

Core and periphery in Free/Libre and
Open Source software team communications

Kevin Crowston, Kangning Wei, Qing Li & James Howison

Syracuse University School of Information Studies
crowston@syr.edu, kwei@syr.edu, qli03@syr.edu, jhowison@syr.edu

Abstract

The concept of the core group of developers is impor-
tant and often discussed in empirical studies of FLOSS
projects. This paper examines the question, “how does
one empirically distinguish the core?” Being able to iden-
tify the core members of a FLOSS development project is
important because many of the processes necessary for
successful projects likely involve core members differently
than peripheral members, so analyses that mix the two
groups will likely yield invalid results.

We compare 3 analysis approaches to identify the
core: the named list of developers, a Bradford’s law
analysis that takes as the core the most frequent contribu-
tors and a social network analysis of the interaction pat-
tern that identifies the core in a core-and-periphery
structure. We apply these measures to the interactions
around bug fixing for 116 SourceForge projects. The 3
techniques identify different individuals as core members;
examination of which individuals are identified leads to
suggestions for refining the measures. All 3 measures
though suggest that the core of FLOSS projects is a small
fraction of the total number of contributors.

1. Introduction

The concept of a core group of developers is an impor-
tant one, often discussed in empirical studies of FLOSS
projects. This paper examines the question of how re-
searchers can empirically distinguish members of the core
group and provides some evidence regarding the size and
composition of the core group for a sample of FLOSS
projects.

Academic case studies of FLOSS projects [e.g., 4, 6, 7,
11-13] suggest that FLOSS development teams have a
hierarchical structure. For example, Mockus et al. [12]
studied the Apache httpd project and found that devel-
opment was quite centralized, with only about 15 devel-
opers contributing more than 80 percent of the code for
new functionality. Bug reporting, on the other hand, was
quite decentralized, with the top 15 reporters submitting
only 5 percent of problem reports in the Apache project.
They summarize this finding by hypothesizing that, “In
successful open source developments, a group larger by

an order of magnitude than the core will repair defects,
and a yet larger group (by another order of magnitude)
will report problems.” (p. 329). Moon and Sproull [13] in
a case study of the development of Linux similarly de-
scribe a highly skewed distribution of traffic on the Linux
mailing lists.

The suggested hierarchical or onion-like structure is
shown in Figure 1. At the center of the onion are the core
developers, who contribute most of the code and oversee
the design and evolution of the project. In the next ring
out are the co-developers who submit patches (e.g., bug
fixes), which are reviewed and checked in by core devel-
opers. Further out are the active users who do not contrib-
ute code but provide use cases and bug reports as well as
testing new releases. Further out still, and with a virtually
unknowable boundary, are the passive users of the soft-
ware who do not contribute to the project’s lists or fora. In
this paper, we focus on distinguishing the core developers
(the core) from co-developers and active users (grouped
together as the periphery); we do not consider passive
users.

Identifying the core group of developers is an impor-
tant question for empirical research for several reasons.
First, while the hypothesized team structure shown in
Figure 1 has a great deal of face validity, it has not yet
been fully tested on a range of projects. In part this is be-
cause it is not clear how to operationalize the intuitively
appealing notion of a core group. Second, being able to
identify the core members of a FLOSS development pro-
ject is important because many of the processes necessary
for successful projects (e.g., development of shared un-

Figure 1. Hierarchical model of FLOSS develop-
ment team structure.

2

derstandings of user needs or system architecture, conflict
resolution, leadership, etc.) likely involve core members
differently than peripheral members. Including all devel-
opers in an analysis without distinguishing their roles
would likely lead to equivocal results. Finally, being able
to separately count the core and peripheral developers
should provide some insight into the state of development
of the team in accordance with Mockus et al.’s [12] hy-
pothesis.

As well, our study of core members may be of more
general relevance. Prior research suggests that small
groups have a typical size. For example, James [9] re-
ported that action-taking groups in a variety of settings
averaged only about 5 to 7 members and observed free-
forming groups were even smaller. He argued that be-
cause of the cost of maintaining relationships with other
group members, free forming groups will have an average
size of only 3, with a range of 2–7. Because this limit is
due to information processing constraints, it is plausible
that groups interacting primarily with Computer Mediated
Communication might be able to support a higher level of
interaction and thus larger groups. Studies of distributed
teams, such as FLOSS development projects, will provide
evidence on this point.

