
Design and Characterization of a Hardware Encryption

Management Unit for Secure Computing Platforms

Anthony J. Mahar

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Peter M. Athanas, Chair

Mark T. Jones

Cameron D. Patterson

June 3, 2005

Blacksburg, Virginia

Keywords: secure computing, encryption, cryptography, secure processors

Copyright 2005, Anthony J. Mahar



Design and Characterization of a Hardware Encryption Management Unit

for Secure Computing Platforms

Anthony J. Mahar

(ABSTRACT)

Software protection is increasingly necessary for a number of applications, ranging from

commercial systems and digital content distributors, to military systems exposed in the field

of operations. As computing devices become more pervasive, and software more complex,

insufficiencies with current software protection mechanisms have arisen. Software–only and

data–only protection systems have resulted in broken systems that are vulnerable to loss of

software confidentiality and integrity.

A growing number of researchers have suggested that hardware encryption mechanisms

be employed to enforce software protection. Although there are several competing architec-

tures, few offer the necessary protection while remaining compatible with modern computing

systems and models. The Virginia Tech Secure Software Platform is the first architecture to

achieve both increased protection and usability.

This thesis presents the design and implementation of a fast, flexible Encryption Manage-

ment Unit (EMU) for Virginia Tech Secure Software and compatible platforms. The design

is capable of providing decryption of program instructions residing in page–sized sections of

memory, without modification to the core processor. The effect of the EMU is modeled with

varying application types and system loads. Lastly, a benchmark designed to measure actual

performance was created to measure the actual performance of the EMU and validate the

models.



Acknowledgments

I would like to thank my committee chair, adviser and instructor Dr. Peter Athanas. I am

extremely grateful for the mutual trust and respect that has developed during my time at

Virginia Tech. His patience and continual review of this work has been instrumental in the

development of this thesis.

I would like to thank Dr. Mark Jones as an adviser and committee member. His advice

on academia and matters of life have proved extremely enlightening.

I would like to thank Dr. Cameron Patterson for serving as a committee member. I have

learned much from Dr. Patterson on personal happiness in and outside of academia.

All three of these individuals have earned so much respect and admiration for the support

and confidence they have offered over the years. Each of their own personal career paths

and successes has provided much inspiration and demonstrates such exciting opportunities.

It is an honor and pleasure to have worked with each of them.

Additionally, I would like to thank the members of the Virginia Tech Secure Software

Project research group: Justin Stroud, Benjamin Muzal, and especially Joshua Edmison. It is

a rare opportunity to work in a team with such incredible cohesion, individual responsibility,

and communication.

I would like to thank Luna Innovations, especially Jonathan Graf and Barry Polakowski,

for providing the joint research funding and objectives for the Virginia Tech Secure Software

Project.

iii



I would like to thank the old crew from the Virginia Tech Configurable Computing Lab,

who have made my time at Virginia Tech one of the most enjoyable and memorable. These

true friends include Stephen Craven, David Lehn, Neil Steiner, Alex Poetter, and Jesse

Hunter.

I would like to thank Barry Mapen for being a wonderful friend and mentor, Dr. Ian

Greenshields for encouraging graduate studies and providing superb insight into academia,

and Roger Leege for instilling an enjoyment of engineering and research disciplines.

Lastly, and most importantly, I would like to thank my parents, Christine and Joseph

Mahar. Their unwavering support, love, and interest in my academic career has provided

a continued source of strength and inspiration that I am eternally grateful for. I certainly

would not have been successful without them.

iv



Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Secure Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Software Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Virginia Tech Secure Software Architecture . . . . . . . . . . . . . . . . . . . 10

2.3.1 Paged Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Primary Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Lifetime of a Secure Application . . . . . . . . . . . . . . . . . . . . . 15

v



2.3.4 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Related Memory Modification Units . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 IBM CodePack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 XOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Design 25

3.1 Encryption Management Unit Requirements . . . . . . . . . . . . . . . . . . 25

3.1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Functional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Operational Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.4 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Encryption Management Unit Specification . . . . . . . . . . . . . . . . . . . 28

3.2.1 Functional Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Primary Functional Units . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Asynchronous Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Interface Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Bus Modifier / Bridge Unit . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Table Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Control Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 OPB Control Interface Unit . . . . . . . . . . . . . . . . . . . . . . . 57

vi



4 Modeling 58

4.1 Latency Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Modeling Slow Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Benchmarking 62

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 iBench Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 iBench Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Results 70

6.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Slow Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Future Directions 78

7.1 EMU Design Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 EMU Performance Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 iBench Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Conclusion 83

Bibliography 86

A Page Table Control Registers 92

A.1 Page Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Key Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



A.3 Page Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Ancillary Data 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.5 Ancillary Data 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.6 Ancillary Data 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.7 Ancillary Data 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B Key Table Control Registers 99

B.1 Key Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.2 Key Word 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.3 Key Word 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.4 Key Word 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.5 Key Word 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C Benchmark Results 104

C.1 LMBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.2 iBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2.1 Complete Latency Measurement . . . . . . . . . . . . . . . . . . . . . 107

C.2.2 EMU Memory Fetch Latency . . . . . . . . . . . . . . . . . . . . . . 110

C.2.3 EMU Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 113

D Source Listings 116

D.1 Encryption Management Unit HDL . . . . . . . . . . . . . . . . . . . . . . . 116

D.1.1 Bridge.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



D.1.2 Bridge CPU Interface.vhd . . . . . . . . . . . . . . . . . . . . . . . . 122

D.1.3 Bridge Memory Interface.vhd . . . . . . . . . . . . . . . . . . . . . . 125

D.1.4 Bridge BlockModeDecrypt.vhd . . . . . . . . . . . . . . . . . . . . . 128

D.1.5 Bridge CounterModeDecrypt.vhd . . . . . . . . . . . . . . . . . . . . 136

D.1.6 Tables.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

D.1.7 PageTableControl.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.1.8 KeyTableControl.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.1.9 OPB ControlInterface.vhd . . . . . . . . . . . . . . . . . . . . . . . . 160

D.2 iBench Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.2.1 Compile and Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.2.2 walk.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.2.3 append.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.2.4 time conv.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.2.5 makescripts.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ix



List of Figures

2.1 Single Processor Secure Software Architecture . . . . . . . . . . . . . . . . . 12

2.2 IBM CodePack Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 EMU Primary Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 EMU Primary Clock Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Full Synchronization Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Base Asynchronous Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Protocol: Table Search, Encrypted Return . . . . . . . . . . . . . . . . . . . 40

3.6 Protocol: Table Search, Unencrypted Return . . . . . . . . . . . . . . . . . . 41

3.7 Control Interface Protocol: Read . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Control Interface Protocol: Write . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Bridge Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Block Mode Decryption Finite State Machine . . . . . . . . . . . . . . . . . 48

3.11 Block Mode Decryption Module . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Counter Mode Decryption Module . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Counter Mode Decryption Finite State Machine . . . . . . . . . . . . . . . . 52

x



3.14 Table Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.15 Page Table Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.16 Key Table Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 LMBench Latency Benchmark: Data memory subsystem . . . . . . . . . . . 63

5.2 iBench Latency Benchmark: Instruction memory subsystem . . . . . . . . . 67

6.1 Complete iBench latency measurements . . . . . . . . . . . . . . . . . . . . . 72

6.2 iBench memory fetch latency measurements . . . . . . . . . . . . . . . . . . 73

6.3 Slow down over various loads and profiles . . . . . . . . . . . . . . . . . . . . 76

A.1 Page Table Control: Page Base Address Register . . . . . . . . . . . . . . . . 92

A.2 Page Table Control: Key Index Register . . . . . . . . . . . . . . . . . . . . 93

A.3 Page Table Control: Page Index Register . . . . . . . . . . . . . . . . . . . . 94

A.4 Page Table Control: Ancillary Data 0 Register . . . . . . . . . . . . . . . . . 95

A.5 Page Table Control: Ancillary Data 1 Register . . . . . . . . . . . . . . . . . 96

A.6 Page Table Control: Ancillary Data 2 Register . . . . . . . . . . . . . . . . . 97

A.7 Page Table Control: Ancillary Data 3 Register . . . . . . . . . . . . . . . . . 98

B.1 Key Table Control: Key Index Register . . . . . . . . . . . . . . . . . . . . . 99

B.2 Key Table Control: Key Word 0 Register . . . . . . . . . . . . . . . . . . . . 100

B.3 Key Table Control: Key Word 1 Register . . . . . . . . . . . . . . . . . . . . 101

B.4 Key Table Control: Key Word 2 Register . . . . . . . . . . . . . . . . . . . . 102

B.5 Key Table Control: Key Word 3 Register . . . . . . . . . . . . . . . . . . . . 103

xi



List of Tables

3.1 Page Table Control Unit Registers . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Key Table Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Used PLB Instruction–Side Bus Signals . . . . . . . . . . . . . . . . . . . . . 39

3.4 Page Table Control Protocol Data Signals . . . . . . . . . . . . . . . . . . . 41

3.5 Key Table Control Protocol Data Signals . . . . . . . . . . . . . . . . . . . . 42

5.1 Memory Latency by Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Page Base Address Register Bit Definitions . . . . . . . . . . . . . . . . . . . 92

A.2 Key Index Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Page Index Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Ancillary Data 0 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . 95

A.5 Ancillary Data 1 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . 96

A.6 Ancillary Data 2 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . 97

A.7 Ancillary Data 3 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . 98

B.1 Key Index Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . . 99

xii



B.2 Key Word 0 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . 100

B.3 Key Word 1 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . 101

B.4 Key Word 2 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . 102

B.5 Key Word 3 Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . 103

C.1 Base Profile Memory Fetch Latency . . . . . . . . . . . . . . . . . . . . . . . 110

C.2 Block Mode Profile Memory Fetch Latency . . . . . . . . . . . . . . . . . . . 111

C.3 Counter Mode Profile Memory Fetch Latency . . . . . . . . . . . . . . . . . 112

C.4 Base Profile Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.5 Block Mode Profile Execution Time . . . . . . . . . . . . . . . . . . . . . . . 114

C.6 Counter Mode Profile Execution Time . . . . . . . . . . . . . . . . . . . . . 115

xiii



Chapter 1

Introduction

There are a number of key motivations for conducting this line of research. Reasons include

opportunities to advance the state of the art in the field, to conduct research with a successful

platform, and to solve deficiencies within the field. These motivations directly support the

contributions presented in this work.

1.1 Motivations

The primary reason for conducting this research is to contribute to the Virginia Tech Con-

figurable Computing Lab’s Secure Software Project [1]. Software protection is currently an

extremely active research area with proposed solutions coming from leaders in the computer

industry and academic institutions. This research involves the development of methods for

maintaining the confidentiality and integrity of software during distribution, in local storage

and memories, and during execution.

