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Abstract

Critical infrastructures have some of the characteristic
properties of complex systems. They exhibit infrequent large
failures events. These events, though infrequent, often obey a
power law distribution in their probability versus size. This
power law behavior suggests that ordinary risk analysis might
not apply to these systems. It is thought that some of this
behavior comes from different parts of the systems interacting
with each other both in space and time. While these complex
infrastructure systems can exhibit these characteristics on their
own, in reality these individual infrastructure systems interact
with each other in even more complex ways. This interaction
can lead to increased or decreased risk of failure in the
individual systems. To investigate this and to formulate
appropriate risk assessment tools for such systems, a set of
models are used to study to impact of coupling complex
systems. A probabilistic model and a dynamical model that
have been used to study blackout dynamics in the power
transmission grid are used as paradigms. In this paper, we
investigate changes in the risk models based on the power law
event probability distributions, when complex systems are
coupled.

1. Introduction

It is fairly clear that many important infrastructure
systems exhibit the type of behavior that has come to be
associated with “Complex System” dynamics. These systems
range from electric power transmission and distribution
systems, through communication networks, commodity
transportation infrastructure arguably all the way to the
economic markets themselves. There has been extensive work
in the modeling of some of these different systems. However,
because of the intrinsic complexities involved, modeling of the
interaction between these systems has been limited [1,2].
While understandable from the standard point of view that
espouses understanding the components of a large complex
system before one tries to understand the entire system, this
approach can unfortunately overlook important consequences

of the coupling of these systems that impact their safe operation
and overlooks critical vulnerabilities of these systems. At the
same time, one cannot simply take the logical view that the
larger coupled system is just a new larger complex system
because of the heterogeneity introduced through the coupling of
the systems. While the individual systems may have a
relatively homogeneous structure, the coupling between the
systems is often both in terms of spatial uniformity and in terms
of coupling strength, fundamentally different (Figure 1). This
in the most extreme case leads to uncoupled systems but in the
more normal region of parameter space in which the inter-
system coupling is weaker or topologically different then the
intra-system coupling can lead to important new behavior.
Understanding the effect of this coupling on the system
dynamics is necessary if we are to accurately develop risk
models for the different infrastructure systems individually or
collectively.

Figure 1: Cartoon of two homogeneous systems with
a heterogeneous coupling

Examples of the types of potential coupled infrastructure
systems to which this would be relevant include power-
communication systems, power-market systems,
communication-transportation systems, and even market-
market systems. Interesting examples of these interactions are
discussed in ref. [3]. The effect of this coupling can be critical
and obvious for systems that are strongly coupled such as the
power – market coupled system. Perturbations in one can have
a rapid and very visible impact on the other. In fact, in many
ways such systems are often thought of as one larger system
even though the coupling is not homogeneous and each of the
component systems (namely the market and the power



transmission system) can have their own separate perturbations
and dynamics. For other less tightly coupled systems, such as
power-communications systems, the effect can be much more
subtle but still very important. In such systems small
perturbations in one might have very little obvious effect on the
other system, yet the effect of the coupling of the two systems
can have a profound effect on the risk of large, rare
disturbances.

In this paper, we will investigate some of these effects
using two different approaches. First we will use a simple
probabilistic model for cascading failures (CASCADE) that has
been extensively studied for individual systems [4-6]. This
model allows us to probe the impact of the coupling on the
failure risks and the critical point that has been previously
found for the uncoupled systems. This model also has the
advantage of allowing some analytic solutions. Next we will
present results from a dynamical model of coupled complex
systems. This model has dynamic evolution and many of the
characteristics found in complex systems.

Throughout this paper for reference purposes we will use
the power transmission system as the primary system and the
communications systems as the coupled secondary system. In
reality, the models discussed have very little specific to these
systems. They will be used so the results are more general in
nature and we use these reference systems simply to be able to
give concrete examples of the actions and effects we discuss.

