different life cycle stages but they do

not explicitly discuss changing motivation of member

groups within these stages [58, 67].

Motivation Bug fixer Programmer Manager

Introduction intrinsic

Growth extrinsic intrinsic /
extrinsic

mainly
intrinsic

Maturity extrinsic intrinsic /

extrinsic

mainly

extrinsic

Decline or

Revival

extrinsic intrinsic /
extrinsic

Revival: intrinsic
Decline: mainly

extrinsic

Table 1: Motivation of member groups in different

life cycle stages

In the growth stage extrinsic aspects such as reputation,

career planning, or increasing knowledge become more

important [33]. This changing motivation is influenced by

a modified objective for working on the open source

project. In the growth of maturity stages, improving

software is no longer the dominating objective for

contributing ideas; it is just an intermediary to acquiring

more members, knowledge, and reputation [33]. Finally,

these objectives lead to improved career chances for

individuals.

However, Osterloh states that the identified extrinsic

factors do not suffice to explain the phenomenon of open

source communities [47]. Therefore, it can be assumed

that all member groups are partially intrinsically and

partially extrinsically motivated in every stage of the life

cycle. Numerous analyses show that open source

members have fun while programming. They feel a kind

of self-realization while doing creative work and

supporting a useful project [1, 28, 29]. However, intrinsic

motivation is related to the degree of self-determination.

The feeling of self-determination within OSCs is

confirmed in two ways. The first is high granularity,

which allows programmers to decide what kind of work

they want to do. The second is a high degree of

modularity, which offers many possibilities to participate

in improving the software [7, 27, 58].

In the special case of open source development,

different reasons for participating in a project can be

combined in some ways as long as there is a common

main objective to improve the open source product.

However, it is possible that different objectives are not

compatible, which may lead to governance problems. In

principle, the main objective to improve the program may

be deduced in each member group as follows:

- Bug fixers participate in open source projects to

obtain improved software for their own use [21,

33].

- Programmers try to achieve a higher internal and

external level of reputation and want to improve

their career chances [47]. Additionally, they

want to optimize software as long as they are

intrinsically motivated (e.g. fun) [52].

- Managers want to increase their reputation as

well, but they are also seeking monetary

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

rewards. Both objectives are connected to the

improvement of the software and an increase in

the quality of the product [48].

3 Governance in Open Source

Communities

3.1 Application of Conventional Governance

Mechanisms in Open Source Communities
The theoretical root of this paper is based on the

approach of the organizational control [48], where

governance is understood as a toolbox for control,

supervision and monitoring. In this context, governance

must achieve motivation and converge different

objectives of all member groups.
Conventional theories of governance are based on a

holistic view of companies and their organizational units.

These theories assume that there are only a few or even a

single quantifiable objective of all stakeholders.

Furthermore, it is assumed that every stakeholder is

interested in maximum or optimum achievement of

objectives. In contrast, our behavioristic approach

assumes that there are many individual and changing

objectives. This was shown in the preceding discussion

about life cycle stages and drivers for motivation. A main

problem in implementing governance tools is considering

which objectives exist for different members. Profit

oriented companies solve this problem by defining one

main objective, e.g. profit maximization, which, through

support from monetary incentives, is accepted by all

member groups. This procedure cannot work successfully

in an organization which is based on volunteer work. The

absence of a common main objective may lead to

conflicts of interest in and among member groups.

Governance mechanisms are implemented to avoid and

solve these conflicts in conventional companies.

Furthermore, governance instruments are used to increase

organizational efficiency and fulfill monitoring tasks, e.g.

communication policies or conflict management rules.

Employees follow these rules to avoid financial sanctions

or being laid off.

The effectiveness of sanction mechanisms in OSCs

may be questioned because there is no formal or

existential dependence of the members on the open source

project. That is why the options of effective sanction

mechanisms are limited to the exclusion of

counterproductive members and a loss of reputation.

Practically speaking, members that violate organizational

policies may be “flamed,” meaning they are publicly

named and judged by other community members [24].