While there exist other proposed architectures in this research, however most either lack

complete protection protection or require mechanisms that do not integrate well in modern

platforms. These systems often include required trust in parts of software, or requiring

1



Anthony J. Mahar Chapter 1. Introduction 2

modifications, sometimes fundamental, to the operating system and processor. The inherited

trust model used by many software protection systems [2] has already been demonstrated [3]

as readily exploitable. When a trusted module is compromised it can become a staging point

for further attacks.

Systems relying less on an inherited trust models [4] [5] typically require fundamental

changes to the way software operates and how the processor and operating system interact

with the software. This includes running software inside individual virtual machines, ad-

dition of secure instructions and registers, or lack of shared libraries, shared memory, and

standard inter–process communication mechanisms. These systems may provide software

protection, however they cannot easily incorporate into modern computer systems due to

the fundamental changes and incompatibilities with current software models.

The Virginia Tech Secure Software architecture is the first platform to provide increased

software protection while maintaining standard development and computing models. This

architecture avoids using special instructions or special operations to interact with shared

memory, libraries, or other applications. This permits the developer to maintain their com-

piler tool flow. To increase protection, selected groups of instructions in the executable are

tagged and encrypted, and then distributed to systems that will run the application. As

protected instructions remain encrypted, the software can be distributed over standard and

potentially insecure channels. When the application is executed on a Secure Software archi-

tecture, partial credentials stored in the executable are merged with a set of user supplied

credentials securely on the chip, producing a set of one or more decryption keys.

The Secure Software architecture enforces an execute–only policy on protected instruc-

tions. This is achieved in several ways, depending on the architecture configuration. In

some cases, only the instruction–side bus interface has a decryption unit, in other instances,

when there is also a data–side decryption unit, the system can forces the use of different

keys for each side. Without a corresponding data–side decryption unit and key set, the CPU

cannot directly read or write protected instructions. This secure support is achieved without



Anthony J. Mahar Chapter 1. Introduction 3

modification to the processor core.

With the VT Secure Software architecture, trust is not required of the operating system

or any other software module. Although the operating system (OS) associates groups of

instructions, in the form of memory pages, with a key, it is only aware of a pointer to a key

in a hardware key table, and can never access the keys under any circumstance. To establish

this relationship between groups of instructions and key pointers, the system extends the

memory page handling mechanisms already used in modern operating systems.

The second motivation for this work stems from additional deficiencies in the secure com-

puting field of research. From the existing set of secure architectures, only a few attempt to

model the performance effect of their protection mechanisms. When modeling is provided,

there is not sufficient verification of the model, which is often due to lacking an actual im-

plementation to verify with. Application–based benchmarks are performed in architectural

simulators using assumed latencies of secure extensions. These simulations, however, do not

properly reflect true latencies that are often discovered only during implementation. Ad-

ditionally, these simulated benchmarks fail to represent certain non–deterministic processor

behavior, or the variability found within modern multi–tasking operating systems.

The third motivation results from the necessity to properly benchmark and measure laten-

cies associated with the instruction–side interface of processors. There are many benchmarks

available, including benchmarks for parallel computing, operating system characteristics,

disk I/O, memory bandwidth, memory latencies, and more. Memory latency benchmarks are

the most important benchmark when characterizing software protection platforms. The soft-

ware protection extensions can add delay when fetching instructions from memory, due to the

cryptographic process. In the present implementation of the Secure Software Platform, pro-

tections are afforded primarily to instructions, therefore a benchmark is required to correctly

measure the latency of memory fetch on the instruction–side bus. As an instruction–side

benchmark does not exist either commercially or in the public domain, one such benchmark

had to be developed.



Anthony J. Mahar Chapter 1. Introduction 4

1.2 Contributions

Within the Virginia Tech Secure Software Project there are several core components of re-

search, each contributing to the increase of protected software execution. These research

components include hardware encryption management, secure key management, operating

system extensions, formal methods of security validation, and integration with parallel com-

puting environments. The primary contribution of this work is the design and implemen-

tation of an Encryption Management Unit, or EMU, to support the execution of protected

instructions.

During the development of the EMU, considerable effort was given to design, employ-

ing several important software and hardware engineering techniques. The goals in using

these techniques were to focus on the overall design problem, while avoiding implementation

details. A cohesive set of modules was created to permit reuse of the EMU and its inter-

nal modules, and to remain adaptable to continual changes in EMU requirements. This is

necessary as the overall Secure Software architecture improves and develops. When the high–

level design was complete, implementation of the EMU required that latency be reasonably

minimized given the constraints on area and time of the prototype.

The second contribution of this work is modeling the behavior of the EMU within a

standard multi–tasking platform. Mathematical models were derived to determine the effect

on performance of the EMU under various decryption algorithms and modes. These models

also account for variations in application type and operating system loads in a multi–tasking

system.

To verify the accuracy of these models, a synthetic benchmark, called iBench, was created

for measuring instruction–side bus memory latencies was researched, created, and verified

for accuracy. With the validity of iBench established, the benchmark was used to directly

evaluate the VT Secure Software platform under several system profiles. The results were

also used in verification of the mathematical models previously derived.



Anthony J. Mahar Chapter 1. Introduction 5

1.3 Implementation Platform

The hardware platform used for implementation was a Xilinx Virtex–II Pro [6] Field Pro-

grammable Gate Array (FPGA). The Virtex–II Pro contains an IBM PowerPC 405 embed-

ded processor [7] surrounded by reconfigurable logic. The FPGA is mounted on a Xilinx

ML–310 [8] embedded development board, which contains a representative set of memory

types and peripherals found on modern computers.

These features provide a comprehensive hardware/software platform running with a com-

plete Linux operating system. The reconfigurable fabric of the FPGA allows the instantiation

of the EMU and other components on the same physical chip of the the processor. The Xilinx

Embedded Development Kit [9] (EDK) is a design tool that provides high level management

of hardware component cores instantiated in the FPGA. With this tool, cores are easily

added, removed, parametrized, and attached to standard bus structures within the system,

creating a configurable system–on–chip (SoC). These features allow the rapid integration of

VT Secure Software Project hardware extensions into the embedded SoC design.

1.4 Thesis Organization

This thesis is organized in the following manner. Chapter 2 presents background information

on the secure software field of research, the Virginia Tech Secure Software Project, and

related work. Chapter 3 details the design of the Encryption Management Unit and its

interaction within the system. Chapter 4 provides mathematical models to determine the

effect of the EMU with respect to multi–tasking environments. Chapter 5 describes iBench,

the benchmark created to measure latency of the EMU and memory subsystem. Chapter

6 provides performance results of the EMU under several platform configurations. Chapter

7 discusses future directions of this work. Finally, Chapter 8 concludes this thesis with a

summary of the contributions of this work.



Chapter 2

Background

This section provides a background required to provide proper context for the work presented

in this thesis. Important areas include the history of secure computing, backgrounds on

different types of software threats, systems with functional similarities to the EMU, and

methods for benchmarking secure software systems.

2.1 Secure Computing

Security has maintained an important role in software since the beginning of digital comput-

ing. Computers are commonly used to perform operations on sensitive data where the data

and the computational instructions must be protected. Initially, digital computing devices

operating on sensitive information were physically isolated, and protection required physical

security. These devices were operated by personnel with appropriate authorization, resulting

in an implicit line of trust between secure software and authorized user. However, as com-

puting devices became more pervasive and interconnected, the need for secure computing in

insecure locations and without trusted users became necessary.

Initial attempts [10] into software protection produced processors augmented with various

6



Anthony J. Mahar Chapter 2. Background 7

protection mechanisms. Features included specialized instructions for cryptographic acceler-

ation, encryption of instructions and data in external memory, physical package anti–tamper

mechanisms, and external memory address obfuscation. At the time, it was thought that

these processors could run a single application securely, providing encryption and obfuscation

for any instruction or data placed into external memory. Only recently has other research

shown [11] these protections were inadequate.

The fundamental task of a processor is to execute instructions. With the secure crypto–

processor, instructions are decrypted as they are retrieved from memory and then executed.

Even if instructions reside as encrypted in external memory, it is possible to randomly alter

the contents of memory and observe the system reaction to executing the decrypted random

value. Starting with the processor’s boot instruction, an attacker can guess possibilities for

encrypted instructions and place them at that initial boot location. If there is an observable

effect, such as access to memory mapped I/O, the guesses can be refined until a complete

instruction with a desired effect is determined. Iterating for several instructions allow a small

encrypted program to be constructed by an attacker, which can then be used as a staging

platform to access protected memory from within the processor.

A typical consumer of secure processors at the time, and one that highlights a common

scenario in the era, were financial institutions. Remote computing nodes such as bank

terminals and automated teller machines were located outside physically protected domains,

and were potentially exposed to attacks by adversaries in possession of the devices. These

machines did not need much processing power, but instead required extreme integrity and

confidentiality of software instructions and data. As software distribution and installation

was considered secure, and the processor ran a single dedicated program, attacks were limited

to software in memory and memory buses. The intent of adversaries included modification

of program data to alter transactions, or snooping a processor’s buses for account theft.

Software protection from these threats required software confidentiality and integrity of

program data and instructions when in memory outside the processor core.



Anthony J. Mahar Chapter 2. Background 8

Over the past decade there has been a growing push towards enabling secure computing

in modern multi–tasking platforms. There are many reasons for this, such as the growth

of software piracy [12] [13], protection of digital media in new content distribution markets,

protection of intellectual property of proprietary algorithms, and more. Simply upgrading

processor architectures and cryptographic macros from the first generation of secure proces-

sors does not provide a complete solution required of securing modern computing models.

Encrypting all external memory with the same encryption key still leaves the system vulnera-

ble to internal threats from other malicious software or faulty operating systems. Developers

could not rely only on a specific set of trusted software to be running. Instead, there were

many applications running concurrently, and many without user or developer trust.

Modern computing platforms are capable of running multiple applications concurrently.

This is possible through features such as virtual memory and supervisory operating systems.

Security had to be handled in a manner that would allow one application to be protected

from external threats in addition to other software running on the processor, operating

system or otherwise. This required that secure extensions to a multi–tasking platform must

provide security mechanisms to isolate one secure application from any other application or

operating system not sharing the same set of access rights.

One approach to solving this problem was through various forms of obfuscation. Obfus-

cation relies on the ability to confuse an adversary attempting to gather information about

software operations. Techniques included code obfuscation, where program instruction exe-

cution flows and data formats are mangled, and bus protocols that would attempt to hide

the execution flow or data access patterns of external memory. While both were easy to

implement and did not impact performance much, these approaches were either rejected [14]

on provable of insecurity, or quickly broken [3].

A number of secure multi–tasking architectures using hardware cryptographic protections

were developed from the realization that these previous mechanisms were insufficient. Each

one differed in their level of use in trusted software components, their method of hardware



Anthony J. Mahar Chapter 2. Background 9

protection, and what protections were offered. The protections for software reduced into two

primary classifications: software confidentiality and software integrity. Some architectures

also define data confidentiality and integrity as part of software protection. [15] further dis-

cusses the area of research, the different secure mechanisms, and their security implications.