Many complex systems are seen to exhibit similar
characteristics in their failures. While it is useful and important
to do a detailed analysis of the specific causes of these failures
such as individual blackouts, it is also important to understand
the global dynamics of the systems like the power transmission
network. This allows some insight into the frequency
distribution of these events (e.g. blackouts) that the system
dynamics creates. There is evidence that global dynamics of
complex systems is largely independent of the details of the
individual triggers such as shorts, lightning strikes etc in power
systems. In this paper, we focus on the intrinsic dynamics of
failures and how this complex system dynamics impacts failure
risk assessment in interconnected complex systems. It is found,
perhaps counter intuitively, that even weak coupling of
complex systems can have adverse effects on both systems and
therefore risk analysis of an isolated system must be
approached with care.

Several particular issues induced by the interdependence
of systems will be addressed in this paper. The first one is how
coupling between the systems modifies conditions for safe
operation. These systems are characterized by a critical loading
[7, 8]. They must operate well-below this critical loading to
avoid “normal accidents” [9] and large scale failures. We will
explore how the coupling between systems changes the value of
this critical loading.

We will also consider the effect of the heterogeneity
introduced through in two different ways. Through the different
properties of each individual system, like having different
critical points, and the coupling of the systems.

Finally we will contrast probabilistic models with
dynamical models in order to see the effect of memory in the
system impacts the consequences of the couplings.

The rest of the paper will be organized as follows: Section
2 reviews some of the characteristics of complex systems.
Section 3 contains a description of the coupled cascade model

and results from that model. Section 4 describes the dynamic
model with results from that model, followed by section 5 that
has a discussion of the implications of these results and
conclusions.

2. Coupled CASCADE model

2.1 Individual CASCADE model

The basic CASCADE model [4-6] has n identical
components with random initial loads. For each component the
minimum initial load is Lmin and the maximum initial load is
Lmax. For j=1,2,...,n, component j has an initial load of lj that is a
random variable uniformly distributed in [Lmin, Lmax]. l1,l2, · · · ,
ln are independent. Components fail when their load exceeds
Lfail. When a component fails, a fixed amount of load p is
transferred to each of the components.

To start the cascade, we assume an initial disturbance
that loads each component with an additional amount, d .
Components may then fail depending on their initial loads, lj,
and the failure of any of these components will distribute an
additional load, p ≥ 0, that can cause further failures in a
cascade. This model describes the cascading failure as an
iterative process. In each iteration, loads fail as the transfer
load, p, from other failures makes them reach the failure limit.
The process stops when none of the remaining loads reaches
the failure limit. It is useful to define l ≡ np , the total load
transferred from a failing component. This system is found to
have a transition in the probability of system wide failures (P∞ )
at a critical value of l. As shown in Fig. 2, when l < lc, where
lc is the critical value of l, P∞ = 0. However, above the critical
value for l , system wide failures are possible. In the
CASCADE model if we assume a uniform random distribution
of loads, the critical point is lc = 1.
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Figure 2: Probability of cascade events of the system
size as a function of l

An important characteristic of the CASCADE model is
that around the critical point, the probability distribution



function (pdf) of the size of the failures develops a power law
tail. In the uniform load case, this power law tail has a
characteristic exponent of approximately –1.5. This power law
behavior is important because the effect of a failure is
proportional to its size so if the probability of failures falls as a
power law less steep then –2.0, the large failures dominate the
“cost” of failure.

2.2 Coupled CASCADE models

Generalizing the CASCADE model to a pair of coupled
CASCADE systems is straightforward. We consider two
systems L and M with random loads (normalized on 0 to 1):

System L li Œ 0,1[ ] i = 1,...nL

System M mj Œ 0,1[ ] j = 1,...nM

At the beginning of each “day” (realization), the random initial
loads are generated. We will simplify the situation by
considering only initial perturbations in the system L. As an
initial perturbation, we add an increment d to all loads of the
components in system L. As before, a component fails if its
normalized load is greater than 1. For each failed component,
we transfer a load pLL to the loads of all other components in
the same way that we did in the individual model. Now
however, when component i of L fails, all loads of the
components of system M are increased by an amount pML. This
cross system loading is the inter-system coupling. It should not
be thought of as actually distributing the load for L to the other
system, rather one can think of it as an increased stress in
system M due to failures in system L.