Therefore, the research question addressed in this pa-
per is how to empirically identify the core members of
FLOSS teams. The secondary research question is to un-
derstand the size and composition of the core groups of a
population of projects and to see how these vary from
project to project. Our analysis will provide evidence for
the generalizability of the hypothesized core-and-
periphery structure.

2. Methods and data

We identified three approaches to identify the core
group, from simple to complex: self-report on project
home pages, level of contribution, and core-and-periphery
social network analysis.
• First, and most simply, the core may be defined as

those individuals who are officially named as develop-
ers on the project and the periphery all other contribu-
tors.

• Second, the core may be defined as those who con-
tribute the most to the project. Most projects demon-
strate a very skewed distribution of levels of
contribution: a few individuals contribute a lot while
most contribute only a little. Therefore, the core group
are the few members that contribute the most while the
others are the periphery.

• Finally, the core may be defined from the pattern of
interactions. According to Borgatti and Everett (1999),
a core-and-periphery network “entails a dense, cohe-
sive core and a sparse, unconnected periphery” (p.
375). Therefore, if this structure applies, team mem-
bers can be partitioned into two groups, with the core

defined as the tightly interconnected group and the pe-
riphery as the disconnected group.
If the three analysis approaches identify more-or-less

the same members as being members of the core, then
future research can use the simplest approach. On the
other hand, if the methods yield different answers, then it
will be necessary for researchers to pick the analysis
technique that is most appropriate for their research ques-
tion.

2.1. Data

To study the contribution of developers, we collected
demographic and interaction data from projects. The spe-
cific demographic data we collected were the lists of de-
velopers and their roles in projects. To measure
contributions, we considered analyzing code, developer
mailing lists and bug trackers. We found that code could
not be reliably attributed to particular authors due to dif-
ferences in the use of source code control systems in dif-
ferent projects. As well, in most projects, only listed
developers can check in code, so contributions from ac-
tive users are not visible. Finally, we wanted to compare
an analysis based on the level of contributions to one
based on interactions, which are not represented in code.

In comparing the possibility for analyzing interaction
data, we considered developer mailing lists and bug
trackers. In the end, we chose to analyze data from bug
trackers for both contributions and interactions. We chose
this data source for several reasons. First, bug fixing is a
collaborative task in which, as Raymond [14] paraphrases
Linus Torvalds, the people finding the bugs are different
from those that understand the bug and those that fix the
bug. (Indeed, this approach to bug fixing is the basis for
some claims of effectiveness made for the FLOSS devel-
opment approach.) As such, bug fixing provides a “mi-
crocosm of coordination problems” [5]. Second, we found
that we had data from more bug trackers about more pro-
jects. Finally, as mentioned above, Mockus et al. [12]
found that bug reporting involves the broadest range of
project participants. Thus the collaboration involved in
bug fixing produces rich data about interactions that in-
volve the entire community, the core and co-developers as
well as active users, and thus provides evidence regarding
the social structure of the entire membership of the devel-
opment teams. For these reasons, we based the analysis in
this paper on data from the project bug tracking systems.

Unlike Mockus et al. [12], we examined the entire in-
teraction around a bug report, not just the initial report.
Contribution and interaction data were obtained by exam-
ining the level and pattern of messages posted to the bug
trackers. In addition to tracking the status of bugs, bug-
tracking systems enable users to report, and developers to
discuss bugs (though projects vary in how they use these
systems). As shown in Figure 2, a bug report includes
basic information about the bug that can be followed up

3

with additional messages seeking or providing additional
information about the bug. We analyzed these follow-up
messages for evidence about the contribution of develop-
ers and the resulting social structure of the teams.

2.2. Sample of FLOSS projects

The sample of projects we analyzed was drawn from
projects hosted by SourceForge (http://www.sourceforge.
net/), a free1 Web-based system that provides a range of
tools to facilitate FLOSS development. At the time of our
data collection, SourceForge supported more than 50,000
FLOSS projects on a wide diversity of topics2. Clearly not
all of these projects were suitable for our study: many are
inactive, previous studies have suggested that many are in
fact individual projects [10], and some do not make bug
reports available. Therefore, we restricted our sample to
projects that listed more than 7 developers and had more
than 100 bugs in the bug tracking system at the time of
selection in April 2002. We identified only 140 projects
that met these criteria. Though it was not an explicit goal
of the sampling, most if not all of the projects selected are
likely to be successful, in that they have succeeded in
attracting developers and attention from users, as reflected
in the bug reports.