Although these architectures provide software protection through various mechanisms,

another important metric for success is the difficulty of integration into actual hardware–

software architectures. Some architectures, such as [16] and [17], require modification of

the core processing unit with additional instructions and special registers. While the goals

of these architectures offer state of the art capabilities, they are difficult to prototype and

to implement; commercial off the shelf (COTS) processor cores are not easily be used with

these systems. Furthermore, mechanisms for common abilities such as inter–process com-

munication and shared memory are not sufficiently addressed.

At the time of this work, only two architectures are known to have demonstrated success-

ful implementation. These include the Virginia Tech Configurable Computing Laboratory

Secure Software architecture [1] and the Trusted Computing Group (TCG) Trusted Plat-

form Module (TPM) specification [2]. The TCG architecture has already seen wide–spread

adoption, mostly through backing from leaders in the operating system and processor mar-

kets. Unfortunately, it relies on the inherited trust model and is left vulnerable to attacks

on external memory.

2.2 Software Threats

There are two primary threats to software applications that protective architectures must

address. Although software protection is a term with many meanings, it is considered for the

purposes of this work, and the Virginia Tech Secure Software Project, to offer confidentiality

and integrity of an application’s instructions from internal software and external physical

threats. While data protection is a related area of research, it does not necessarily improve



Anthony J. Mahar Chapter 2. Background 10

the protection of software instructions.

Software confidentiality offers protection from threats such as unauthorized or unlicensed

copying of programs, including piracy and reverse engineering of algorithms. Providing

software confidentiality has an impact on the protection of intellectual property, both in

terms of copying and reverse engineering. Without confidentiality, a program running outside

a developer’s secure domain can be considered disclosure of private information to the public,

competitors, and malicious users.

Software integrity provides protection from threats that modify program instructions.

This ensures secure software is running the way the developers programmed it to. Further-

more, the user can maintain trust that the program has not been altered beyond what the

developer created. Maintaining this integrity assists in the protection from software viruses,

worms, or malicious uses that rely on code modification to mount attacks.

2.3 Virginia Tech Secure Software Architecture

Members of the Virginia Tech Configurable Computing Laboratory have been conducting

research into secure architectures that provide software integrity and confidentiality in a

modern computing system. Developed under the project title Secure Software, the goal is

to provide these software protections in hardware, without placing trust in the operating

system or any other software component. To ease integration, the security features extend

and compliment development flows, operating systems, and processor architectures without

fundamentally altering normal operation.

In the current phase of research, the VT Secure Software architectures provide software

protection through increased confidentiality and integrity of program instructions. The sin-

gle secure processor architecture is currently defined, however the project is extensible to

multiprocessing and parallel processing environments. The granularity of this protection is

provided to individual memory pages of an application, and protected instructions remain



Anthony J. Mahar Chapter 2. Background 11

encrypted at all times, until they enter the processor’s instruction–side interface. Instruc-

tions never reside in unencrypted form in external memory, secondary storage, or on the

processor’s local bus.

2.3.1 Paged Protection

Most modern computing platforms operate using the concept of virtual paged memory. Pages

are fundamental units of memory that both the operating system and the hardware memory

management unit (MMU) recognize. Virtual paged memory allows a program memory space

to be virtually represented in the physical system memory space. Using entries in a MMU

translation table, the translation look–aside buffer (TLB), memory accesses to a program’s

memory space are translated from its virtual page address to the physical page address.

Pages are mapped in and out of memory as necessary, with different pages from different

programs populating the physical memory space. This allows many programs to exist in

memory at the same time, and allows programs larger than system memory to have a subset

of its pages loaded at one time.

It was determined in the Secure Software Project that page–level encryption was the

best method for providing software protection, from a hardware and software perspective

for several important reasons. First, different encryption keys can be used for different

program pages. This can help strengthen the use of encryption for a secure program and

prevent replay attacks between separate pages. Second, different secure applications can

share memory pages while using different keys for the non–shared memory. This allows

programs to support secure shared memories while maintaining their own private spaces.

Lastly, the mechanisms required to handle page level encryption directly extend operations

in place in the operating system and MMU. The OS already provides on–demand paging,

where an entry in the TLB is created after an attempt to access a virtual address not already

present. Operations that load the TLB on demand can also load the page–key mappings

in the Secure Software architecture at the same time. If the page–key associations are



Anthony J. Mahar Chapter 2. Background 12

Token
Interface

ROM
(Code)

FPGA

Local
Ram

Secure Secure
Token

SKU Bus Environment
Secure

Cache
Instruction

Data
Cache

Processor Bus

Memory
System

InterfaceInterfaceInterface Memory

External

CPU

SKUEMU
Scratch

Pad
RAM

PeripheralPeripheral

Figure 2.1: Single Processor Secure Software Architecture

established when TLB entries are added, then the instructions requested on the bus are

guaranteed to be in the page–key association tables.

2.3.2 Primary Components

There are three primary components to the Virginia Tech Secure Software architecture. Fig-

ure 2.1 depicts the single secure processor architecture of the Virginia Tech Secure Software

program, and the relationships between the primary components.



Anthony J. Mahar Chapter 2. Background 13

CPU/Operating Systems

The first component is the standard CPU with a memory management unit (MMU) to map

virtual program address to the physical memory space. The operating system running on

the CPU recognizes security tags and sections within each secure executable. The secure

executable format use the same standard formats as a normal executable, but make use of

the optional sections. Extra information in the secure executable indicates which executable

instruction pages are encrypted, the cryptographic key identifiers for those pages, and partial

security credentials for the keys. The operating system assigns page to key mappings at the

same time it handles the virtual to physical address mappings in the translation look–aside

buffer. Keeping these operations together ensures memory fetches on the bus will always

reference up to date page encryption information.

Secure Key Management Unit

The second primary component of the Secure Software Project is the Secure Key Manage-

ment Unit (SKU). This device is responsible for combining executable credentials and user

credentials to create a proper cryptographic key. It is usually either a state machine or a

small processor with its own private on–chip bus and memory. It receives information from

the CPU containing partial executable credentials, a request for key generation, and where in

a key table to place the generated key. An external secure token containing user credentials

communicates with the SKU over a protected link. This provides the second half of the

credentials used to create the keys.

The SKU resides on the same physical die as the processor but isolated from direct access

by CPU. There is a set of intermediate buffers that the CPU and SKU use to communicate

for key generation. This buffer isolates the SKU from the CPU. Similarly, the SKU is isolated

from the external token. The secure token is accessed through a slave interface on the SKU

bus. The SKU requests individual reads and writes from slave interface, which forwards



Anthony J. Mahar Chapter 2. Background 14

them to the external token. It is not possible for the external token to access the internal

SKU bus.

Encryption Management Unit

The third primary component is the Encryption Management Unit (EMU). The EMU ex-

tends the MMU behavior of page address translation. Similar in operation to the TLB, the

EMU provides hardware physical page–to–key and page–to–ancillary data mappings and

look–ups. These mappings are possible through a series of look–up tables and table search

units. The EMU uses this information with an internal decryption unit to selectively decrypt

the instruction stream.

Many modern processors support separate data and instruction–side bus interfaces at

some level. These processors, including the latest architectures from Intel [18] and IBM [19]

feature separate data and instruction caches. These features allow the EMU to work with

each stream, data and instruction, together or on an individual basis depending on the

performance and security objectives.

The EMU is supports various decryption methods and cryptographic engines by insert-

ing a desired cryptographic unit into the EMU. Cryptographic modes, such as direct block

or counter modes, can also be chosen based on application. The keys stored in the EMU

reflect the cryptographic key for a particular page, while ancillary data contains supporting

information for certain cryptographic modes, such as page counters for counter mode en-

cryption. Information supplied to the decryption component in the EMU indicates if a page

is encrypted in addition to the encryption key and ancillary data if encrypted.

Although the EMU provides software protection, it must also protect other sensitive

operations of the Secure Software architecture from the CPU. The EMU does not allow

access to keys by the CPU. The CPU writes to a set of search tables in the EMU that point

a page to a particular key slot in a key table. The CPU is only able to create mappings.



Anthony J. Mahar Chapter 2. Background 15

Likewise, the SKU can only write to the key table, but cannot access any part of the CPU–

managed page search tables or to the CPU bus.

2.3.3 Lifetime of a Secure Application

This section provides the lifetime of a secure executable. It is useful in the illustration of

high–level interactions with the primary VT Secure Software components. Lifetime is defined

here as the period in which an application is conceived to the point in which it is terminated

by a user.

1. Program is compiled using standard developer tool–chains.

2. Developer encrypts desired code pages of the executable. Additional sections in exe-

cutable are added to specify which pages are encrypted, and to provided partial cre-

dentials needed by the SKU to generate keys.

3. Secure executable is distributed in its encrypted form using secure or insecure channels.

4. Secure executable is executed on a VT Secure Software compatible architecture (from

local storage, networked storage, RAM disk, etc).

5. OS recognizes security flags and credentials in executable file, flags internal process

structures with identifiers indicating which key index is associated with which page.

6. Standard on–demand paging is performed. Encrypted pages also follow this on–demand

operation, loading security tables in the EMU when the TLB is loaded. Pages that are

encrypted remain encrypted in external memory.

7. OS provides run–time key replacement strategy if key table is too small for all keys of

all encrypted applications running.

8. All instruction transactions are compared against page status information in the EMU

to determine encrypted status, and associated key and ancillary data.



Anthony J. Mahar Chapter 2. Background 16

9. If status is encrypted, EMU decryption unit decrypts the instruction transaction and

returns result to the CPU. Otherwise, the instructions pass directly to the processor.

10. On application termination and during execution, pages are replaced under normal

operations as other pages are paged into memory. New pages will replace the memory

contents and security flags in the EMU with ones that reflect the status of the new

page.

2.3.4 Protections

The primary goal of the Virginia Secure Software Project is to provide increased software

protection. The software protections defined include instruction confidentiality and integrity.

These protections are offered through the architecture’s ability to keep instructions in en-

crypted form throughout the distribution, storage, and fetch process until entering the CPU

instruction–side bus interface. This section describes how these methods provide each secu-

rity measure.

Software Confidentiality

Instruction encryption helps enforce software confidentiality. Instructions, which are loaded

into memory, can only be executed after proper decryption on the instruction–side bus.

Without the key, deciphering the encrypted version of a program’s instructions is not feasible

when proper encryption techniques are used. In the initial Secure Software architecture the

platform does not contain a data–side bus decryption unit, and therefore cannot directly

read or write properly encrypted instructions.