By implementing hierarchic structures, managers try to

assure that coordination and communication within the

community is optimally configured. However, this

assumes that organizational policies are accepted by most

of the community members. Profit-oriented companies do

not have a problem at this point because policies and

hierarchies are legitimated by company owners. Within

OSCs it is necessary that managers have an adequate

reputation to be accepted as leaders. For example, board

members of the Apache community are elected by

foundation members. “Individuals who have made

sustained and important contributions to one or more of

the foundation's projects” can be nominated to become

foundation members [4].

Thus, although hierarchic structures and policies exist

in OSCs, there is no incentive, such as money in

companies, which adequately explains why these

structures and policies are accepted. As a conclusion of

the preceding discussion, it can be deduced that there is

no singular dominating motivational aspect responsible

for contributing work. Instead, there are many intrinsic

and extrinsic factors acting in concert.

3.2 Specific Open Source Control Instruments
The adequacy of governance tools is related to which

motivational factors characterize individuals.

Conventional control mechanisms are not usable in

systems based on volunteer work. There is no possibility

to penalize or reward members financially.

The efficiency of implemented governance instruments

is linked to a large extent to the motivational basis of the

involved individuals. Furthermore, motivation is related

to different member groups and life cycle stages. That is

why an expedient enlargement of governance tools must

account for the motivational basis of all member groups.

On the other hand, neglecting to implement further

coordination tools leads to losses in efficiency and

growth. Divergent objectives probably cause stagnation or

the decline of the whole project because of increasing

information and transaction costs connected with a

growing number of members [1, 31]. But implementing

inappropriate control mechanisms or too many of them

may lead to a decreased feeling of self-determination,

which causes people to leave the project [67].

Reduction of asymmetric information, a natural

phenomenon in growing organizations, and increasing

transparency are essential objectives of control and

monitoring mechanisms. Using highly developed

technological communication tools, e.g. chat rooms,

mailing lists, and CVSs, asymmetric information can be

avoided. Additionally, these tools support transparency

within the OSCs, help to increase trust between members,

and lay open their motivational situation.

3.3 Social Control
Governance instruments are implemented for

controlling, supervision and monitoring purposes as well

as to guarantee the transparency in micro and macro

structures.

Like conventional companies, open source projects

must adjust their governance tools as increasing

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

complexity and the number of members increase.

Basically, three forms of governance are applicable [30]:

- direct governance - inspection of behavior

(behavioral control), e.g. on the basis of

standards derived from experience [38];

- indirect governance - determination of output

based on given goals (output control) [63, 38];

- social governance (social control) - comparison

of conformity to certain morals and cultural rules

[48].

In organization theory, traditional forms of governance

(behavioral and output control) are examined in detail and

mostly uniformly. The direct and indirect governance can

hardly be applied in open source communities. Even if

direct and indirect monitoring may be possible, direct and

indirect control is hardly feasible. However, with the

establishment of network-like organizational structures, as

open source communities, the relevance of concepts of

social control increases.

In particular, social control is based on the concept of

trust, which is defined as the voluntary input of risky

assets under the absence of explicit contractual protection

and control [30].
Trust becomes a necessary prerequisite to assure the

existence of flexible organizational structures [14], which
is why it is identified as a key factor for the successful
and growth and operation of an open source project.
Additionally, trust forms the basis for the successful

configuration and operation of open source communities

[see 14] and is considered as a constructional attribute of

all forms of virtual and distributed organizations [see e.g.

51, 62]. Furthermore, trust as a concept should guarantee

that the partners are able to manage and organize

processes at least partly independently [6]. In the case of

open source communities, members must rely on the

assumption that their contributions are applied to the

project.

Instruments for the practical application of social

control can be identified particularly in relation to the

level of objective and personnel management [63, 30].
Specialized social norms and frameworks are able to

support the genesis of trust in and among organizations.
Open source projects draft a kind of ethical code (e.g.

“Bylaws of the Apache Software Foundation“) in many
cases. Such an ethical and behavioral guideline assures a
common feeling of identification.

For the implementation of social control, different

governance instruments can be introduced such as the

activation of common cultures among net partners with

homogeneous value concepts or the review and creation

of similar moral concepts by rituals or ceremonies – like

regular meetings of Linux community members in nearly

all large cities [1]. In addition, rules as guidelines for

operational behavior [20], the intensive employment of

modern and uniform information and communication

tools [3, 25] are also fields of social control.

Participants of open source projects exhibit a variety of

cultural and technical abilities.