2.3. Data collection

To collect data, we developed programs to download
and parse the bug report pages for the selected projects.
Bug report pages were spidered from SourceForge in
April 2003. Unfortunately, between selection of projects
and data collection, some projects restricted access to bug
reports, so we were able to collect data for only 122 pro-
jects. Of these, a further 6 had few distinct posters to the
bug tracker, resulting in a sample of 116 projects for
analysis. The list of developers per project was obtained
from the OSSMole project [8].

Processing the SourceForge data revealed a problem
with missing data. Specifically, when a message is posted
by a non-logged-in user, the sender is listed as “nobody”.
These messages constituted an average of 15% of the
messages (as low as 0% and as high as 50% for a few
projects). We considered several alternative strategies for
handling this missing data and decided to recode the “no-
bodies” as a unique individual in each bug report (e.g.,
using “nobody686314” as the sender of all “nobody”
messages in bug report number 686314). This approach
retains interactions between individuals but at the cost of
introducing of fictitious characters. Table 1 lists examples

1 At least free ‘as in beer’: ironically, the SourceForge system

itself is now proprietary. Savannah was developed by the
Free Software Foundation’s GNU project from the last free
‘as in freedom’ version of SourceForge.

2 As of 15 June 2005, SourceForge claims 101,571 projects.

of the projects to give a sense of the sample. Those famil-
iar with FLOSS may recognize some of these projects,
which span a wide range of topics and programming lan-
guages.

Table 1. Examples of projects included in sample.

Project name Short description
Curl Command line tool and library for client-

side URL transfers.
gaim A GTK2-based instant messaging client.
netatalk A kernel-level implementation of the

AppleTalk Protocol Suite.
phpmyadmin Handles the basic administration of

MySQL over the WWW
squirrelmail A PHP4 Web-based email reader.
Tcl Tool Command Language

3. Analysis

In this section, we provide the details of the three dif-
ferent analyses we used to identify the core members of
FLOSS teams.

3.1. Formal roles

The first analysis relied on self-reported formal roles,
as shown in the list of developers from the project Web
pages. Unfortunately, the list of developers was collected
at a different time than the interaction data (October
2004). Since most projects grant developer status based
on a track record of contributions, we might identify indi-
viduals as core based on their contributions before they
were formally recognized as such. Having a gap between
the two data collection points slightly increases the
chance of this mismatch between the analyses. OSSMole
also includes information about the project administrators
and specific roles, but we did not use these for this analy-
sis.

3.2. Distribution of contributions

The second analysis is based on the numbers of post-
ings from different developers. As mentioned above, the
distribution of numbers of postings is heavily skewed: a
few developers post many messages, while most post only
a few. We based our analysis on Bradford’s Law of Scat-
ter [2]. Working in the area of bibliometrics, Bradford [2]
found that when compiling a bibliography on a particular
subject, a few journals would have many articles on the
topic, but a few articles could be found in many journals.
Empirically, the count of articles per journal followed a
characteristic skewed distribution, namely, the Bradford
or Zipf distribution. The ubiquity of this distribution has
led Brookes [3] to propose it as a universal law of human

4

behaviour describing any situation where success leads to
further success, prompting our application of the law to
this situation. Based on the mathematical properties of
this distribution, Bradford defined the core set of journals
on a topic as those that contribute 1/3 of the total number
of articles. By analogy, we define the core group as the
members that contribute 1/3 of the total number of post-
ing to the discussion.

For this analysis, we first determined the frequency of
postings for each team member. In the bug tracker sys-
tems, contributions to the system (bug reports and follow
up messages) are identified by a unique user ID, which
we used to identify members. It is possible (and there is
no way of knowing) that a single individual could utilize
multiple IDs or that multiple individuals could share one.
However, we believe it is unlikely that many do either
due to the logistics of maintaining multiple accounts and
the lack of incentive to do so. Indeed, because reputation
accrues to an ID, we believe that most individuals will
choose to maintain a single ID. We then listed members
in descending order of contributions. We take as the core
group the team members who contributed the most and
whose total contributions equal (or exceed) 1/3 of the
total (though as noted below, because of the extreme
skewness of the contributions, we also examined the
group that contributed 2/3 or more of the postings). In the

event that two members are tied in frequency, they are
placed together in the same group.

