
An Empirical Study of Software Process in Practice

Gerry Coleman,

Department of Computing & Mathematics,

Dundalk Institute of Technology, Dundalk, Ireland.

Tel.: +353 42 935 2828

e-mail: gerry.coleman@dkit.ie

Member of the Irish Software Engineering Research Consortium - ISERC

(http://www.iserc.ie/)

Funded by Science Foundation Ireland (http://www.sfi.ie/)

Abstract

In adopting a software process model, many small software

companies are ignoring standard process models and

models for process improvement. This study uses an
empirical approach to investigate what processes software

companies are using on a day-to-day basis and examines

why these companies are rejecting “best practice”

approaches.

1. Introduction

The success of a software project is generally judged on
its ability to meet users’ expectations, be delivered on time
and adhere to original budget. In an attempt to ensure
software project success, some large software organisations
have used software process improvement models, such as
the Capability Maturity Model Integrated for Software
(CMMI-SW) and the International Organisation for
Standardisation (ISO) 9001 series [1][2]. Today, however,
a significant proportion of software development work is
carried out by small to medium enterprises (SMEs).
Because of their size, software SMEs face particular
challenges when developing software, and in choosing an
appropriate software process model. Evidence collected in
this study shows that Irish software SMEs are not using
standard software process improvement models, opting,
rather, for proprietary or heavily-tailored approaches which
are “good enough” for their requirements.

This paper reports on the “good enough” processes Irish

software product companies are using in practice, what
factors influence the composition of good enough process
in software companies and examines why companies are
choosing to reject standard process models in favour of a
tailored minimum.

2. Background

From the data reported from the Software Engineering

Institute (SEI) and International Organisation for
Standardisation (ISO) it is clear that, despite a number of
years of promotion and marketing, use of their process
improvement models is relatively low. Software Capability
Maturity Model (SW-CMM) -based assessments show that
from the end of 1997 to the end of 2002, 1,345
organisations had been appraised worldwide [3]. It has
been calculated that ISO figures up to the end of 2000 show
that, worldwide, between 12,000 and 20,000 software
companies have been assessed or certified [4].
Furthermore, the total number of TickIT (the UK standard)
holders, as of July 2003, stands at 1,157 [5]. However,
when you take into account that the most recent figures
show that Ireland’s software industry alone has in excess of
900 companies [6], it is obvious that managers in small
software companies are deciding that, within the context in
which they operate in practice, these “best practice” models
are not most appropriate mechanisms on which to base
their software development effort. In recent times, some
newer process models such as the Personal Software
Process (PSP) and the Team Software Process (TSP) have
emerged which have been tailored towards development in
the small [7][8]. These approaches, though aimed at small
teams, have really only generated major improvement in
large companies and have faced the charge from small
software companies of being overly prescriptive and
bureaucratic [9].

As many of these small software companies are not only
surviving, but thriving, the processes they are using are
clearly “good-enough” for their needs.

This leads us to the following questions. What process

models are small software companies using in practice?
What factors determine the make-up of these process

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

models? And why, despite the evidence offered by
proponents, are small companies deciding to reject standard
process improvement models such as CMMI?

These questions have yet to be properly addressed in the

literature and the consequences are of major importance to
a range of interested parties including, CTOs/software
managers in software SMEs, process model designers,
software support agencies and especially software
standards bodies.

3. Research approach and methodology

In addressing the research questions, I have focused my

attention on indigenous Irish software companies. The
research I conducted examined how the current processes
used in practice have evolved within the constituent
companies. In many software SMEs, the founder, or the
person who introduced the software process, is still in
place. As such, with indigenous companies, tracing the
process’s evolution is possible. Such is not the case in
Multi-national software companies, as attempting to trace
how the process arrived at its current state would be
practically impossible.