Likewise, when a component in the system M fails a load
pMM is transferred to all loads of the other components of the
system M in the same way as was done in system L. Finally,
we have the back cross loading coming when a component j of
M fails then all loads of the components of system L are
increased by an amount pLM.

The basic steps of the algorithm proceed as follows:
At Step t

1) Test stability of all loads in L based on their values at
step t-1.

2) Test possible transfer from L to M based on the load
values at step t-1.

3) Test stability of all loads in M based on their values at
step t-1.

4) Test possible transfer from M to L based on the load
values at step t-1.

Now update all loads

At the end of each “day” we collect information on how many
components failed in L and how many in M , how long the
whole cascade took, and accumulate information for a pdf of
failures in both systems. We also accumulate data per iteration
from each system, in order to calculate the number of failures
per iteration.

The CASCADE model can be re-interpreted as a
branching process [10]. This allows the application of the
branching process methods [11] to analyze and interpret the
results of the cascade model. In trying to understand the
consequences of the coupled CASCADES model, we
approximate it by a branching process. For simplicity we

assume that the two systems have the same size and have
symmetric couplings. From the load transfers we can construct
the corresponding the transition probability as was done in
Ref.[10]. In this case, we define l ij=n pij. Then if FL(t) and
FM(t) are the mean number of failures in systems L and M
respectively, we have
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This a 2 type branching process approximation to the evolution
of the means in the coupled CASCADE model that generalizes
the approximation in [10]. Therefore, iteration of Eq. (1) with
the initial condition (2) leads to
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To solve this system of equations we have to find the
eigenvalues of the matrix, they are

l± =
1
2

l LL + lMM ± l LL - lMM( )2
+ 4lLMl ML

È
ÎÍ

˘
˚̇

(4)

Since all l’s are positives the largest eigenvalue is l+. Because
of the initial conditions,

FL t( ) = q
l+ - l MM( )l+

t-1 + l+ - lLL( )l-
t-1

lLL - lMM( )2
+ 4lLMl ML

(5)

and

FM t( ) = q
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t-1 - l-
t-1

lLL - l MM( )2
+ 4lLM lML

lML (6)

As an easy test to start comparing the code, we could use
lLL = lMM = l  and lLM = l ML = d . In this case, l± = l ±d
and
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Because of the cascade nature of the process, the average
number of failures diverges if the largest eigenvalue is greater
than 1 and converges if it is less than 1. Therefore the critical
point is now given by

lc = 1-d (9)

This means that the coupling of the systems has shifted the
critical point to a lower value of l. The size of this shift is
related to the strength of the coupling. This shift makes the
system more susceptible to large failures. It is again important
to note that the inter-system load transfer is intrinsically
different then the intra-system load transfer. It is this difference
that allows the shift in the critical point.

2.3 Numerical results

Numerically one can explore the parameter space to
investigate the transition characteristics as a function of these
parameters. Initially, we have considered only cases with
lLL = lMM = l  and lLM = l ML = d in order to explore a small
space to start with. For this situation we have only to worry
about a single new parameter d. Calculations have been done
for two systems of size 400.