3.3. Core and periphery

The final analysis was based on a core-and-periphery
analysis of the project social network (SNA). The first
step in this analysis was to compute the social networks
for each project. We counted each follow-up message in
the bug tracking system as an interaction from the sender
of the message to the preceding sender (or to the original
bug reporter). Bug reports that had no follow-up messages
provided no interaction data. It appeared from reading a
sample of bug reports that follow-up messages were
sometimes directed at previous messages and sometimes
to the original poster. Unfortunately, the true destination
is difficult to determine mechanically. We chose to code
interactions as responses to the previous sender to spread
out the interactions rather than focusing them on the bug
poster. The arrows in Figure 2 show how two interactions
were coded for this fragment of a bug report and mes-
sages. Note that follow-up messages are displayed in re-
verse chronological order in the system, so the response to
the original report is actually the bottom message (not
shown), the top message responds to the next, etc.

The interaction data from the bug reports form a net-
work or graph, and were represented as a sociomatrix [15,
p. 80], one matrix per project. A sociomatrix has a row
and a column for each team member, and the cells of the
matrix count the number of interactions from one member
to another. If the interactions are directional, the resulting
sociomatrices are asymmetric; if individuals can interact
with themselves, the diagonals of the matrix are meaning-
ful. Both conditions applied to our data.

The core and periphery analysis finds a partitioning of
the group into core and peripheral members that most
closely resembles the idealized core-and-periphery pattern
described above. We carried out the analysis using the
UCInet software package, which uses genetic algorithm to
find the core/periphery split. The maximum number of
iterations and population size were set to 5000 and 1000.
The algorithm used in UCInet is equation 2 and 4 from
Borgatti and Everett [1].

4. Results

We ran the analyses for the 116 SourceForge projects
in our sample. Our first research question was to compare
the results of the three different analysis approaches. As
an example of the results, we will present in some detail
the results for the Gaim project, one of the largest projects
in the sample in the number of participants (1521). For
this project, the identification of core group by the various
methods, as shown in Table 2, shows some interesting
differences. Gaim had 11 registered developers at the time
of data collection, while the SNA core-and-periphery

Figure 2: Example SourceForge bug report and follow

up messages showing coding of interactions
(http://sourceforge.net/tracker/index.php?func=detail

&aid=686314&group_id=235&atid=100235

5

analysis found only 3 core members and the Bradford’s
law analysis, two developers as the core (these two to-
gether contributed more than 1/3 of the total number of
messages) and a further 42 in the next group. Table 3 pre-
sents a cross-tabulation of these categorizations to show
the level of agreement among them. To represent the 3-
dimensions of the 2x2x3 comparison, the table shows
developer status down, Bradford law groups across and
SNA groups within each row. Table 3 shows that only
one member is identified as in the core in all three analy-
ses (the upper left-most cell). On the other hand, 1473 of
the participants were grouped in the periphery by all three
analyses (the lower right-most cell).

We used irr library from the R project statistical sys-
tem (http://www.r-project.org/) to analyze the level of
agreement between these classifications. Various statistics
have been proposed to assess agreement of categorical
classifications, with a score of 1.0 indicating perfect
agreement and –1.0 perfect disagreement. One such statis-
tic is the Finn coefficient; the Finn coefficient for the
level of agreement between the three ratings (grouping
together Bradford’s law groups 2 and 3 as peripheral) was
0.989 (the overall level of agreement across all projects
was 0.898). The high levels of agreement reflect the large
number of peripheral members that are classified simi-
larly by all three approaches. Another commonly used
statistic is Cohen’s kappa, which is simply the percent
agreement corrected to take account the level of agree-
ment expected by chance (so a zero score means just
chance agreement). The classic kappa is defined for pairs
of comparisons. Using this statistic, the measured level of

agreement is lower: 0.140 between the developer list and
the SNA analysis, 0.306 between the developer list and
the Bradford law groups, and 0.399 between the SNA
analysis and the Bradford’s law groups, for an average
kappa of 0.282. The levels of agreement between these
ratings across all projects were 0.220, 0.208 and 0.464
respectively, for an average of 0.297. The kappa for the
agreement between the developer list and the Bradford’s
law groups was higher when the Bradford’s law groups 1
and 2 were considered as the core: 0.319 for gaim and
0.394 across all projects. These scores are lower than
would be acceptable for qualitative coding (the usual tar-
get is 0.8) but all significantly greater than expected by
chance.