3.1 Grounded Theory

To ascertain what is going on in a given situation and to

construct a theory around it demands the use of qualitative
research techniques. What I used in this study was an
inductive rather than a deductive process. A deductive
process begins with existing theory, uses this to draw some
hypotheses and through testing these hypotheses tests the
theory itself. By contrast, inductive research attempts to
gather explanation and meaning through the collection and
analysis of empirical data.

The methodology I chose for the study was Grounded

Theory [10]. Originally developed for use in the Social
Sciences, grounded theory is now being applied to other
domains to provide rich explanation of practice and to
develop associated theory. The procedures of grounded
theory are designed to develop a well-integrated set of
concepts that provide a thorough theoretical explanation of
social phenomena under study. The aim is to discover
categories and concepts within empirically collected data,
using these to generate emergent theories which are
grounded in the data. Theoretical sampling ensures
constant comparison of existing categories and drives the
search for contrary ideas.

In my study, the prime method of data collection was

taped structured interviews with additional documentation
and artifacts used to extend and complete the data
collection process.

The software tool “Atlas TI”, designed for use with
grounded theory, was used to support the data analysis and
category and concept generation activities. Existing theory
is used as and when it becomes relevant to the study. It can
be used to support and challenge the emerging theory
whilst the grounded theory approach can also be used to
enhance existing theory.

During the study, I conducted interviews with 15 CTOs

or software development managers across a range of
software product companies with development teams
ranging in size from 2 to 100. In the search for emergent
theory, I deliberately selected a range of software
companies across the application spectrum from
pharmaceutical and telecommunications software providers
to real-time control systems and small business applications
developers.

Following each interview, using the Atlas TI toolset, I

transcribed and open coded each interview and linked any
associated data or documented artifacts from the
participating organisation. Each subsequent interview was
then conducted based on the ideas and concepts emanating
from the previous interviews. After several interviews,
concepts began to emerge. After a number of subsequent
interviews, I used axial coding, whereby the relationships
between concepts are examined, to determine the core
categories and help explain the discovered phenomena. At
the final stage of the coding process I used selective coding
whereby I chose a core category and related it to its various
sub-categories and associated attributes.

Throughout the data collection, coding and analysis I

also engaged in memoing. Memos are essentially notes to
yourself about some hypothesis you have about a category
or property, and particularly about relationships between
categories. Memos help drive the research and offer
explanation for the unfolding theory.

At all stages of coding and analysis I referred to the

literature, as and when appropriate, in an attempt to support
or refute what was emerging.

4. Study Findings

4.1 Process models

The 15 companies interviewed in the study were using a

range of software process models. Interestingly, none of the
companies were using a process model in a “text-book”
fashion, choosing instead either to, drop elements of their
chosen model or, develop something proprietary instead.

Of the companies interviewed, 3 were using eXtreme

Programming (XP) as their base process model [11]. Two
of those were using it “quite aggressively” but none of the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

3 were using all 12 elements of XP. Of the remaining 13
companies 7 had examined XP and several of those were
considering piloting it on an upcoming project.

7 of the 15 companies had used the Rational Unified

Process (RUP) or “an approximation” of it [12]. None of
the 7 had deployed it as is, but had tailored it, or included
tenets of it, within a proprietary model. 2 of the 7
companies who used RUP had subsequently shelved it.

The remainder of the companies were using either

versions of the Waterfall model or some form of iterative
development approach.

4.2 Factors influencing the process model used

 The reasons for companies deciding whether they were

going to use a standard model, or develop their own,
proved particularly interesting. Outputs from the study
showed that the key influencers on a process model
decision related to the situational factors inherent to each
company. Primary amongst these were:

 Background of CTO/development manager

The background of the development manager or CTO
was a major influencer on the software process deployed.
In many cases the software process used was that brought
by the CTO to the company when they joined. If, for
example, they used Rational in a previous employment,
then generally this provided the basis for the software
process in their current organisation. Some of the CEOs
(who in the very small companies also acted as CTOs)
came from non-software backgrounds. These individuals
were the most hostile process critics and their organisations
showed, what might be described as, least process maturity
or cognisance. Conversely, the biggest process supporters
came from those who had spent a number of years in
software development prior to founding a software
company or becoming CTO. The organisations containing
these individuals showed the highest level of process
awareness.