Furthermore, the processor does not have read or write access to the decryption unit or

the key table. Therefore, the processor access an unencrypted instructions located on or

off chip, or access the cryptographic keys and decipher the instructions in software. As the

EMU is located on the instruction–side bus interface, and not the data–side, even a secure



Anthony J. Mahar Chapter 2. Background 17

application cannot read its own instructions in decrypted form.

Software Integrity

Software integrity is also supported through the use of instruction encryption. When properly

using a modern symmetric block cryptographic routine, it is extremely difficult, and not

computationally possible, to alter a single instruction with another encrypted instruction.

Block cryptographic modes operate on a group of data usually consisting of several in-

structions in one decrypt or encrypt operation. Robust cryptographic algorithms provide a

large change in encryption or decryption output, regardless of how few bits change in the

corresponding input. This prevents correlation between cryptographic pre–images and en-

crypted results. The initial Secure Software architecture uses direct block encryption modes.

An attacker trying to alter a subset of instructions within a cryptographic block, through

internal software or external memory modification, could not cycle through a set of guesses

and refine their attack to execute an instruction of their choosing. Any alteration to the

encrypted instructions before execution, however small, would cause the corresponding block

of instructions to decrypt into a pseudo–random set of bits likely consisting of invalid in-

structions. At the very least, execution flow would be completely altered and usually results

in segment faults.

Furthermore, as instructions are decrypted on the instruction–side bus in this iteration, it

is not possible for a secure application to meaningfully modify its own instructions, meaning

if a technologically advanced adversary manages to break a single block of instructions, it

does not open a back door into the protected instruction space of the program. The attack

must be carried out on every other block of instructions as well.



Anthony J. Mahar Chapter 2. Background 18

2.4 Related Memory Modification Units

The design of the Encryption Management Unit has drawn inspiration from several systems

and architectures. These units posses a set of protections and implementation strategies

that are reflected in the EMU. The common characteristic of each system is to selectively

apply a particular function on an instruction stream based on certain criteria. Related secure

architectures to the Virginia Tech platform are described in [20].

2.4.1 IBM CodePack

The first system has a strong history with the processor used in the implementation of

the Secure Software architecture. IBM CodePack [21] [22] is a hardware/software feature

developed for reducing the size of code in memory for embedded applications. To reduce code

size, application instructions are compressed after compilation. It uses architectural features

of the IBM PowerPC processor [23] to support decryption. Notably, it uses a compression

flag within the PowerPC memory management unit’s (MMU) translation look–aside buffer

(TLB). This flag is exported from the TLB to a dedicated line on the Processor Local Bus

(PLB) during memory transactions.

A normal application running on the PowerPC consists of a series of 32–bit instructions,

with each instruction containing an operator followed by one ore more operands. From one

instruction to the next there is often little correlation between the 32–bit values. However,

by splitting instructions into 16–bit halves, there is much higher correlation between the

corresponding halves for each instruction. Separately compressing each half–instruction

channel offers significant compression potential.

A substitution method based on frequency is used to replace repetitive 16–bit units with

shorter bit alternatives. One drawback to this encoding method is that the least frequent

units are represented by a set of bits longer than the original 16–bit format. These com-

ponents do not occur often, and it is likely that the compressed instruction space will still



Anthony J. Mahar Chapter 2. Background 19

Processor
Local Bus

PowerPC
405 Core Decompression Core

Decode
Tables

Memory
Controller

Index
Tables

External Memory

Figure 2.2: IBM CodePack Architecture

require less memory than the original uncompressed version.

With respect to address locations, the compressed version of the executable does not

directly correspond to the original uncompressed version. Using variable length encoding

produces a mismatch between the locations and sizes of instructions compared to the original

set. To solve this problem, the IBM CodePack system uses an index table stored in external

memory to find the base location of an instruction group. By representing large 128–byte

groups of uncompressed instructions in the table, instead of maintaining each instruction

address, the table size is significantly reduced. When a request for a compressed target

arrives, the base location for the compressed block is looked up in the index table, the block

is decompressed, and the target instruction is returned. The relation to the Encryption

Management Unit is with the decompression strategy of the hardware portion of CodePack.

The CodePack system retrieves information from tables in external memory, fetches the

compressed memory block, and returns the requested decompressed values. In a similar

fashion, the EMU retrieves information from tables in hardware in parallel with the encrypted



Anthony J. Mahar Chapter 2. Background 20

memory fetch, and returns the decrypted version. CodePack differs with the EMU in its

location in the processor bus structure. As CodePack is not concerned with security, it is

located on the external memory controller, while the EMU is placed directly between the

processor instruction–side bus interface and the processor bus.

Although CodePack utilizes the MMU and the compressed PLB signal to determine the

compression status for a page, the EMU does not. First, the content addressable memories

and tables used in the EMU are extremely fast, using the compressed bus signal to indicate

encryption would offer very little performance advantage. Secondly, the EMU must remain

reasonably flexible to various architectures, and the compressed flag is PowerPC specific.

As both systems modify instruction streams, it is natural to attempt to draw conclusions

about EMU performance based on CodePack performance. However, these two systems do

not have similar performance characteristics. The CodePack system has quite a large buffer,

16 instructions, and this buffer is completely filled when a requested instruction is not in

the buffer. Furthermore, as the index tables are stored in external memory, there is a high

penalty for instruction fetch look–ups.

Surprisingly, even with the external memory table look–up and decompression routines,

there are still applications that exhibit performance gains when using CodePack [24]. This is

likely attributed to high instruction execution locality within a block of instructions, which

results in the CodePack unit performing as a small pre–fetching cache. The EMU, on the

other hand, retrieves and modifies only the requested instructions. As shown in Chapter 4,

the EMU is strictly a delay element in the memory pipeline, and can never contribute to a

performance increase.

2.4.2 XOM

The XOM architecture, or Execute Only Memory [25], provides similar instruction protec-

tions as the Secure Software Encryption Management Unit. It attempts to ensure instruc-



Anthony J. Mahar Chapter 2. Background 21

tions can only be executed, never read or modified, through decryption of instructions and

data as they are passed through the cache system and into the processor. XOM uses ap-

plication level cryptographic keys to isolate applications from each other. Each key creates

what XOM refers to as cryptographic compartments. Unlike the EMU, these keys are stored

in encrypted form in external memory and are verified against a private hash whenever a

key is retrieved. Similar to the EMU, the cryptographic unit of the XOM system uses a

symmetric cryptographic algorithm for decryption of instruction blocks.

Although both the Secure Software EMU and XOM provide similar execute–only instruc-

tion capabilities, their design and use within their respective systems are very different. First,

XOM does not support page–level key associations. It takes the approach of application–level

key associations. To identify what key should be used, or even if the application is encrypted,

special instructions and registers were added to manually start and stop the XOM unit. As

keys are stored in external memory, a further set of registers and instructions were added

handle where in external memory the application key resides.

The Secure Software EMU uses a page–level encryption scheme that allows the hardware

to efficiently mirror the TLB in establishing page–key relationships. This eliminates the

manual start/stop triggering required by XOM, and the costly key look–up and decryption

from external memory. Another problem involved with XOM start/stop triggering is with

context switches and interrupts. When these occur, the XOM unit is still enabled and any

instruction fetch of the interrupt handler will be incorrectly decrypted using the previous

compartment key.

The XOM solution is to rewrite the interrupt vectors into a private XOM memory, and

install a wrapper for interrupts. These wrappers disable the XOM unit before proceeding

passing on to the true handler. This problem is avoided in the Secure Software system, as

the EMU is aware of the encrypted status of a page, and if the interrupts are not flagged as

encrypted the the cryptographic unit is bypassed.



Anthony J. Mahar Chapter 2. Background 22

2.5 Benchmarking

Software protection provides security for instructions, which likely requires alteration to the

performance of the instruction–side bus of the processor. Additional latency from security

mechanisms play a critical role in the overall performance of the secure application. To

measure this effect, a benchmark capable of testing the instruction fetch performance is

required.

In the realm of benchmarks there are two basic directions: synthetic benchmarks and

application benchmarks. Synthetic benchmarks typically focus on testing particular features

of a system, such as memory bandwidth, I/O latency, and more. They consist of applications

designed specifically for performing the tests. Application benchmarks are entire programs,

or representative code of programs, run on the test platform. Between different platform

configurations, they illustrate how a particular application will perform. Furthermore, as pa-

rameters change, it is possible to the effect of that change, and how well targeted applications

run with the new settings.

There are many effective application benchmarks available for an array of platforms.

Many publications in the area of secure software favor the SPEC benchmark to demonstrate

the effect their protection mechanisms have on performance. The SPEC CPU [26] suite of

benchmarks consists of floating–point and integer based benchmarks that perform various

functionality, such as chemistry and physics modeling, C/C++ and hardware description

language (HDL) compilers, text interpreters, compression routines, and more. However, the

problem with the SPEC benchmark suite is the selection of benchmarks do not effectively

stress the instruction–side bus interface. Current research [27] reveals that the SPEC CPU

suite is insufficient for analyzing systems that effect memory latency of instruction fetches.

Although an alternative set of application benchmarks have been recommended to more

effectively stress the instruction–side bus, it was decided that if this work was to improve

upon the existing benchmark standards a synthetic benchmark that could directly measure



Anthony J. Mahar Chapter 2. Background 23

instruction–side latency was required.

In the area of synthetic benchmarks there are two primary types: benchmarks that stress

particular platform characteristics, and benchmarks that calculate integer or floating–point

operations per second (OPS and FLOPS). NAS NPB [28] and Splash 2 [29] offer good

characterization for serial and parallel computing systems when determining operations per

second. The problem with OPS and FLOPS based synthetic benchmarks is they usually

attempt to store as many instructions in cache to maximize data calculation throughput.

This is precisely the opposite effect needed to test the instruction–side bus interface.

LMBench is suite [30] [31] of synthetic benchmarks designed to test various aspects of the

Linux operating system and the underlying hardware. It provides validated measurements

of content switching times, I/O latency and bandwidth, network latency and bandwidth, file

system performance, and more. Of particular interest is an individual benchmark within the

suite to measure memory latency. The lat mem rd module tests the various latencies of the

memory subsystem from the data–side bus interface.

Essentially, a linked list is traversed in memory using a fixed length stride. The linked

list is circular to allow for wrap around. A single instruction is used to jump to the next list

element, allowing execution time across many fetches to be dominated by memory latencies.

Generally, time for the data fetch instructions are divided by the number of fetches to provide

the average latency for traversal of a given area of memory.

Initially, the size of memory traversed is relatively small, and is able to fit entirely inside

data cache. The size of memory used increases for each iteration until the maximum size has

been reached, which is usually many times larger than either the cache or the size of memory

accessible by entries in the processor TLB. When the entire set of data for the linked list is

small enough to fit inside data cache, the execution time is dominated by the latency of a

cache fetch. As the size of the linked list grows, the time stalled on data is dominated by

the next subsystem in the memory hierarchy.