On the basis of the theoretical remarks and of the

practical examples specified in relevant investigations, it

can be derived that with an increasing degree of

virtualization the significance of social control in the

governance process increases [30]. Particularly in the

introduction phase and on the levels of the bug fixers and

programmers, where the coordination structures are

weaker, social control is of high importance.

Referencing virtual organizations which are in

significant aspects similar to OSCs, the following main

tasks for the management of OSCs can be determined [5,

57]:

1. Selection: The organizational units defining the

project must be decided upon.

2. Information and Communication: The managers must

organize and evaluate communication and the flow of

information.

3. (Re-)detection: The management must define how to

(re-)distribute tasks within the OSC.

4. Trust: A goal of the leaders in an open source project

must be to create confidence on a long-term basis with

regard to the organization.

On each management level (structural, objective,

personnel, as defined by Thomson [63]), instruments of

social control are identifiable, such as the examples

mentioned before.

One of the main tasks of managers in open source

organisations is to use these instruments to strengthen the

feeling of community. Doing this requires to know about

the importance and existence of social control.

In contrast to traditional enterprises, open source

projects use social control mechanisms for the solution of

coordination and motivation problems with different

intensity. The established hierarchies and coordination

mechanisms are to be regarded as secondary in relation to

the factors of social control.

Governance instruments that are used as control tools

should ensure constructive cooperation of community

members. Furthermore, these tools should maintain the

quality of software. Quality assurance can be achieved by

using peer review or by threatening members with loss of

reputation within the community if they are suspected of

misconduct.

3.4 Governance Instruments Affected by Life

Cycle Stages and Member Groups
As previously mentioned, there are different requirements

for governance tools to guarantee coherence and

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

successful product development in specific life cycle

stages (see tab. 2).
 Introduction Growth Maturity Decline or

Revival

Focus Idea

Generation

Expansion Stability Adaption

Structure Completely
informal

More
formal,

centralized

Somewhat
formal,

decentralized

Slightly
formal but

less

adherence

Division of

Labor

Generalists Some

specification

Highly

specialized

Less

specialized

Coordination Informal,

one-on-one

Technology

introduction

Formal,

technology -
intensive

Formal but

less
adherence

Examples4 Dam,

HTMLarena
plus

accessibilty

Eclipse,

Typo3

Linux,

Apache,
Mozilla

Gnutella

Table 2: Life cycle stages in OSCs [see 67]

Therefore, the character and timing of instrument

implementation are most important. Existing motivations

must be supported in each member group and life cycle

stage to guarantee the continuity of the project.

Introduction: The first step in developing open source

software is to initiate the project by producing a working

version of the software and to distribute the vision to the

community [58, 66]. In this stage, the core group consists

of just a few members. Project success is highly

dependent on the quality of the initial idea, which will

attract more programmers to participate and helps to reach

a critical mass of developers. As long as no usable

software exists, bug fixers will not support the project by

messaging errors or insufficiencies. The organizational

structure is quite informal and dominated by one-on-one

communication and trust, so there is no need for an active

management of resources [67].

Motives, like fun of self-determined programming, are

of intrinsic nature in this stage.

Growth: Due to the increasing number of members,

there is a growing need for (traditional) organizational

structures such as hierarchies and communication rules.

The growth stage is further characterized by a higher

degree of specialization and is dependent on more

coordination. Extrinsically motivated bug fixers join the

project because there is a usable version of software and

they want to highlight errors to increase efficiency.

Founders’ activities change since they perform mainly

management tasks instead of programming. For example

in the Apache Project managers for specific subprojects or

treasury are implemented [see http://apache.org].

Incentives dedicated to increasing the extrinsic motivation

then gain importance to compensate for lower intrinsic

motivation.

4
 The examples are categorzied by the number of downloads.

The data originates from http://sourceforge.net.

Governance instruments should ensure that available

organizational resources are managed efficiently.

Transaction costs and information costs should be

minimized by these tools.

Communication tools help to discuss further software

development and optimization, support knowledge

exchange (which satisfies demands for learning and

teaching), and improve a feeling of community [19, 56].

Users of open source software receive technical support

through communication forums, leading to accelerated

growth.