To understand the differences between the classifica-
tions, we examined which individuals were identified as
being in the core by each approach. Table 4 shows the
core individuals as well as the next four highest contribu-
tors, including both project administrators. Closer exami-
nation of these results gives us some insight into the
working of these different analysis approaches.
• lschiere was identified as a Group 1 member by

the Bradford law analysis due to the high number of
postings, but as a peripheral member in
Core/Periphery. His role as Support Manager requires
that he communicate frequently and with many differ-
ent users, but in the data set we analyzed, he rarely
communicated to the members of the SNA core
(warmenhoven, weeve and travissaling), re-
sulting in the peripheral classification.

• warmenhoven was identified as a Group 1 member
by both the SNA and Bradford’s law analysis. He was
clearly an active developer in the project, posted a lot
of messages and was identified as the center of core
group by all of the methods.

• seanegan, hermanator, thekingant and
robflynn were identified as Group 2 (peripheral) by
both the SNA and Bradford’s law analyses, despite
their formal roles in the project. If we consider as the
core Bradford’s groups 1 and 2, then their formal and
communication roles are aligned, but then the core

Table 3. Comparison of counts of core/periphery categorizations
for three methods for the Gaim project.

 Bradford’s law groups
 SNA groups

1 2 3
Subtotal

Core 1 0 0 Developers Periphery 1 7 2 11

Core 0 0 2 Non-developers Periphery 0 35 1473 1510

Subtotal 2 42 1477 1521

Table 2. Counts of core/peripheral members for
three methods for the Gaim project.

Developer status SNA groups
Bradford’s
law groups

Developer 11 Core 3 1st 2

2nd 42 Non-
developer 1510 Periphery 1518

3rd 1477

6

would include a total of 44 individuals, most of whom
have no formal role. These results may indicate that
these developers focused more on new development
than on responding to bug reports, as these contribu-
tions are not reflected in our data set.

• The most surprising result is the identification of
weeve and travissaling as core developers by
the SNA analysis. Both are users who posted only a
few messages, so they were in Group 3 in the Brad-
ford’s law analysis. However, they had communicated
with warmenhoven regarding some bugs, making
their connections to him dense, hence their inclusion
with him in the core.
Given these results, it seems clear that the formal list

of developers is not an accurate representation of contri-
bution to the teams, at least as regards interactions around
bug fixing. If developers specialize at all, then the list
would likely be misleading for other parts of the process
as well. Therefore, future research should make an inde-
pendent attempt to empirically assess the size of the core
group. The Bradford’s law analysis is quite simple to per-
form and so may be the most useful for this purpose.

Our second research question was about the size of the

core groups. Figure 3 compares the distribution of core
groups sizes as computed by the different analysis tech-
niques. The final two plots are for the core defined as
Bradford’s law group 1 only and by Bradford’s law
groups 1 and 2. The number of listed developers is lower
than the cut-off of 7 for some projects because not all
listed developers contributed to the bug tracking discus-
sions. Nevertheless, this approach generally produced the
largest count for the core (median 7.5, or about 10% of
the total number of participants on average). The Brad-
ford’s law analysis using only group 1 as the core most
often found only one core member (about 1.5% of the
total on average) and never more than 4. This result dem-
onstrates the extreme inequality in the level of contribu-
tions. (Our results differ from Mockus et al.’s [12] finding
that bug reports are less centralized because they exam-
ined only the authorship of the initial bug report and not
the follow-up messages.) The results for the SNA core-
and-periphery analysis and the Bradford’s law analysis
(using groups 1 and 2 as the core) had comparable and
intermediate results with a median of 3 developers in the
core (about 5% of the total), though the results for the
Bradford’s law analysis were more extreme.

Interestingly, these final numbers are quite compatible
with James’s [9] observations of the size of free-forming
groups, suggesting that CMC does not alter the funda-
mental communications limits that are the bases for the
group size. All three analysis techniques provide further
support for the impression that FLOSS teams are highly
centralized.

5. Conclusions

Consideration of the difference among the three analy-
sis techniques suggests several possibilities for further
refinement of the analysis. First, rather than using Brad-
ford’s level of 1/3 as the cutoff for the core group, it may
be that a different level will provide a more useful defini-
tion of the core group, particularly given the high level of
concentration observed.