Depending on the architecture, when the local cache hierarchy is exhausted, the next



Anthony J. Mahar Chapter 2. Background 24

subsystem is external memory or external cache. The majority of time spent on data cache

misses is due to external memory fetches. As the area for the linked list grows even further,

a point comes where the page tables are insufficient to represent the memory area for the

benchmark. The average latency of the TLB miss is dependent on how many additional data

fetches occur within that page. For instance, a stride with the length of an entire page will

show higher latency for TLB misses than a stride with multiple hits per page. One fetch

per page has a higher average penalty than multiple fetches per page. When plotted, each

memory subsystem is distinguished by a unique plateau of latency with respect to memory

size.

The LMBench results for data memory subsystem latency can be seen in Figure 5.1. Vali-

dation of LMBench latency test accuracy is included in [30]. Unfortunately, as the LMBench

latency benchmark uses the data–side bus interface, it does not stress the instruction–side

at all. iBench, described later, uses the instruction–side bus interface to obtain results, not

from data fetches, allowing effective measurement of the EMU.



Chapter 3

Design

This chapter presents the Encryption Management Unit from multiple levels of abstraction.

Requirements are provided to assess the necessary set of functionality that the EMU must

achieve. These requirements also constrain the problem scope that the EMU must solve

in its design. The specification section presents the primary modules, constraints on the

functional implementation, and the protocols used for interaction between the high level

modules. In the last section, detailed information will be provided on the design of each of

the modules.

3.1 Encryption Management Unit Requirements

This section defines the requirements of the Encryption Management Unit within the Virginia

Tech Secure Software Project for instruction protection.

3.1.1 Scope

The purpose of the Encryption Management Unit is to provide selective decryption of soft-

ware instructions requested by the Central Processing Unit. Selection for decryption is

25



Anthony J. Mahar Chapter 3. Design 26

determined on a memory page basis, where instruction within an encrypted page will be

decrypted, or bypassed if not within an encrypted page. The design and implementation of

this unit satisfies the hardware extensions required by the Virginia Tech SecSoft Architecture

for software protection.

3.1.2 Functional Integration

The Encryption Management Unit is intended to augment a typical Central Processing Unit

without modification. To facilitate instruction protection, the EMU is should be installed

on the same physical die as the CPU or within a secure multi–chip module, such that it

is located directly between the CPU instruction–side bus interface and the processor bus.

In addition to CPU and memory bus interfaces for decrypting the instruction stream, two

additional bus interfaces are necessary to allow configuration of the EMU from the CPU

and SKU. Although the design provides flexibility with many processor architectures, this

prototype will extend the IBM PowerPC 405 embedded processor.

3.1.3 Operational Concept

The EMU is placed in the path of the instruction stream flowing into the CPU. The EMU

observes memory transactions requested by the CPU and can actively modify the transaction

request. Using the transaction address, the EMU performs a search of its internal tables to

determine if the transaction is part of an encrypted page. If the page is determined to not

be encrypted, the instructions are passed directly to the CPU without modification. If it

is determined that the page is encrypted, then the encrypted instructions and additional

information, such as the decryption key and ancillary data, are passed to a decryption

mechanism, where it is decrypted and forwarded to the CPU.

Two configuration bus interfaces are necessary to configure the EMU and load encryption

information into the internal tables. One is necessary for communication with the CPU, for



Anthony J. Mahar Chapter 3. Design 27

loading tables with page information and ancillary data. Another interface is necessary for

communication with the SKU, for loading keys only the SKU has access to.

3.1.4 Functional Requirements

The following is a list of functional requirements of the EMU. These requirements define the

goals of the EMU and constrain the design to the necessary functionality.

1. Decrypt Instruction Stream The system must decrypt the instruction stream when

criteria for decryption is met.

2. Bypass Instruction Stream Decryption The system must not decrypt the instruction

stream when criteria for decryption is not met.

3. SKU subsystem must be isolated The system must support isolation and protection

of the SKU. Any interface of the EMU that attaches to any part part of the SKU

subsystem must not expose or modify any form of internal information, including bus

transactions and SKU machine state. The EMU must only recognize information

explicitly sent by the SKU, such as in requirement 7.

4. Keys must be isolated The keys generated by the SKU and stored in the EMU key

table must be completely isolated from any direct access or inference by the CPU.

5. Searchable Tables The system must be able to search tables for encryption criteria and

the associated page key and ancillary data. If status of the page is not encrypted, then

the returned page key and ancillary data return an unknown value.

6. Load Page Tables The CPU must be able to load the following information into specific

locations in the page search tables:

• Page to be searched

• Key Slot pointer associated with page



Anthony J. Mahar Chapter 3. Design 28

• Ancillary Data associated with page

7. Load Key Tables The SKU must be able to supply keys into specific slots in the key

table.

8. Clock Domain Synchronization The system must provide cross-clock domain synchro-

nization between the primary clock domains. Primary clock domains are shown in

Figure 3.2

3.2 Encryption Management Unit Specification

This section defines the high level specification of modules and their interaction within the

system. Each module represents a cohesive functional abstraction within the system. Well

defined interfaces provide proper coupling between the modules, and allow modules to be

modified or replaced without effecting the remaining system.

3.2.1 Functional Constraints

Listed are the constraints in implementing the EMU with in the Virginia Tech SecSoft plat-

form, specifically with the Xilinx Virtex–II Pro FPGA. Although these constraints are neces-

sary for this particular implementation, the system remains reasonably flexible to changing

bus widths, page sizes, key widths, and more.

• The processor for augmentation is the IBM PowerPC 405 embedded processor.

• Memory pages are 4 kilobytes wide.

• The instruction–side PLB bus of the CPU operates using three distinct transaction

modes:

– Single beat transfer, of 64–bits per beat



Anthony J. Mahar Chapter 3. Design 29

– Four–word line transfer, transferred in two 64–bit beats

– Eight–word line transfer, transferred in four 64–bit beats

• The page tables contain 64 entries.

• Decryption/Encryption block widths are 128–bits wide.

• The page containing the address of the requested memory transaction will always be

found in the search tables.

• The page containing the address of the requested memory transaction will only be in

one slot in the search tables.

• The instruction–side bus of the CPU uses the IBM Processor Local Bus (PLB) stan-

dard.

• The instruction–side bus of the CPU is a read–only bus interface.

• The Page Table Control Interface communicates with the CPU over an On–Chip Pe-

ripheral Bus (OPB) bus.

• The Key Table Control Interface communicates with the SKU over an OPB bus.

• The instruction–side bus operates with a clock rate of 100 MHz.

• The CPU OPB bus operates with a clock rate of 100 MHz.

• The SKU OPB bus operates with a clock rate of 100 MHz.

3.2.2 Primary Functional Units

Based on the requirements in Section 3.1.4, there are a number of primary functional units

that become distinguishable. These units handle specific functional tasks necessary for the

complete operation of the EMU. These high level modules are depicted along with their

interaction in Figure 3.1.



Anthony J. Mahar Chapter 3. Design 30

Lookup Tables

Modifier Bridge

Control
PageTable

Control
KeyTableControl

Interface Interface
Control

CPU

SKU
Bus

Memory
Bus

Memory
Bus

Figure 3.1: EMU Primary Functional Units

Bus Modifier / Bridge Unit

The Bus Modifier / Bridge unit provides by–passable active modification to instruction

stream transactions. It is located directly between the CPU instruction–side bus interface

and the processor bus. Criteria for selecting between decryption and bypass modes are

queried from the Table Unit, using the page address of the requested transaction. The

Bridge unit should allow future security extensions, such as instruction masking. The bridge

satisfies requirements 1 and 2.

Although many decryption modes are supported by the EMU, two block encryption modes

have been used for the initial configuration of the Secure Software architecture, specifically

counter–mode and direct block mode. These are compatible with symmetric block cipher

modes such as the Advanced Encryption Standard [32]. AES is well suited for use in FPGA

technologies [33] [34] in addition to ASIC implementations [35].

The direct block mode decrypts instructions in 128–bit blocks. In this mode, the trans-

action type and size requested from the CPU is potentially modified before the request

is forwarded to the memory arbiter. Using direct block mode ciphers, all 128–bits of an

encrypted block are necessary to return any portion of the decrypted block. Because the

PowerPC 405 CPU instruction–side interface can request single beat (64–bit), four–word



Anthony J. Mahar Chapter 3. Design 31

line (128–bit), and eight–word line (256–bit) transfer sizes, the single beat mode needs to be

expanded to a complete four-word line transfer.

The flow for direct block decryption begins with a transaction request. When the trans-

action is acknowledged by the bus arbiter, the block decryption unit will retrieve both

encrypted status and key information, and the instructions. Once both are retrieved, direct

block decryption is performed on the instructions in one operation.

When decryption is complete the result is forwarded to the CPU. If the transaction is not

flagged as encrypted, the instructions are forwarded to the CPU unmodified, and without

any delay of decryption.

Counter–mode decryption does not use the cipher routine to directly decrypt fetched in-

structions as with block mode. Instead, a unique counter value associated with a block of

data or instructions is encrypted using the cryptographic algorithm. This result is XORed

against protected instructions to decrypt them. Conversely, as XOR is an invertible oper-

ation; these instructions are originally encrypted by XORing against the same encrypted

counter value.

Proper cryptographic algorithms do not have any correlation between encrypted results of

differing pre–images, even if the pre–images are related to each other through some arbitrary

function. Therefore, the counter value itself does not have to be cryptographically strong,

but merely different between each addressable block.

To minimize local memory each 128–bit instruction block the ancillary data table is used

to provide the most significant bits of a counter for transactions within a page. The lower bits

are a function of the transaction address within that page. With this method, each block

within the same page and between pages of a protected program can maintain a unique

counter value.

Similar to direct block encryption, the flow for counter–mode encryption begins with the

transaction address acknowledge, which begins the table search and retrieval of encrypted



Anthony J. Mahar Chapter 3. Design 32

status, page key, and additionally ancillary data. If encrypted, two counter values and the

associated key are fed into each of the two parallel cryptographic cores for encryption. The

counter values are generated from a base page associated counter stored in ancillary data

and the address of the transaction within the page.

Incoming instruction data is always placed into a FIFO along with the corresponding

word address of the data beat within the full transaction. When encryption of the counters

is complete, the unit will pop off the number of data beats in the transaction when they

are available. For each data beat from the FIFO, the corresponding XOR segment of the

complete map is XORed for decryption, and passed to the CPU. For unencrypted instruc-

tions the encryption function is bypassed and the XOR map is loaded with zeroes. As the

unencrypted instructions pass from FIFO to CPU, the result of an XOR with zero does not

alter the data.