Governance tools must also retain the motivation of

community members. By publishing lists of most active

programmers and bug fixers, e.g. at http://sourceforge.net,

the incentive of increasing reputation is addressed. By

choosing explicit entry requirements for these lists,

managers gain a control instrument. However, these

effects are not very strong because they do not affect

intrinsic motivation factors. Moreover, too many rules

and policies may reduce intrinsic motivation. Unlike

managers, programmers will not compensate for a loss of

intrinsic motivation with higher extrinsic motivation.

Maturity: In this stage, the number of members and

downloads are at their maximum. The entire project is

divided into numerous modules and cooperating programs

exhibited by a high degree of specialization, e.g. the

Apache project presently includes about twenty different

software projects (see www.apache.org). For this reason,

more coordination mechanisms must be implemented.

Activities of managers no longer include

programming; instead, they must coordinate the entire

organization, control software development, and

communicate with cooperative companies (e.g. Apache

and IBM, HP) or other projects. Public relations

instruments become more important and make it possible

to influence the reputation of the whole project. Managers

are dominated by extrinsic motivation like career

planning, as programmers are still intrinsically and

extrinsically motivated.

In this stage, governance tools should support a feeling

of community for all members, making a high degree of

transparency within all aspects of the organization. A loss

of transparency may lead to decreased community

identification and lower motivation. One instrument to

avoid this development, applied in practice, is to publish a

codex or constitution which must be accepted by all

community members and contains organizational and

ethical policies (e.g. Apache Bylaws: http://apache.org, or

Linux membership rules: http://www.linuxquestions.org).

However, this rule should consider and perhaps support

self-determination of all members.

Decline or Revival: After passing the maturity phase

the project may enter a decline and an optional revival

stage. The decline stage is dominated by a decreasing

number of community members and downloads.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

Reasons for decline are various. One may be

inappropriate governance tools such as the following

examples:

- Self-determination of programming is

constrained by too many rules.

- Manager decisions are not understood by other

members, causing a loss of transparency.

- Too much influence of profit-oriented companies

within the open source project which undermines

a feeling of community.

- Founders or important managers may leave the

project. The community loses knowledge and

identifying personalities (like Linus Torvalds is

in the Linux project).

If these drivers are not stopped, open source projects

may decline because of a loss of intrinsic and extrinsic

motivation. Wynn concludes that there is a possibility of a

project revival in some cases [67]. Revival can be

successful if governance instruments are implemented and

respectively readjusted in an appropriate manner to the

basic demands of the community, which means

considering life cycle stage and the nature of the member.

4 Conclusion

As this contribution shows, even open source projects

must handle organizational questions, due to differences

in goals and motives of the participation in such nonprofit

organizations. The application of management

instruments must consider intrinsic and extrinsic

motivational aspects, even more than in profit-oriented

companies. Social control mechanisms like trust, moral

concepts by rituals or ceremonies, or group evaluation

processes, like peer reviews among community members

become a crucial part in the governance of open source

communities because traditional monetary bonuses or

sanctions are not working. Moreover, situation-based and

adequate application of governance tools must be

implemented.

No systematic approaches for the governance of open

source projects have yet been found in practice. This

contribution provides a nucleus for further research to

derive approaches for adequate governance in OSCs.

Therefore, best practice examples will be identified and

matched within the proposed framework based on the

properties of different member groups and concerns

regarding the project life cycles. Further empirical

analysis may show details of motivational aspects of each

member group (bug fixer, programmer, and manager) and

in different life cycle stages (introduction, growth,

maturity, and decline).

5 References

[1] Achtenhagen, L., J. Müller-Lietzkow, D. zu Knyphausen-

Aufseß (2003), ”Das Open Source-Dilemma: Open

Source-Software zwischen freier Verfügbarkeit und

Kommerzialisierung“, Schmalenbachs Zeitung für

betriebswirtschaftliche Forschung, Düsseldorf, pp. 455-

481.

[2] Ahuja, M. K., K. M. Carley (1999), “Network Structure in

Virtual Organizations”, Organisation Science: A Journal

of the Institute of Management Sciences 6 (10), pp. 741 -

758.

[3] Albers, S., D. Bisping, K. Teichmann, J. Wolf (2002),

“Management virtueller Unternehmen”,

Forschungsbericht.