 Customer/application type

The Customer/application type also had a major
influence on the degree, or type, of process used. The
companies interviewed, who are operating in the
telecommunications market, are selling products which will
be used 24/7. In these cases, their customers placed a
premium on high-quality and high-reliability. These
demands have driven the introduction of process in these
organisations resulting in a greater emphasis on testing and
quality assurance activities. Similarly, another company
interviewed is selling software products to multi-national
corporations in the pharmaceutical sector. This business,
governed by high-regulation, and deploying products
worldwide, also demands high-quality, reliability, and
importantly, certification. The software process in the

company involved reflected this and they had been certified
to ISO 9000/2000 standard. Without a strong process and
associated certification they would not have generated
much of their pharmaceutical business.

By contrast, other companies interviewed, selling non-
business-critical applications, place less emphasis on
process and had no desire to pursue any type of
certification.

 Situation pre-process

In many of the organisations the process developed
haphazardly and eventually encountered significant
problems. The nature of those problems often drove the
type of process that was subsequently implemented and the
elements that took priority. For example, one organisation
reported that, in the early stages, analysts worked with
customers without agreeing a documented specification.
Subsequently no design documents were created. As a
result, this company decided it need an automated
document management system and this became a process
improvement priority. Another example, applied to a
company who were unsuccessfully trying to manage
multiple code bases across an ever-widening number of
platforms. To resolve this, the organisation concerned
recruited a raft of senior management personnel to get the
problem under control and then establish a coherent
process.
Another product company recruited a development
manager who was greeted with a situation “where it was
absolutely chaos”. According to the development manager,
the company “hadn't gone through the normal phases of
growth in terms of processes and procedures. They worked
24/7; forever. They never made dates. It always went 5
times over budget. No one ever knew the status of the
projects, it was just chaos.” She tackled the situation by
initially implementing basic project management practices
and attempting to get some control on development. The
organisation was also developing a number of customised
versions of its basic product and attempting to support
them. She phased out these customisations and the next
phase of process involved scaling back the number of
products developed and supported and the creation of a
strong configuration management programme.

 Project/team size

As might be expected, the scale of the work, and the
number of people required to do it has influenced the
process in the companies interviewed. However, what is
key here is the level of process used rather than the process
itself. In most cases, where the project is small, and ergo
team size, some process steps and associated documents are
omitted during development – “what is suitable in a 2-
person team is not suitable in a 20-person team”. Most of
the companies involved have attempted to keep their team
size to maximum of 6 feeling that, beyond that,
management becomes “too difficult”. The largest company
interviewed impose a 25-person maximum on team size.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

They feel that their existing process can cope up to this
level. Beyond this they feel their process will not scale and
would need substantial revisiting and redefinition.

 Product/Services model

All of the companies interviewed were software product
companies and the stage of a product’s evolution can
influence the process used. In all cases, the number of
process steps used to develop and release a new product,
are reported as greater than those for a new release of a
product which has been on the market for several years.
Where an upgrade like this is performed, a number of
process elements, standard during new development, are
omitted. Furthermore where software patches are required,
the process deployed is often a skeleton of that used for a
full product development.

 Influence of key staff

In the very small companies interviewed, key staff have
a pivotal role in the adoption and application of process, the
process often being the application of their historic
practices. Equally, resistance to SPI by key staff can create
major difficulties in attempting to introduce new ways of
working. As the companies interviewed became larger, a
more standardised process, which placed less emphasis on
individuals, emerged.

Though a company’s software process is fluid and
dynamic, and changes as the company changes, the
prioritisation of improvement strategies, in this way, shapes
how a process evolves within an organisation.