For a fixed initial perturbation, q = 0.2, applied to the
system L, we can see that the frequencies of the cascades in
system M increases with l+d. This increase is faster when the
system is close to the critical point (Fig. 3).
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Figure 3: Frequency of failure as a function of l + d

Because system M is not perturbed, it is clear that the
failures in system L drive the failures in system M. Below the
critical point, the effect is weak. However, at the critical point
both systems become strongly coupled. They act more like a
single system.
In addition to the drive of system M by system L, there is clear
feedback of system M on system L, because the critical point is
shifted downwards as given by Eq. (9). The numerical results
are consistent with the analytical calculation: both systems have
the same critical point and the critical point is given by the
largest eigenvalue l+d. This is shown in Figs. 4 and 5. . In
Fig.4, we have plotted the probability of a system-size failure
(the system as size 400) for system L as a function of l for the

different values of the coupling pLM. Here, pLM is the load
transferred to each load of the system L by each failure in the
system M . Then, d = n pLM. We can see that the critical point is
shifted to lower l as pLM increases. Note that with the strongest
coupling there is almost a factor of 2 change in the critical
point.
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Figure 4: Probability of cascade events of the
system size as a function of l

That the shift in the critical point is given by d is
clearly shown in Fig. 5, where we have replotted the data in
Fig. 4 as a function of l+d. A universal curve emerges from
this plot. Plots of the system-size failure probability for system
M are identical to the plots for system L.
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Figure 5: Probability of system size cascade events
as a function of l+d

In Fig. 6, we have plotted the pdf of the cascade size for
l = 0.95 and d = 0.06(just 0.01 above the threshold). Keep in
mind that for system M there would be no failures at all if the
systems were uncoupled while for system L , without the
coupling the system would still be significantly sub-critical.
The pdf of failures for system L has the usual slope of –1.5.
Remarkably, the slope for system M is actually lower than for



system L and is close to –1.2. The probability of small cascade
in L triggering cascades in M is small. However, large cascades
in L often trigger cascades in M. Therefore, the probability of
system wide cascades is practically the same in both systems.
It is this combination that leads to the shallower slope for
systemM.
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Figure 6: Probability of cascade events of the system
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In Figures 7 and 8 we see the evolution of a cascade for a
case in which there would have been no cascade in M and the
cascade in L would have stopped after 4 iterations had the
systems been uncoupled. Figure 7 shows the number of failures
per iteration as the cascade evolves and in this case the two
systems are tightly coupled so number of failures per iteration
is approximately the same for both systems.
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Figure 7: The evolution of failures in a cascade as
a function of iteration for both systems.

In figure 8, which shows the cumulative number of failures in
each of the two systems, the cascade can be seen to go all the
way to the system size (400) in system L at approximately

iteration 25. The cascade stops in system M when it reaches the
full system size in L because it is no longer being driven by
anything. System L is gone!

Figure 8: Evolution of the cumulative number of
failures in a cascade as a function of iteration for

both systems.

 If one thinks of system L as a power transmission system
and system M as an information communications system the
meaning and effect of the coupling is fairly clear. The two
systems are coupled in both directions at the simplest level
because the communications system uses power to operate and
because the communications system carries the information
needed to operate the power transmission system. Failure in
one increases the probability of failure in the other. For
example a power failure increases the probability of a router
failing, leading to information packet losses. This failure in the
second system then can react back on the first system
increasing its probability of further failure. For example, lack of
knowledge of the operating state of a line increases the
probability of an overload condition. This process facilitates the
propagation of the cascade that is the mechanism by which the
critical point is lowered.

Both the numeric and analytic approaches to
understanding this model can be extended to cases that relax
some of the simplifications we have made. Of most interest is
relaxing the symmetry assumption in the coupling. This work
will be presented in a subsequent paper.
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3. A coupled complex system model

3.1 The simple dynamical complex system model

Probabilistic models such as the CASCADE model can
shed light on the changes in the critical point and pdf of
failures. However, their value is limited by their probabilistic
nature. In order to develop sufficient statistics for these
measures many realizations with independent initial conditions
are performed with no knowledge of earlier cases. We know
however that the real systems are deterministic and its state
today knows about its state yesterday at least to some degree.
Therefore, to investigate the dynamics of these systems we
utilize a coupled dynamic complex system model (DCSM).