Table Unit

The Table Unit combines all tables necessary functionality for storing and searching page–

to–key and page–to–ancillary mappings into one module. This unit has an interface for

searching the page mappings to keys and ancillary data. The page address supplied by the

Bridge unit is used as the search criteria for retrieving the status. Once the page address

is found in the tables, the encryption status is returned along with the associated key and

ancillary data of the page. The returned key and ancillary information are invalid if the

transaction is not encrypted. The search feature fulfills Requirement 5.

The table unit consists of three look–up tables and a content addressable memory (CAM).

The content addressable memory reverses the typical memory operation of retrieving data

from an address. Instead, the data is supplied to the CAM where the address it is stored in

is returned. This is an efficient way to retrieve the key pointers and ancillary data locations

based on the supplied page address.



Anthony J. Mahar Chapter 3. Design 33

An issue that must be addressed is the risk of the same page address stored multiple

times in the CAM. This is a very unlikely event, especially with large memories and multiple

processes running on modern systems. A hardware MMU typically uses a software defined

process identification (PID) to define what application is requesting a virtual to physical

page address translation. While this PID value does not create a security dependency, it

can be useful to ensure a page look–up uses the correct entry, and not an entry from some

previous execution. For prototyping, software checks in the operating system can avoid this

situation, also without exposing any security risk.

To easily allow multiple pages to use the same key, the unit passes the returned index

from the CAM to a key slot look–up table. This look–up table translates the selected page

index into a key slot pointer. Pointers to key slot zero indicate the page is not encrypted.

All other slot values indicate the page of transaction is encrypted.

The results of the key slot table look–up are used to select the key from the key table.

Key values returned to the Bridge Unit for unencrypted pages should be ignored. With

encryption status, key, and ancillary data determined, the set of information is returned to

the Bridge Unit.

To account for flexibility in timing characteristics of the search and look–up operations

the Table Unit uses a timing handshake signal. The unit responds to a search start signal

from the Bridge unit with encryption information ready signals at a time determined by the

Table Unit. The response timing signals represent the cycle that their look–up signals are

valid.

To load the tables with appropriate information, two dedicated configuration interfaces

exist satisfying requirements 6 and 7. The first interface, the page table configuration inter-

face, is used to establish the page–key slot and page–ancillary mappings. The other interface,

the key table configuration interface, is used to load the keys into the key slots. Both config-

uration interfaces are write–only. This separation supports requirements 4 and 3. Although

the CPU and SKU access an interrelated set of tables, the CPU cannot write or read keys



Anthony J. Mahar Chapter 3. Design 34

Table 3.1: Page Table Control Unit Registers

Register Name Internal Offset Address Access

Page Base Address 0x00 Base + 0x00 Read/Write

Key Slot Index 0x01 Base + 0x04 Read/Write

Page Index 0x02 Base + 0x08 Read/Write

Ancillary Data 0 0x04 Base + 0x10 Read/Write

Ancillary Data 1 0x05 Base + 0x14 Read/Write

Ancillary Data 2 0x06 Base + 0x18 Read/Write

Ancillary Data 3 0x07 Base + 0x1C Read/Write

from the key table, and the SKU cannot write or read from the page mapping tables.

Page Table Control Unit

The primary purpose of the Page Table Control Unit is to interface the Table Unit with the

CPU memory mapped I/O region. All of the registers in the Page Table Control Unit are

used to collect all parts before writing to the Table Unit in one transaction. Writing to the

page index register acts as a trigger which writes the contents of the page address, key slot,

and ancillary data registers into the Table Unit at the location specified by the page index

register. Transferring from this unit to the Table Unit can cross clock domains, and therefore

must be capable of supporting transmission synchronization, as described in Section 3.2.3.

Table 3.1 lists the registers used by the Page Table Control Unit, the internal offset

within the control unit, and each register’s relative address within the CPU address space.

The complete behavior and operation of the individual registers are listed in Appendix A.



Anthony J. Mahar Chapter 3. Design 35

Table 3.2: Key Table Control Registers

Register Name Internal Offset Address Access

Key Slot 0x00 Base + 0x00 Read/Write

Key Word 0 0x04 Base + 0x10 Read/Write

Key Word 1 0x05 Base + 0x14 Read/Write

Key Word 2 0x06 Base + 0x18 Read/Write

Key Word 3 0x07 Base + 0x1C Read/Write

Key Table Control Unit

The primary purpose of the Key Table Control Unit is to enable the loading of keys into

specific slots within the Table Unit from the SKU. Beacause cryptographic keys are often

large, and bus widths often relatively too narrow, individual words of the key are first

written to registers in the Key Table Control Unit. Writing to the key slot register initiates

a transaction of the contents of all key registers to the Table Unit at the slot indicated by

the key slot register.

Table 3.2 lists the registers used by the Key Table Control Unit, the register offset within

the control unit, and the relative address for the byte–addressable SKU memory bus. The

complete behavior and operation of the registers are listed in Appendix B.

Control Interface Unit

The Control Interface Unit abstracts away the underlying bus protocol of the Page and Key

Table Control units and a presents generic bus interface. This permits each control interface

to be attached to various buses, provided a Control Interface Unit can be created to handle

the conversion. Furthermore, because each control unit uses the same generic read/write

bus interface, the same Control Interface Unit can be reused with either control unit if each



Anthony J. Mahar Chapter 3. Design 36

control unit connects to the same bus protocol. The generic bus protocol is specified in

Section3.2.4.

In the prototype design, both the CPU and SKU buses use the IBM On–Chip Peripheral

Bus [36] standard. A Control Interface Unit for converting between OPB and the generic

bus interface was designed and used for both of the control units.

3.2.3 Asynchronous Protocols

Within the EMU there are several interfaces between modules that may cross different clock

domains depending on implementation. Likewise, they must resolve the potential problems

involving cross clock domain communication, including clock skew and asynchronous clock

signals. The primary clock domains within the EMU are shown in Figure 3.2. A transfer

protocol featuring full request/acknowledge handshaking and full synchronization described

in [37] was used to overcome the problems associated with crossing clock domains. This

features a push based protocol; a sender always initiates the transfer to the receiver.

Modifier Bridge

Control
PageTableControl

Interface Interface
Control

Lookup Tables

Memory

Bus

Memory

Bus

SKU

Bus

CPU

KeyTable
Control

Figure 3.2: EMU Primary Clock Domains

The protocol begins by latching data to be transferred into registers in the sender unit.

This data is kept stable in the registers throughout the entire transfer. The output of the



Anthony J. Mahar Chapter 3. Design 37

registers in the sender unit are fed directly into the inputs of registers of the receiver unit,

without any passive or active logic in the path to improve switching characteristics. The

receiver will only load this data into its own registers when synchronization is determined

through the handshaking.

Full, two–stage synchronization [37] is used in the receive unit for the request signal.

This prevents the introduction of metastable signals into the internal logic of the receiver.

Similarly, the sender unit filters metastability of the acknowledge signal from the receiver

through its own full synchronizer. Although two stages incur extra latency in the overall

transaction, this greatly minimizes the potential of metastability once the second stage of

the synchronizer is latched. The full synchronizer is depicted in Figure 3.3.

D QD QD Q

Clock 2 Domain

OutputData

Clock 1 Clock 2

Clock 1 Domain

Figure 3.3: Full Synchronization Unit

After the sender registers are stable, the sender initiates the transaction by asserting its

request signal. Once the receive unit detects the active request signal, it enables loading of its

registers for one clock cycle. Following this load cycle, the receiver asserts the acknowledge

signal to indicate receipt of the data.

The sending unit, after its initial request, waits for detection of the acknowledge response.

When detected, it de–asserts its own request signal. The receiving unit detects the lowering

of the request signal and de–asserts its acknowledge signal. For the receiver, the transaction is

now complete. The sending unit finally concludes its transaction after it detects deassertion

of the acknowledge signal. This full handshake process offers proper asynchronous com-



Anthony J. Mahar Chapter 3. Design 38

munication in addition to ensuring each side recognizing completion status of the opposite

unite.

For demonstration purposes, Figure 3.4 illustrates the handshaking transfer protocol.

Although the two units share the same clock in this depiction, the protocol remains valid

for different clock domains as described above.

Figure 3.4: Base Asynchronous Protocol

3.2.4 Interface Protocols

This section defines the protocol specifications used for inter–module and external commu-

nications of the EMU.

Instruction Bus Protocol

The instruction bus protocol used in the prototype implementation uses the IBM 64–bit

Processor Local Bus (PLB) standard [38]. This bus is capable of many read and write trans-

action types, including single beat, multi–word line transfers, master terminated and slave

terminated burst transfer modes, and DMA transfer initiation. Through direct observation

and empirical testing of the bus, it was found that the PLB master controller of the Pow-

erPC 405 instruction–side bus is always a 64–bit read–only interface that exclusively uses

three transaction modes. These modes include a single beat 64–bit transaction, a four–word

(128–bit) line transfer, and an eight–word (256–bit) line transfer.



Anthony J. Mahar Chapter 3. Design 39

Reducing the number of supported transaction types reduces the set of necessary signals

the bridge must control and recognize. The subset of required signals from the PLB specifi-

cation are listed in Table 3.3. Full descriptions of this bus, transaction types, and timing are

included in the 64–bit PLB Specification [38]. Although delay may be incurred when passing

through the Bridge Unit, the association between the read word address, data acknowledge,

and data signals must be maintained. Furthermore, the busy signal to the CPU must be

extended for the additional delay of the EMU.

Table 3.3: Used PLB Instruction–Side Bus Signals

Signal Name Bits Description

M ABus 32 Requested address

M request 1 Request active

M size 2 Transaction size

M abort 1 Request abort

M BE 8 Byte enable

PLB MAddrAck 1 Address acknowledge

PLB MBusy 1 Read busy

PLB MRdDAck 1 Read data acknowledge

PLB MRdDBus 64 Read data bus

PLB MRdWdAddr 4 Read word address

Table Unit Search Protocol

The Table Unit receives both a ”search start” signal, iTableReq, and a page address to query,

iPageAddress. It responds a number of cycles later with an encryption status valid signal,

oTableSearchDone. The encryption status, key, and ancillary data of the page look–up are

only valid on the cycle in which oTableSearchDone is active.



Anthony J. Mahar Chapter 3. Design 40

Search operations returning encrypted and unencrypted status are shown in Figures 3.6

and 3.5. Although both figures show a typical look–up operation, it is possible that oTa-

bleSearchDone could be one ore more cycles after iTableReq is active. In the event where

encryption status for a page is false, the corresponding oPageKey and oPageAncillary signals

are invalid.

Figure 3.5: Protocol: Table Search, Encrypted Return

Page Table Control Protocol

The page table control protocol crosses clock domains from the Page Table Control Unit to

the Table Unit. The asynchronous protocol described in Section 3.2.3 is used to provide the

handshaking and data synchronization. The data set transferred during the handshake is

shown in Table 3.4.