4.3 Perceptions of Process

Some of the most interesting aspects of the study

emerged however, when the managers were asked about
what software process meant to them and their
organisation. They were very strict in adhering to the good
enough or just enough principle and separated process in
their minds as having two component parts; the activities
required to carry out software development (requirements
capture, design, coding, testing etc.) and the associated
documentation, recording and paperwork. It was this
second element which worried the managers most.

In many cases, amongst the interviewees, process
improvement was perceived as “more process”, spawning
the related fears of additional administration, recording and
overhead.

One CTO put it thus – “we knew we had too much

[process] when there was more administration being done

than development. I think that product development is
about being inventive and creative and new ideas coming

forward and being developed quickly into something

mainstream. And when you don't see that happening I think

that too much is being stifled.”

Another, highlighting the fear of a significant
administrative burden, put it more bluntly, “from a making

money perspective you want every engineer to be working
on billable work every time”.

Also, the “code wins” approach peppered the interviews

as the following quotes illustrate:

“I think a lot of commercial products out there are

vastly over-engineered. I have learned that the hard way

through Yourdon and drew diagrams for 2 years and didn't

produce any code.”

“One of the things I don't like with software companies I

have worked for is the amount of programmers who end up
doing admin work that they don't particularly want to do.

And they tend to be the most senior guys who will deliver

the most bang for buck in terms of coding.”

“I'm an engineer. I've got to write this software and it

has to be delivered in 3 weeks time and there is the
pressure of delivering that. And if you add process in on

top of that, unless people get into the habit of doing it on a

day-to-day basis, where you really instil it as it will take

you 10 minutes a day or 8 hours at the end of the project,

and at the end of the project you won't remember what
happened if you did. But so often, people were filling in

time sheets and lists 6 weeks after the project had finished

in order that the quality process could be seen to pass its

audit.”

From the examples above and the numerous others

contained within the interviews it was clear that cost was a
primary reason that companies were opting for a “good
enough process” approach and that cost was manifest
through additional administrative activity and recording.
Given that excessive process was perceived as having an
unacceptable cost, I decided to examine if this would
explain why software SMEs are deciding not to adopt some
of the standard process improvement models such as
CMMI-SW and ISO 9001.

4.4 Cost of Process and improvement models

One of the difficulties with CMMI-SW, and ISO 9001,

is that they are essentially top-down and require
implementation at a corporate level. For smaller companies
and teams this poses a particular difficulty.

In the case of the SW-CMM there is very little evidence

of the processes scaling down successfully to small
companies. Recent data shows that of the more than 1300
organisations (reporting size data), that have been
appraised, roughly 148 (11%) have 25 or fewer software
development personnel and c.224 (17.1%) between 25 and
50 software developers. [3]. More instructively, however,
of the 148 companies, with 25 or fewer personnel, only

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

2.8% or 4 companies have been ranked above SW-CMM
level 3. This is the lowest percentage for any of the
reported size categories and is hard evidence of the
difficulties of scaling down the SW-CMM.

Another interesting fact is the time required for an

organisation to progress to the next higher level in the SW-
CMM scale. The average time for organisations to move
from level 1 to level 2 was 22 months and from level 2 to
level 3, 21 months. Given that almost 82% of 1 – 25
software development employee companies, and almost
74% of 26 – 50 software development employee companies
are in these sectors, the figures require a significant
commitment on the part of small companies to make the
necessary progressions. Furthermore, for a small company
to get from level 1 to level 3 will take an average of 43
months or in excess of 3.5 years. Devoting the resources
necessary to achieve this level of process improvement
over this lengthy time span is beyond the capability of the
vast majority of small companies.