Second, to avoid apparent anomalies such as weeve’s
and travissaling’s membership in the core group,

Figure 3. Box plots showing distribution of core
group sizes as calculated by the three different

analysis methods. Log scale. N=116.

Table 4. Comparison of classification of core individuals.

ID
Messages

posted
Developer Role

SNA
group

Bradford’s
law group

lschiere 935 Yes Support Manager Periph 1
warmenhoven 839 Yes Developer Core 1
seanegan 444 Yes (Admin) Developer Periph 2
hermanator 259 Yes Developer Periph 2
thekingant 171 Yes Developer Periph 2
robflynn 112 Yes (Admin) Project Manager Periph 2
weeve 5 No (User) Core 3
travissaling 1 No (User) Core 3

7

the interaction matrix could be dichotomized with a cut-
off greater than 1, thus admitting individuals to the core
only if their level of interactions is both dense and higher
than the cut-off.

Third, the bug-tracker data does not include contribu-
tions from developers who work on other aspects of the
project, painting an incomplete picture of the project.
Therefore, further analyses should include data from other
kinds of interactions. Although there are significant prob-
lems with using such data (e.g., comparability among
projects with different development practices, difficulties
in identifying the target of interactions for an email mes-
sage sent to a list, questions about how to weight interac-
tions in different fora), using such data would pick up
more of the intensive interactions among developers that
characterize the core.

Fourth, the analysis should be extended to projects
other than those on SourceForge. Though SourceForge
provides a very convenient sample with extensive and
comparable data on projects, our findings would be more
clearly generalizable if we had data from other projects.
At least, the sample should be redrawn to include more
recently started projects.

Fifth, it may be worth considering how to develop a
continuous measure of “coreness”, rather than relying on
a dichotomous definition. For example, to test the struc-
ture shown in Figure 1 requires at least 3 levels (core, co-
developer and active user).

Finally, the analysis in this paper needs to be con-
nected to work on other aspects of FLOSS teams to pro-
vide a fuller picture of the teams and to assess the
importance of team structure for team performance. For
example, a comparison of more and less effective FLOSS
projects would reveal the relationship of structure to team
performance. Analysis of particular development prac-
tices could compare core to peripheral members or focus
in particular on the interactions of core team members.

6. References

[1] S. Borgatti and M. Everett, "Models of
core/periphery structures," Social Networks, vol. 21,
pp. 375–395, 1999.

[2] S. C. Bradford, Documentation. Washington, DC:
Public Affairs Press, 1950.

[3] B. C. Brookes, "Theory of the Bradford Law," Jour-
nal of Documentation, vol. 33, pp. 189–209, 1977.

[4] A. Cox, "Cathedrals, Bazaars and the Town Council,"
1998.

[5] K. Crowston, "A coordination theory approach to
organizational process design," Organization Sci-
ence, vol. 8, pp. 157–175, 1997.

[6] K. Crowston and J. Howison, "Hierarchy and Cen-
tralization in Free and Open Source Software team
communications," Knowledge, Technology & Policy,
In press.

[7] C. Gacek and B. Arief, "The many meanings of Open
Source," IEEE Software, vol. 21, pp. 34–40, 2004.

[8] J. Howison, M. S. Conklin, and K. Crowston, "OSS-
mole: A collaborative repository for FLOSS research
data and analyses," presented at 1st International
Conference on Open Source Software, Genova, Italy,
2005.

[9] J. James, "A preliminary study of the size determi-
nant in small group interaction," American Sociologi-
cal Review, vol. 16, pp. 474–477, 1952.

[10] S. Krishnamurthy, "Cave or Community? An Empiri-
cal Examination of 100 Mature Open Source Pro-
jects," University of Washington, Bothell, Bothell,
WA May 2002.

[11] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "A
case study of Open Source Software development:
The Apache server," in Proceedings of ICSE’2000,
2000, pp. 11 pages.

[12] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two
Case Studies Of Open Source Software Develop-
ment: Apache And Mozilla," ACM Transactions on
Software Engineering and Methodology, vol. 11, pp.
309–346, 2002.

[13] J. Y. Moon and L. Sproull, "Essence of distributed
work: The case of Linux kernel," First Monday, vol.
5, 2000.

[14] E. S. Raymond, "The cathedral and the bazaar," First
Monday, vol. 3, 1998.

[15] S. Wasserman and K. Frost, Social Network Analysis:
Methods and Applications. New York: Cambridge,
1994.