Anthony J. Mahar Chapter 3. Design 41

Figure 3.6: Protocol: Table Search, Unencrypted Return

Table 3.4: Page Table Control Protocol Data Signals

Signal Name Bits Description

PageBase 20 Base address of the page

KeyIndex 6 Key slot that page points to

PageIndex 6 Table slot to load page–key mapping

Ancillary 128 Ancillary data associated with page



Anthony J. Mahar Chapter 3. Design 42

Key Table Control Protocol

The key table control protocol crosses clock domains from the Key Table Control Unit to

the Table Unit. The asynchronous protocol described in Section 3.2.3 is used to provide the

handshaking and data synchronization. The data set transferred during the handshake is

shown in Table 3.5.

Table 3.5: Key Table Control Protocol Data Signals

Signal Name Bits Description

KeyIndex 6 Key slot to store key in

Key 128 Decryption key

Generic Control Interface

The generic control interface used by the Control Units provides a fairly common bus in-

terface with dedicated read and write bus lines. The transaction begins with the master

device’s (CPU or SKU) assertion of the request, address, byte enable, and read–not–write

signal. If performing a write operation, the master will also assert its write bus at this time.

The slave device immediately responds with a wait signal to indicate it is processing the

transaction. When the slave has completed the operation it asserts its acknowledge for one

cycle to indicate either read or write complete. If a read transaction was performed, the read

data bus is also asserted by the slave during the acknowledge cycle. The master will end the

transaction by de–assertion of the request signal, after detection of the acknowledge signal.

The read and write transactions are shown in Figures 3.7 and 3.8 respectively.



Anthony J. Mahar Chapter 3. Design 43

Figure 3.7: Control Interface Protocol: Read

Figure 3.8: Control Interface Protocol: Write



Anthony J. Mahar Chapter 3. Design 44

On–Chip Local Bus (OPB) Protocol

Both the Page Table Control Unit and the Key Table Control Unit connect to their re-

spective CPU and SKU buses using the 32–bit IBM On–Chip Peripheral Bus (OPB). Full

specifications on this protocol are provided in [36]. Both units are used in memory mapped

mode.

3.3 Implementation

This section presents detailed implementation information of components of the Encryption

Management Unit in the Secure Software prototype platform.

3.3.1 Bus Modifier / Bridge Unit

The Bus Modifer / Bridge unit provides the high–level modification to the PLB bus in-

struction stream. The module itself does not perform direct processing, yet it provides a

container for a modular pipeline of bus modification subcomponents. Each module uses the

subset of PLB signals defined in Table 3.3, and each module interlocks with a CPU–side

and a memory–side bus interfaces. At a minimum, two submodules are required: the CPU

interface and the Memory interface. Connecting these two modules together ties the memory

bus directly to the CPU, without any intermediate active or passive modification.

The primary component inserted into this pipeline is the decryption module. It is in-

serted using the interlocking subset of PLB signals. This module modifies transaction types,

decrypts returned instructions, and initiates search table look–ups. Other modules offering

additional functionality can also be easily inserted into this module chain. Examples may

include instruction masking, caches, obfuscation routines, and pre–fetching units. Figure

3.9 depicts the modularized and pipe–lined Bridge architecture, including potential modules

performing additional functionality.



Anthony J. Mahar Chapter 3. Design 45

Two cryptographic block modes were implemented for the Virginia Tech Secure Software

prototype. Each mode, when combined with different cryptographic algorithms, can allow

decisions between trade–offs between security levels and performance to be made. In both

cases the actual cryptographic routine is outside the scope of this work, as both modes are

fully compatible with generic interfaces to most common algorithms.



Anthony J. Mahar Chapter 3. Design 46

Instruction

Mask

Unit
UnitPrefetch Unit

Cache /

Stream Buffer /
Interface

CPU

Interface
Bus

Memory

Lookup Request

Decryption

Ancillary
Key

Encrypted
Page

Mem

Enc Done

Bus

CPU

Bus

Figure 3.9: Bridge Unit



Anthony J. Mahar Chapter 3. Design 47

Block Mode Decryption Module

The decryption modules are the most complex components in the system, as they are ulti-

mately responsible for the primary instruction flow. The PLB bus is a relatively complex

bus protocol, and even though a subset of transaction types are used, it still requires re-

sources for proper handling of addressing, target word first, and different transaction sizes,

in addition to meeting timing requirements. Decryption of instructions further adds to this

complexity.

The direct block–mode module utilizes many data flow elements, including registers and

muxes, around a central finite state machine. There are four primary phases of operation

in the Block Mode Decryption module. The initial phase places the module into a wait

state. Here, the module waits until a PLB transaction begins, signified by the assertion of

request by the CPU, de–assertion of abort by the CPU, and acknowledgment of address by

the memory arbiter.

While in the wait state, transfer address qualifiers are passed directly between the CPU

and memory arbiter. These signals are inhibited in all other states. Additionally, any

transaction requests smaller than a 128–bit unit are expanded to 128 bits. Lastly, when

the transaction is recognized, a request for encryption status and information is sent to the

Table unit.

The second phase processes both the arriving requested instructions and the results of

the Table unit look–up. Counters are used to determine how many data beats have arrived,

and how many are required for read completion. As the data beats arrive, they are automat-

ically placed into a 256–bit buffer, enough to hold the largest transaction the PowerPC 405

instruction–side interface. The location in the buffer to place the data beats is determined

by the corresponding read word address also by the memory arbiter.

The Table unit returns encryption status before the memory completes the read transac-

tion. The encrypted status drives a multiplexer to select the memory driven data bus when



Anthony J. Mahar Chapter 3. Design 48

ST_WaitAddrAck

sClk_PLB_MBusy <= sTransactionStart;
case iCPU_M_size is
when "01" =>
     sClk_MaxMemReadCount <= "01";
     sClk_MaxCPUReadCount <= "01";
when "10" =>
     sClk_MaxMemReadCount <= "11";
     sClk_MaxCPUReadCount <= "11";
when others =>
     sClk_MaxMemReadCount <= "01";
     sClk_MaxCPUReadCount <= "00";
end case;
sClk_PLB_MRdWdAddr <= iCPU_M_ABus()
sClk_PLB_MRdDAck <= ’0’;
sClk_MemReadCount <= "00";
sClk_CPUReadCount <= "00";

if (sCkl_Encrypted = ’0’) then
     sClk_DataOut <= sClk_DataIn;
     sClk_PLB_MRdDAck <= ’1’;
elsif (sDecryptDone = ’1’) then
     sClk_DataOut <= sDecryptDataOut;
     sClk_PLB_MRdDAck <= ’1’;
end if;
if sDecryptAck = ’1’ then
     sClk_DecryptReq <= ’0’;
end if;

ST_Decrypt

if (iMem_PLB_MRdDAck = ’1’) then
     sClk_MemReadCount <= sClk_MemReadCount + ’1’;
end if;
if (sClk_MemReadCount = sClk_MaxMemReadCount
          and iMem_PLB_MRdDAck = ’1’
          and sClk_Encrypted = ’1’) then
     sClk_DecryptReq <= ’1’;
end if;

ST_Read

if (sClk_CPUReadCount = sClk_MaxCPUReadCount) then
     sClk_PLB_MBusy <= ’0’;
     sClk_PLB_MRdDAck <= ’0’;
else
     if (sClk_MaxCPUReadCount = "01") then
          sClk_PLB_MRdWdAddr <= sClk_PLB_MRdWdAddr(0 to 1)
               & not sClk_PLB_MRdWdAddr(2);
     else
          sCkl_PLB_MRdWdAddr <= sClk_PLB_MRdWdAddr(0)
               & (sClk_PLB_MRdWdAddr(1 to 2) + ’1’);
     end if;
end if;
sClk_CPUReadCount <= sClk_CPUReadCount + ’1’;

ST_Write

sClk_MemReadCount =
    sClk_MaxMemReadCount
and iMem_PLB_MRdDAck = ’1’
and (sClk_Encrypted = ’1’ or
     sClk_MaxCPUReadCount = "00")

sClk_MemReadCount =
    sClk_MaxMemReadCount
and iMem_PLB_MRdDAck = ’1’
and not (sClk_Encrypted = ’1’ or
     sClk_MaxCPUReadCount = "00")

sClk_Encrypted = ’0’
or sDecryptDone = ’1’

sClk_CPUReadCount = 
     sClk_MaxCPUReadCount

sTransactionStart = ’1’

Figure 3.10: Block Mode Decryption Finite State Machine



Anthony J. Mahar Chapter 3. Design 49

0

D
at

a 
In

A
dd

re
ss

 D
ec

od
er

D
at

a 
O

ut

B
yp

as
s 

M
ux

W
or

d 
Se

l M
ux

sClk_Encrypted

L
oa

dE
na

bl
e

PL
B

_M
R

dW
dA

dd
r

Unit
Cryptographic

Cryptographic
UnitB

yp
as

s 
M

ux

Transfer

Qualifiers

CPU

D
ec

r 
C

on
tr

ol

Machine
State

Decryption
0 Q

ua
lif

ie
r 

M
ux

Converter
Up-
Size

Qualifiers

Qualifier
Output

State = Wait or Encrypted

Read Bus
Memory

Read Bus
CPU

Figure 3.11: Block Mode Decryption Module



Anthony J. Mahar Chapter 3. Design 50

not encrypted, or the internally generated data bus when encrypted. Incidentally, this mul-

tiplexer is also driven for 64–bit transactions, as they require further processing. When the

last data beat arrives, if the transaction is encrypted or if it has been scaled up from 64–bits

to 128–bits, the machine transitions to a decryption phase. Otherwise, the transaction was

not encrypted and the data beats have already been passed to the CPU, at which point it

returns to the waiting state.

The third phase is reached when the transaction is encrypted, it has been scaled up from

128–bits, or both. In the even that an unencrypted 64–bit block was transferred, the input

buffer is loaded directly into the output buffer, and the machine transitions to writing the

data beat. Alternatively, if the transaction was encrypted then the state will drive the

request lines to the cryptographic unit and wait for the cryptographic unit to return from

completion. When complete, the decrypted blocks are loaded into the output buffer.

The last phase strictly writes the specific transaction requested by the CPU. This state

maintains the target–word–first capability, and in doing so requires that word address coun-

ters properly use the correct data beats in the buffer, depending on transaction size. As

the CPU data bus multiplexer is still driven during this phase, the phase selects the proper

data beats from the output buffer, asserts the correct read word address, and asserts its data

acknowledge signal to the CPU. When the requested transaction data beats have been sent,

the machine transitions back to waiting for the next transaction.

Counter Mode Decryption Module

Compared to the Block Mode Decryption module, the Counter Mode Decryption module

processes instructions as a stream. There are no restrictions on the size of the transaction

or the ordering. This significantly reduces the processing complexity of the system.