Further evidence of the potential cost of pursuing

CMMI-SW is provided in [1] as the following passage
shows:

“A considerable investment of resources is required for

a full SCAMPI (Standard CMMI Appraisal Method for

Process Improvement) appraisal. Data on actual resources

used to date is not easy to obtain. Clearly the time needed

for the on-site appraisal includes that for the activities and

efforts of a SCAMPI lead appraiser, the sponsor, the co-

ordinator, each appraisal team member, and each
appraisal participant. There are many variables in

reaching an estimate, such as number of process areas, size

of the team, number of disciplines to be investigated, and so

on. This might end up being in the range of 100 to 200 days

of effort. However, for a full appraisal this is not an

accurate measure of the total effort required. In order for
the team to operate in “verification” mode, rather than in

“discovery” mode, a much larger effort must precede the

on-site visit to collect and organise all the individual pieces

of evidence required by the team. The total cost could

easily reach into the hundreds of thousands of dollars.”

The authors go on to say, “The ARC (Appraisal

Requirements for CMMI) allows 3 classes of appraisals.

The level of effort for each class varies based on the scope

of the appraisal. In general, however, a Class C appraisal

takes much less time than a Class B or A appraisal. The

Class B appraisal provides a more in-depth look at the
organisation [than Class C]. In most cases, it does not go

into as much depth or detail as a Class A appraisal. As a

result it can generally be completed within a week (my

emphasis).”

The figures above suggest that the cost, in terms of

effort and resources, makes it prohibitive for SMEs to

pursue CMMI-SW certification. But how does this
evidence compare with what has emerged from the study?
What do the practitioners themselves feel about CMMI or
ISO?

Of the companies interviewed, 2 have adopted ISO

9001. Both organisation were required to do so as their
primary customers, a telecommunications multi-national in
one case, and the pharmaceutical sector on the other,
demanded it. The software companies estimated the cost, of
achieving certification, to be €90,000 ($100,000+).

However, where there was no customer requirement for

such certification, other companies have studiously avoided
it, particularly where the managers concerned have worked
with ISO or CMM prior to taking up their current roles.

One manager commented as follows, “It comes back to

the speed at which you are developing your products. If you

look at CMM, it was delivered for the likes of NASA

programming and you are given 2 – 3 years for your
launch date. We might sell a piece of software that needs

to be delivered in 3 months. So, the overhead of instigating

a very rigorous CMM-style process is outweighed by the

time it takes to deliver it.”

Another small company were wary of CMM and its

implications, “It will depend on the companies with whom

we will engage. It hasn't been a big deal. But maybe where

we get to the stage where we are dealing with government

or defence and they are looking for certification, then we

will go for it. That's because there is a business decision to
tackle those customers and therefore the process has to

evolve to get certified. You wouldn't do it the other way

round, that would be crazy”.

A manager who previously worked in a company rated
at CMM level 3 stated, “There is some sense in that stuff.
But I certainly wouldn't go looking for CMM level 3

certification. It's way over the top. I'd be keener to hire

somebody who has been through the mill and who

understands a set of key tenets across similar industries. It

(CMM) is neither efficient nor would return huge benefits.
Somebody with experience could go in and have much

more effect in a lightweight way if they understood what

they were doing.”

However, managers who previously worked in ISO

9001-certified organisations were even more hostile to its
adoption.

As one put it “And so I'm nervous especially of things

like ISO, that I think carries a lot of baggage that doesn't

necessarily give you benefit. Today as a business benefit it's

not relevant to us. We talk of "we have equivalent

processes" but it's for the future I think.”

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

Another was more critical of ISO, “A conscious

management decision was not to go completely ISO. If we

had gone ISO in the early stages we do believe that that
would have sunk the company because we would be really

only conforming to these standards for the sake of it and to

get a badge which you don't need in reality. We are

winning over a lot of our competitor's clients and that's

without ISO. I believe it would take a big investment of time

and money and think it's way over the top.”

One manager reasoned that ISO was not suitable for

software thus, “But in one way ISO doesn't focus on the

important bits at all, it's still a very paper driven thing. In

other words, you can get away with having an ISO system

that doesn't actually do any source code control at all and
still get your 9001 certification. I've seen it done.”