This DCSM is a cellular automata based model. It is set
on a regular grid with fixed interaction rules. The systems we
will discuss here are a subset in which the rules are local and
the grid is regular. Both of these restrictions are
straightforward to generalize (and for some systems other
choices make more sense) but we use them as a reasonable
starting point.

The rules for the single, uncoupled systems are simple:
1) A node has a certain (usually small) probability of

failure (pf)
2) A node neighboring a failed node has another

(higher) probability of failing (ps)
3) A failed node has a certain (usually high)

probability of being repaired (pr)

The steps taken in the evolution are equally simple:
At step t
1) The nodes are evaluated for random failure based on

their state at the end of the t-1 step.
2) The nodes are evaluated for repair based on their state

at the end of the t-1 step.
3) The nodes are evaluated for failure due to the state of

their neighbors at step t-1.
4) All nodes are advanced to their new state

Outages (failures) in these systems can grow and evolve in non-
uniform clusters and display a remarkably rich variety of spatial
and temporal complexity. They can grow to all sizes from
individual node failures to system size events. The repair rate
for nodes is usually slower then the time scale of a cascading
failure so repairs to an evolving cascade are unlikely. The main
difference between this model and the CASCADE model
discussed in Section 2, is the continued evolution of the system
after a failure. In this system, the “memory” of previous
failures is in the structure of failed and fixed nodes in the
system. The characteristic time scales of the system are also
captured in the repair time and random failure probability. This
type of model gives power law tails in the pdf, as before, in
addition to long time correlations and anti-correlations between
the failures (Figure 9), something that comes from the
dynamical memory of the system.
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time series showing a Hurst exponent greater then
0.5 in the mesoscale region, signifying long time

correlations.

3.2 The coupled complex system model

The coupling of these systems is achieved along similar
line to that done in the CASCADE model. Namely, failures in
one system change the probability of failure in the other
system. The difference being that since, beyond mean field
theory, the details of which will be presented elsewhere, we are
unable to make much analytic progress with this model we do
not worry about simplifying assumptions. Therefore we couple
the two dynamical complex systems models DCSM1 and
DCSM2 using two coupling variables. The first of these
variables is the spatial structure of the coupling. Since all nodes
in one system do not need to be coupled to all nodes in the
other systems (in fact usually would not be), we can change the
fraction of the nodes coupled (randomly or with a fixed
structure). See figure 1 for a cartoon representation of this.
The second variable is the strength and direction of the
coupling. The strength of the coupling is the cross system
probability of failure, similar to the pML from the coupled
CASCADE model. However we do not restrict this coupling to
being symmetric. In reality, some systems failures can have a
major impact on its counterpart system while a failure in the
counterpart system would have little or no effect on the first
system. An example of this might be a co-located
pipeline/communications system. The communication system
is used to monitor the pipeline state. Failure of the
communications system can (or often will) cause a failure (or
shutdown) of the pipeline system. The converse is usually not
true, a failure in the pipeline, unless it is a catastrophic failure,
will have no impact on the communications system. Therefore
both the strength and direction can be varied.

3.3 Preliminary results from the Coupled DCSM

As described here, the DCSM dynamically arranges itself
to sit right at, or near the critical point for a wide range of
parameters as long as we are above the percolation limit, which



 

 

will be discussed below.  This is why it is called a self-
organized critical system.   So unlike the CASCADE model we 
cannot do a simple λ scan in DCSM to explore the critical point 
because the system tries to arrange itself arranges to live at that 
point.  However by changing the parameters in both the local 
coupling and the cross system coupling we can see changes in 
the failures which can be made explore similar dynamic 
changes as the lambda scans in CASCADE.   