[4] Apache Software Foundation (1999), “Bylaws of the

Apache Software Foundation”, (Accessed: May 28, 2004):

http://www.apache.org/foundation/bylaws.html.

[5] Arnold, O., W. Faisst, M. Härtling, P. Sieber (1995),

“Virtuelle Unternehmen als Unternehmenstyp der

Zukunft?”, Handbuch der modernen Datenverarbeitung 32

(185), pp. 8-32.

[6] Behrens, S. (2000), “Produktionstheoretische Perspektiven

der Virtuellen Unternehmung”, Zeitschrift für

Betriebswirtschaft 70 (2): "Virtuelle Unternehmen", pp.

157-175.

[7] Benkler, Y. (2002), “Coase`s Penguin, or, Linux and the

Nature of the Firm“, The Yale Law 112 (3).

[8] Bezroukov, N. (1999), “Open Source Software

Development as a Social Type of Academic Research“,

First Monday 4 (10), Chicago.

[9] Bradach, J., R. Eccles, R. Price (1989), “Authority, and

Trust. From Ideal Types to Plural Forms”, Annual Review

of Sociology 15, pp. 97-118.

[10] Daily, Catherine M., Dalton, Dan R., Cannella Jr., Albert

A. (2003), “Corporate Governance: Decades of Dialogue

and Data”, Academy of Management Review 28 (3), pp.

371-382.

[11] Deci, E.L., R.M. Ryan (2000), “The “What” and the

“Why” of Goal Pursuits: Human Needs and the Self-

Determination of Bahavior”, Psychological Inquire 11 (4),

pp. 227-268.

[12] Dempsey, B.J., D. Weiss, P. Jones, J. Greenberg (1999),

“A Quantitative Profile of a Community of Open Source

Linux Developers”, http://www.ibiblio.org.

[13] Donalsdon, L, J.H. Davis (1991), “Stewardship theory or

agency theory: CEO governance and shareholder returns”,

Australian Journal of Management 16, pp. 49-64.

[14] Ebner, W. Leimeister, J.M., Krcmer, H. (2003),

“Vertrauen in virtuellen Communities”, Uhr, W., Esswein,

W, Schoop, E. Wirtschaftsinformatik 2003, Band II –

Medien Märkte Mobilität, Physika: Wiesbaden, pp. 619-

628.

[15] Eberl, P. (2002), “Vertrauen oder Kontrolle im

Unternehmen?”, Kahle, E. (ed.), Organisatorische

Veränderungen und Corporate Governance, Deutscher

Universitätsverlag: Wiesbaden.

[16] Feller, J. , B. Fitzgerald (2001), “Understanding Open

Source Software Development“, London: Addison-

Wesley.

[17] Frey, B.S. (1997), “Not just for the Money: An Economic

Theory of Personal Motivation“, Cheltenham.

[18] Funkhouser, G. R., E. F. Shaw (1991), “How synthetic

experience shapes social reality”, Journal of

Communication 2.

[19] Hermetsberger, A., C. Reinhardt (2004), “Sharing and

Creating Knowledge in Open-Source Comunities – The

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

case of KDE”, Paper for Fifth European Conference on

Organizational Knowledge, Learning, and Capabilities,

Innsbruck.

[20] Hertel, G., S. Niedner, S. Herrmann (2003), “Motivation

of software developers in open source projects: An

internet-based survey of contributors to the Linux kernel”,

Research Policy 32, pp. 1159-1169.

[21] Hippel, E. von (2001), “Innovation by User Communities:

Learning from Open Source Software”, Sloan

Management Review 42 (4), pp. 82-86.

[22] Jungwirth, C., E. Franck (2002), “Open versus Closed

Software – Eine organisationsökonomische Betrachtung

zum Wettbewerb der Betriebssysteme Windows und

Linux”, Universität Zürich.

[23] Kiesler, S., L. Sproull (1986), “Response effects in the

electronic survey”, Public Opinion Quarterly 3.

[24] Kollock, P., M. Smith (1996), “Managing the Virtual

Commons: Cooperation and Conflict in Computer

Communities“, Herring, S. (ed.), Computer-mediated

Communication: Linguistic, Social, and Cross-cultural

Perspectives, Amsterdam, pp. 109-128.