Surprisingly, one company who had achieved ISO 9001

certification were quite sanguine about it, “But what you

find now is the opposite when you get to the bigger

customers, the very big ones, they sometimes say just
because you are ISO 9001 certified doesn't mean you

produce a good product”.

Finally one manager described her experience of

working in a company with ISO certification, “I found it
absolutely ridiculous. I couldn't work there. I felt it killed

creativity. If I hear the word ISO I break out in a rash! Any

company I've ever gone into who lives like those, they tend

to be really dull places.”

Clearly, in the case of process improvement models for

software development, there is a major gap between theory
and practice. Except in the cases where customers are
demanding it, managers in software SMEs are rejecting
CMMI-SW and ISO because of the perceived cost and
bureaucratic overhead associated with their adoption.
Similar phrases continually cropped up in relation to
CMMI and ISO during the interviews; “rigid”, “baggage”,
“bureaucracy”, “buried in paper”, “forced into filling out
lots of forms”, “bulky”, “heavy”, “luxury”, “major drag
factor”, “over the top” “overkill”, “we don’t have time” and
“wouldn’t have the patience”.

Whether these perceptions are actually true in relation to

CMMI and ISO, it is this mindset that the proponents of
these standards have to address.

5. Conclusions and further work

This study examined software process as it is practiced

in Irish small to medium-sized software enterprises. A
grounded theory approach was used to determine what
processes were used by the participant companies, what
factors created these processes and how they evolved and
investigated why Irish SMEs are rejecting software process

improvement models such as CMMI-SW and ISO 9001.
The clearest finding from the study is that process, though
necessary in terms of its development-related activities, has
a cost in terms of administration and bureaucracy. The
practitioners concerned wish to minimise this cost and see
process improvement models as adding “more process”
which translates as increased bureaucracy.

In the next phase, I plan to return to some of the

participants to investigate what adjustments could be made
to the CMMI-SW to make it more attractive to small
software companies. I also intend to examine how XP is
functioning as a process model and how it has been rolled
out amongst the companies who were experimenting with it
during the study period. It will also be instructive to see if
there are any lessons from using XP in practice which can
lead to it being accommodated within CMMI. From the
above I intend to construct a contingency model which can
guide small software companies in the selection and
application of software process as they evolve thereby
ensuring that their active process remains “good enough” to
generate continued success.

6. References

[1] Ahern, D.M., Clouse, A. & Turner, R., CMMI Distilled

2ndEd, Addison Wesley, 2004.
[2] ISO 9001:2000, www.iso.org.
[3] Process Maturity Profile Year end 2002,

http://www.sei.cmu.edu/sema/pdf/SW-SW-
CMM/2003apr.pdf

[4] The ISO survey of ISO 9000 and ISO 14000
certificates, http://www.tantara.ab.ca/b_board.htm

[5] International Register of TickIT-Certified
Organisations, http://www.tickit.org/cert-org.htm.

[6] Irish Software Industry Statistics, 1991-2002,
http://www.nsd.ie/htm/ssii/stat.htm

[7] Humphrey, Watts S. A Discipline for Software

Engineering, Addison Wesley, 1995.
[8] Humphrey, Watts S. Introduction to the Team Software

Process, Addison Wesley, 2000.
[9] Coleman, G. and O’Connor, R. “Power to the

Programmer: Using Measurement to Optimise the
Software Process at the Individual Level”, Proc. 11th
ESCOM Conference, Munich, 2000.

[10] Corbin, J.M. & Strauss A. Basics of Qualitative
Research: Techniques and Procedures for Developing

Grounded Theory, Sage Publications, 1998.
[11] Beck, K. Extreme Programming Explained:

Embracing Change, Addison Wesley, 1999.
[12] Kruchten, P. The Rational Unified Process: An

Introduction, Addison Wesley, 2004.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