Figure 10 shows the time series of failures for a coupled 
system and an uncoupled system (with the same parameters 
other then the coupling), showing a large change in the 
dynamics of the system. 
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Figure 10: Time series of failure sizes in coupled and 
uncoupled DCSM  

 
This figure simply illustrates the extreme differences that 

can be found between coupled and uncoupled systems, in this 
case when the coupling is strong and 2 way, causing constant 
small failures in the 2 systems.   To begin a systematic 
understanding of the parameter space we first note a few of the 
characteristics of the uncoupled system.  First is the local 
coupling parameter ps, which when below a certain value makes 
the system sub-critical to the percolation threshold. This means 
that when the individual elements are coupled to few other 
elements, or when the coupling is very weak, the cascading 
failures will be self-limiting.  That is, they will have a very low 
probability of propagating across the entire system and the 
distribution (PDF) of failure sizes will be exponential (Fig. 11).    
The threshold is reached when there is at least one failure on 
average caused by a failed site.  This “percolation” threshold 
can be analytically approximated [12], using mean field theory, 
as Pncrit ~ 1/f, with f being the average number of unfailed sites a 
site is connected to.  This is approximately the number of 
connections-1 since, during a cascading failure, one of the 
connections will already be failed.  Therefore, for our 
uncoupled DCSM model with four connections per site, the 
critical Pn is about 0.333.  In reality, mean field theory 
underestimates the threshold value because long time 
correlations are not considered but the value is not far from that 
found as seen in figure 12.    
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In this figure the critical point can be characterized as the 

point at which the average number of new failures caused by a 
failure (λ) equals, or exceeds, one.  This is found to be 
approximately 0.4 for the full DCSM model, just a little above 
the mean field approximation.  Once the system is above the 
critical point it display all the characteristics of a self-organized 
complex system.   
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These include the long time correlations (Fig. 9) and 
power law PDFs.  The appearance of the power law size 
distribution as we cross the critical point is shown in figure 13 
which has PDFs for a just barely critical case and a case with Pn 
well above the critical point.  The power laws found have 
exponents of approximately –1 and exhibit the standard 
exponential cutoff at largest sizes due to finite system size 
effects.  It should be noted that the power law of –1 is in 
contrast to the CASCADE model which, in the uncoupled case, 
has a power law of approximately –1.5 and is due to the 
dynamical evolution of the system. 



10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

Pn = 0.5
Pn = 0.4

Pr
ob

ab
ili

ty
 d

ist
rib

ut
io

n

Number of failed components
Figure 13: PDFs of failure sizes in 2 uncoupled DCSM

calculations with the neighbor coupling parameter
Pn=0.4 and 0.5, just at and above the critical value.

The PDFs show a power law size distribution.

One of the simplest consequences of coupling the 2
systems is to give another propagation path for failures. If this
did in fact occur one would expect that the critical point could
be crossed by increasing the cross system coupling as well as
by increasing the nearest neighbor coupling in a given system.
This consequence can be seen in figure 14 in which the Pn is
sub critical but the cross system coupling is able to make the
system critical.
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Figure 14: PDFs of failure sizes in 2 coupled DCSM

calculations with coupling parameter Pn=0.4 and 0.5,
just at and above the critical value.

In the coupled case, the power law found is somewhat
weaker then the –1 found for the uncoupled system and is
approximately 0.8. The direction of change (ie the weaker
power law) is consistent with the effect seen in the coupled
CASCADE model discussed in section 2.3, though the coupled
DCSM power law is still significantly less steep then the
coupled CASCADE result. The actual slope is critical for
calculating and understanding the risk of events of various sizes
and while changing from an exponential distribution to a power
law is much more significant, going from a power law of –1.5

to -.8 will have a large impact on the probability of the largest
failures.