[25] Köhler, T. (2003), “Selbst im Netz? Die Konstruktion des

Selbst unter den Bedingungen computervermittelter

Kommunikation”, Westdeutscher Verlag: Opladen.

[26] Kreps, D.M. (1997), “Intrinsic Motivation and Extrinsisc

Incentives”, American Economy Review 87 (2), pp. 359-

364.

[27] Krogh, G. von, S. Spaeth, K. Lahani (2003), “Community,

Joining and Specialization in Open Source Software

Innovation: A Case Study“, Research Policy 32 (7), pp.

1217-1241.

[28] Lakhani, K.R., E. von Hippel (2001), “How Open Source

Software Works: “free” user-to-user assistance”, Research

Policy 32, Cambridge.

[29] Lamberti, H.-J. (2003), “Open Source – eine Alternative

zu kommerziell lizensierter Software?”,

Wirtschaftsinformatik 45 (4), pp. 474 – 482.

[30] Lattemann, C., T. Köhler (2004), “Vertrauen ist gut –

Kontrolle ist besser? Ein Governance-Konzept für

virtuelle Unternehmen.“, Multikonferenz

Wirtschaftsinformatik I, Infix, pp. 306-323.

[31] Lawrence, P.R., J.W. Lorsch (1967), “Organization and

Environment: Managing Differentiation and Inegration”,

Boston: Harvard University Press.

[32] Lerner, J., Tirole, J. (2000): “The Simple Economics of

Open Source”, The National Bureau of Economic

Research, Inc. (Accessed: April 4, 2001):

 http://papers.nber.org/papers/W7600.

[33] Lerner, J., Tirole, J. (2002), “The Scope of Open Source

Licensing”, Working Paper Harvard Business School,

Boston, M.A.

[34] Link, J., N. Gerth, E. Voßbeck (2000), “Marketing

Controlling”, München, Vahlen Verlag.

[35] Mahoney, S. (2003): “Non-Profit Foundations and their

Role, in Community-Firm Software Collaboration”,

Proceedings of the HBS - MIT Sloan Free/Open Source

Software Conference 2003.

[36] Malone, M. S., W. H. Davidow (1992), “The Virtual

Corporation. Structuring and Revitalizing the Corporation

for the 21st Century”, Harper Collins: New York.

[37] Magretta, J. (1998), “The Power of Virtual Integration: An

Interview with Dell Computer´s Michael Dell”, Harvard

Business Review 76 (2), pp. 73-84.

[38] Merchant, K. (1985), “Control in Business Organizations”,

Pitman: Boston.

[39] Miles, R., W. Creed (1995), “Organizational Forms and

Managerial Philosophies. A Descriptive and Analytical

Review”, Staw, B. Cumminge, L. (eds.), Research in

Organizational Behavior 17. Greenich (CT), JAI, pp. 333-

372.

[40] Miles, R. E., C. C. Snow (1986), “Organizations: New

concepts for new forms”, California Management Review

28 (3), pp. 62-73.

[41] Moon, J.Y., L. Sproull (2000), “Essence of Distributed

Work: The Case of the Linux Kernel”, First Monday 5

(11).

[42] Newby, G.B., J. Greenberg, P. Jones, “Open Source

Software Development and Lotka`s Law: Bibliometric

Patterns in Programming”, Journal of the American

Society for Information Science and Technology 54 (1),

New York.

[43] Okkonen, J. (2002), “Performance in virtual

organisations”, Frontiers of e-Business Research 1, pp.

267-279.

[44] Open Source Initiave (ed.) (2004), “The Open Source

Definition”, (Accessed May 25, 2004):

http://www.opensource.org/docs/definition.php.

[45] O'Reilly, T. (2000), “Open Source: The Model for

Collaboration in the Age of the Internet”, Computers,

Freedom and Privacy, Toronto, Canada, Harvard

University Press.

[46] Osterloh, M., S. Rota, B. Kuster (2003), “Open Source

Software Produktion: Ein neues Innovationsmodell?”,

Forschungsarbeit am Institut für betriebswirtschaftliche

Forschung der Universität Zürich, November 2003.

[47] Osterloh, M., B.S. Frey (2000), “Motivation, Knowledge

Transfer, and Organizational Forms“, International

Journal of the Economics of Business, Special Issue on

New Organizational Forms 9 (1), pp. 61-77.

[48] Ouchi, W. (1979), “A Conceptual Framework fort he

Design of Organizational Control Mechanisms”,

Management Science 25, pp. 838-848.

[49] Palmer, J.W., C. Speier (1997), “A Typology of Virtual

Organisations: An Empirical Study”.

[50] Postmes, T. (1997), “Social influence in computer-

mediated groups”, Enschede: Print Partners Ipskamp.

[51] Powell, W.W. (1996): “Trust-based forms of governance”

Kramer, R.M., Taylor, T.R. (eds..) Trust in organizations:

Frontiers of strategy and research, Thousand Oaks, CA:

Sage, pp. 51-67.

[52] Raymond, E. S. (1999), “The Magic Cauldron”,

(Accessed: June 6, 2004):

http://www.catb.org/~esr/writings/magic-cauldron/.

[53] Robles, G. (2001), “WIDI – Who is doing it? Knowing

more about developers”, Informatik und Gesellschaft,

Institute of the Technical University of Berlin.

[54] Robey, D. (1982), “Designing Organizations: A Macro

Perspective”, Homewood, IL: Richard D. Irwin, Inc.

[55] Schmitz, K., A. Ehrenforth (1996), Projekt D. Erlangen:

Unveröffentlichte Handanweisung, Universität Erlangen-

Nürnberg.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

10

[56] Schön, D. (1999), “The Reflective Practitioner – How

Professionals Think in Action”, New York, Basic Books.

[57] Schreyögg, G. (2001), “Grundlagen moderner

Organisationsgestaltung mit Fallstudien”, Gabler;

Wiesbaden.

[58] Schweik, C.M., A. Semenov (2003), “The Institutional

Design of Open Source Programming: Implications for

Adressing Complex Public Policy and Management

Problems”, First Monday 8 (1), Chicago.

[59] Shah, S. (2003), “Understanding the Nature of

Participation & Coordination in Open and Gated Source

Software Development Communities”, Proceedings of the

HBS - MIT Sloan Free/Open Source Software Conference

2003.

[60] Snow, C., J. Lipnack, & J. Stamps (1999), “The virtual

organization: promises and payoffs, large and small”,

Cooper, C. L. & Rousseau, D. M. (eds.), The virtual

organization. Chichester: Wiley.

[61] Sommergut, W. (2004), ”Apache plant eigenen J2EE-

Server“, computerwoche online, (Accessed May 31,

2004):

http://www.computerwoche.de/index.cfm?pageid=255&ar

tid=52438&type=detail&category=21.

[62] Sydow, J. (1998), “Understanding the Constitution of

Interorganizational Trust”, Lane, C. Bachmann, R. (eds.),

Trust Within and Between Organisations. Conceptual

Issues and Empirical Applications. Oxford, Oxford

University Press, pp. 31-63.

[63] Thomson, J. Organizations in Action, New York, 1967.

[64] Torvalds, L. (1998), “What motivates free software

developers?”, First Monday 3 (3).

[65] Ye, Y., K. Kishida, (2003), “Toward an understanding of

the motivation Open Source Software developers”,

Proceedings of the 25th International Conference on

Software Engineering.

[66] Ward, A. (2003), “The Leadership Lifecycle”,

Houndsmill, Basingstoke, Hampshire: Palgrave

MacMillan.

[67] Wynn, D.E. (2003), “Organizational Structure of Open

Source Projects: A Life Cycle Approach“, Abstract for 7th

Annual Conference of the Southern Association for

Information Systems, Georgia.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

11

	Title page
	Abstract
	1 Introduction
	2 Conditions for Governance in Open Source Communities
	2.1 General Characteristics of Open Source Communities
	2.2 Participants and Working Groups of Open Source Communities
	2.3 Life Cycle Stages in Open Source Communities
	2.4 Motivation and Objectives of Member in Changing Life Cycle Stages

	3 Governance in Open Source Communities
	3.1 Application of Conventional Governance Mechanisms in Open Source Communities
	3.2 Specific Open Source Control Instruments
	3.3 Social Control
	3.4 Governance Instruments Affected by Life Cycle Stages and Member Groups

	4 Conclusion
	5 References