Another obvious potential impact of the coupling is the
possible synchronization of the failures in the two systems.
Using a measure developed by Gann et al in [13] for
synchronization, we investigate this effect. Figure 15 shows
the synchronization function described in [13] which is
basically an average normalized difference between events in
the 2 systems. For this measure, a value of 1 means the
difference is effectively 100% or no synchronization, while a
value of 0 means all events are the same in the 2 systems, or
they are synchronized. These values are then plotted as a
function of the event sizes. It can be readily seen that small
events for all three of the coupling strengths are largely
uncorrelated (unsynchronized). The synchronization however
increases as the size increases. This makes physical sense since
as the even gets larger there are more sites interacting and this
increases the probability that a failure in one system will trigger
a failure in the other system. It should be noted that this is
likely to be sensitive to the spatial homogeneity of the coupling
that is being investigated.
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Figure 15: Synchronization functions for coupled
DCSM calculations for 3 values of the coupling

parameter Ca.  A value of 1 is unsynchronized and 0
is synchronized.

This synchronization of large events is important in
assessing the impact of the coupling. It may be that small
failures in one system are unlikely to trigger a failure in the
coupled system, however if a large failure is likely to trigger a
coupled failure then the dynamical state of system one (ie it’s
proximity to a major failure) becomes very critical in assessing
the risk of failure of the perhaps more reliable system two.

The results presented here have been for a very small
subset of the parameter space. That subset being, symmetric
homogeneous coupling with an increased failure probability
from an coupled failed or failing site. The rest of the parameter
space described earlier is being investigated and will be
reported on later.



4. Discussion and Conclusions

Modern societies rely on the smooth operation of many of
the infrastructure systems. We normally take them for granted.
However, we are typically shocked when one of these systems
fails. Therefore, understanding these systems is a high priority
for ensuring security and social wellbeing. Because none of
these infrastructure systems operate in a vacuum, understanding
how these complex systems interact with each other gains
importance when we recognize how tightly coupled some of
these systems are. Because of the great complexity of even the
individual systems it is unrealistic to think that we can
presently dynamically model interacting infrastructure systems
in full detail.

In this paper, we have investigated some of the general
features of interactions between infrastructure system by using
very simple models. We look for general dynamical features
without trying to capture the details of the individual systems.
From this we try to build a hierarchy of models with increasing
levels of detail for these systems.

Here, we have shown two such models. One is a
probabilistic model, CASCADE. The other model is a dynamic
complex system model (DCSM) which can work in a self-
organized critical state. Both models are characterize by a
percolation threshold above which cascading failures of all
sizes are possible, In both models this threshold can be
characterized by the branching parameter l , the average
number of new failures caused by a failure. The percolation
point is at l = 1, where the probability density of failures for
CASCADE is a power law with exponent -1.5 while for DCSM
it is somewhat closer to –1.0. These exponents are close to the
one found in analysis of blackout data.

It has been found that symmetric coupling of these
systems actually decreases the threshold. That is, it makes
access to the critical point easier, which means that the systems
when coupled are more susceptible to large-scale failures and a
failure in one system can cause a similar failure in the coupled
system. The parameter l, can be also used to characterize the
cascading threshold in the coupled systems. This suggests the
existence of a metric that can be generalized for practical
application to more realistic systems.

For the DCSM model in addition, it is found that large
failures are more likely to be "synchronized" across the two
dynamical systems, which is likely to be the reason that the
power law found in the probability of failure with size is less
steep with the coupling. This means that in the coupled
systems there greater probability of large failures and less of
smaller failures.

With the DCSM model other important aspects of the
infrastructure can be explored, such as non-uniform and non-
symmetric couplings. This will be the object of future studies.

With this model there is a large parameter space that must
be explored with different regions of parameter space having
relevance to different infrastructure systems. There is also a
rich variety of dynamics to be characterized. Characterizing
the dynamics in the different regimes is more then an academic
exercise since as we engineer higher tolerances in individual
systems and make the interdependencies between systems
stronger we will be exploring these new parameter regimes the

hard way, by trial and error. Unfortunately error in this case
has the potential to lead to global system failure. By
investigating these systems from this high level, regimes to be
avoided can be identified and mechanisms for avoiding them
can be explored.
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