The Counter Mode Decryption module is divided into three primary states. The first

state, and associated logic, is very similar to the Block Mode wait state. As before, this



Anthony J. Mahar Chapter 3. Design 51

Ancillary Data

Crypto
Unit 0

Crypto
Unit 1

Count 1

Count 0
Address

Key

Mem RdWdAddr
RdWdAddr FIFO

RdDBus FIFO

RdWdAddr
CPU

CPU
Qualifiers

Map

XOR

CPU
RdDBusMem RdDBus

Mem Qualifiers
Counter FSM

Figure 3.12: Counter Mode Decryption Module

state simply waits for a transaction to begin. The criteria for this is the same as in Block

Mode. Additionally, transaction address qualifiers to the CPU and memory arbiter are in

pass through mode only when the machine is in this state, and inhibited in all others. Lastly,

when a transaction is begun, the Table search is also initiated.

The second phase begins when a transaction begins; however, the state is dependent on

the encryption of the counter values. All data beats and corresponding word addresses are

loaded into corresponding FIFO units, where they will remain in their proper sequence until

the proper counter value has been encrypted. Because single beat transactions do not assert

the read word address, the word address is manually injected into the FIFO based on the

requested transaction address.

The functionality of this state is driven by the results of the Table search. If the trans-

action is not encrypted, then an output XOR map is loaded with zero values. Otherwise, a

look–up that indicates encryption automatically triggers the encryption process in the cryp-

tographic units. The state waits for the cryptographic units to complete, at which point



Anthony J. Mahar Chapter 3. Design 52

if iTableSearchDone=’1’ and iPageEncrypted=’1’ then

elsif sCrypto_Acknowledge=’1’ then

end if;
if iTableSearchDone=’1’ and iPageEncrypted=’0’ then

else

end if;

ST_Encrypt

sClk_CryptoRequest <= ’1’;

sClk_CryptoRequest <= ’0’;

sClk_CounterEncrypted <= (others=>’0’);

sClk_CounterEncrypted <= sCryptoOut;

sClk_LineAddress <= iCPU_M_ABus();
sClk_PLB_MBusy <= sTransactionStart;
case iCPU_M_size is

end case;
sClk_BeatCounter <= "00";
sClk_WordAddress <= iCPU_M_ABus();

ST_Wait

when "01" => sClk_MaxBeatCounter <= "01";
when "10" => sClk_MaxBeatCounter <= "11";
when others => sClk_MaxBeatCounter <= "00";

ST_Write

if sCPU_PLB_MRdDAck=’1’ then

end if;
if sClk_BeatCounter = sClk_MaxBeatCounter 

end if;

sClk_BeatCounter <= sClk_BeatCounter + ’1’;

sClk_PLB_MBusy <= ’0’;
and sCPU_PLB_MRdDAck=’1’ then

sTransactionStart = ’1’

sClk_BeatCounter = sClk_MaxBeatCounter

and sCPU_PLB_MRdDAck = ’1’

(iTableSearchDone = ’1’

and iPageEncrypted = ’0’)

or sCrypto_Done = ’1’

Figure 3.13: Counter Mode Decryption Finite State Machine



Anthony J. Mahar Chapter 3. Design 53

their encrypted result is loaded into the output XOR map and the state is complete.

The last phase of this module pulls the requested number of transaction data beats from

the data FIFO. The value to XOR against the data beat is selected from the 256–bit XOR

map based on the corresponding word address. If the transaction was not encrypted, then

the data beat is XORed against zeros, resulting in no change, otherwise the proper encrypted

XOR patter is applied to the data beat.

3.3.2 Table Unit

The Table Unit features three look up tables and one content addressable memory (CAM).

The CAM [39] is an IP core supplied by Xilinx, and provides efficient speed and low area

requirements. It receives a 20–bit page address from from its search interface and searches

for the slot that page was written to in its memory. The CAM was configured without a

registered output, so the results of the search are valid on the cycle following a change of

input address.

Table
Lookup

Ancillary
Null

Check

Encrypted
Ancillary

Data

Key
Table

Key

Page
Search
Table

Timer
Lookup

Page

Page
Index
Key Ancillary

Data

Key

Key

DoneReq
Search

Lookup
Table

Bridge Modifier Signals

Index
/WriteEn

Key Table Control

Index
/WriteEn

Page Table Control Signals

Figure 3.14: Table Unit



Anthony J. Mahar Chapter 3. Design 54

The CAM search result is connected to the ancillary data look–up table address and the

key slot look–up table address. One requirement of the CAM is that when writing to it,

the write signal must be active for only one cycle and the data being written stable for that

cycle and the one after it. The synchronizer FSM that communicates over the page table

interface holds off the handshaking until both write cycles have completed.

The key slot look–up table allows each page entry to point to any one of the key slots.

Without this table, the pages would be directly mapped to the matching slot entry in the

key table. Because keys are costly to generate, it is more efficient to have multiple page slots

point to a single key slot for pages that share the same key.

Rather than implement the key slot in Xilinx Block RAM, which performs a sequential

read access, a very fast asynchronous read, sequential write Xilinx SelectRAM was used.

Six 64x1 RAM units were instantiated to create the 64 entry 6–bit look–up table. The

combinational output of the CAM, and the fast look–up of the key slot table allow the page

slot and key slot to be determined in one cycle.

Both the key and ancillary tables are instantiations of full 128–bit by 64 Xilinx BlockRAM

cores. They both read and write sequentially, latching their address on the rising transition

of the clock. This relationship between the individual tables is shown in Figure 3.14.

When writing to the Table Unit, the handshaking occurs as described earlier for asyn-

chronous communications. The unit responds to transfer requests from the CPU and SKU

with the full handshaking, allowing one cycle to read the information before acknowledg-

ing the transaction. Rather than latch the data into registers, the information is loaded

directly into the CAM and the tables. All tables require one cycle for a write operation to

occur. However, the CAM requires two cycles for loading. Therefore, the page table control

interface of the Table Unit adds an additional cycle of delay before acknowledgment.



Anthony J. Mahar Chapter 3. Design 55

3.3.3 Control Units

The Page Table Control and Key Table Control units behave in very similar manners. They

both provide registers accessible through their generic control interface, they both react when

data is written to particular index registers, and they support bi–directional, asynchronous

communications with the Table unit. They differ in the register sets they operate with.

These similarities and differences are shown in figures 3.15 and 3.16.

The primary functionality necessary for the corresponding bus master devices is writing to

the register bank. Each bank consists of eight addressable locations, but easily expandable to

accommodate additional registers. When writing, byte–enable addressing is fully supported,

although not recommended. Byte–enables allow subsets of a register to be written to natively

by the bus.

There are different delays associated with writing to particular registers, such as when

writing to the index registers. The handler for the acknowledgment signal is required to assert

both acknowledge and busy for the appropriate duration of the index register writes. This is

seen in the diagrams as the transfer acknowledge logic. It observes the request and address

lines to determine which register is written to, then waits for the unit further upstream to

assert its own acknowledge, meanwhile maintaining the busy signal. Otherwise, if a regular

register is written to or a read operation is requested, acknowledge is asserted in the cycle

following the bus request.



Anthony J. Mahar Chapter 3. Design 56

Transfer

Enable
Byte

Read
Bus

Bus
Write

Wait
Ack /

Control
Interface

RNW /
Request /

Address

Page Index

Ancillary 0

Ancillary 1

Ancillary 2

Ancillary 3

Key Index

Page Base

Bus
Rd / Wr
Logic

Acknowledge
Logic

PageTable

Synchronizer

Ack Data

Page Table Interface

Req

Ack

Figure 3.15: Page Table Control Unit

Transfer

Enable
Byte

Read
Bus

Bus
Write

Wait
Ack /

Control
Interface

RNW /
Request /

Address

Key 1

Key 2

Key 0

Key Index

Bus
Rd / Wr
Logic

Acknowledge
Logic

Key Table

Synchronizer

Ack Data

Key Table Interface

Req

Ack

Key 3

Figure 3.16: Key Table Control Unit



Anthony J. Mahar Chapter 3. Design 57

3.3.4 OPB Control Interface Unit

Both the Page Table Control Unit and the Key Table Control Unit connect to separate OPB

buses. The control units feature the same generic bus interface, and therefore allow only one

Control Unit Interface to be created. To accelerate development time and reduce testing and

debugging, the Xilinx OPB IP Interface (IPIF) was used to abstract the lower level OPB

protocol into a more generic bus read/write interface.

The unit also translates from bus addresses, which are byte–addressed, to the generic bus

addresses, which are word–addressed. This requires a simple shift of the addresses. This unit

is not a memory and does not support byte addressing mode, only word–aligned transfers

for register writing. The IPIF was configured for use in address mode as it was the most

compatible with the control unit interface addressing and protocol used in the EMU. The

generic interface the IPIF produces is attached directly to the control unit interface without

active or passive logic.

The IPIF was used because it is rapidly implemented within the system. Furthermore,

Xilinx provides IPIF compatible interfaces for other bus protocols, such as the PLB bus. As

the IPIF signals do not change between buses, the only requirement for switching either con-

trol unit to PLB would be to instantiate the PLB IPIF component, adjust the configuration

constants, and attach to the appropriate bus in the EDK.



Chapter 4

Modeling

When evaluating the effect on application performance with an Encryption Management

Unit, there are two aspects that should be considered. First, the overall delay resulting from

using EMU must be modeled. Once this is sufficiently formulated, it can be incorporated

into additional models representing the relative effect of the EMU with respect to varying

application types and system loads.

4.1 Latency Modeling

To effectively analyze delay added by the EMU, total run time for an application is split into

two parts: time stalled on an instruction cache miss and time not stalled on a cache miss.

Grouping the two behaviors this way isolates the post–cache memory system and abstracts

details including application and system behavior into one term. This is shown in Equation

4.1.

The tbusy term reflects any time the system is not stalled on instruction fetching. This

includes waiting on system calls, processing data, running instructions from cache, and

more. Furthermore, Equation 4.2 expresses the percent of an application run time spent

58



Anthony J. Mahar Chapter 4. Modeling 59

stalled waiting on instruction fetches to complete. The percent of time stalled will vary with

application type and system load.

TTotal = tbusy + tstalled (4.1)

%Tstalled =
tstalled

ttotal

(4.2)

Equation 4.3 expresses the total time spent stalled on cache misses in an unencrypted

application. The MApp term reflects the number of cache misses of an application. LMem

reflects the average latency of the cache miss. It is possible for memory latency to vary

between applications. Processor architectures supporting speculative execution and instruc-

tion pre–fetching can affect average latency. If the correct branch is taken more than half

of the time, then the average latency will decrase. If the correct branch is taken less than

half of the time, average latency will incrase as the processor will be stalled not only on the

missed instruction, but will also have to wait for the incorrect pre–fetch to complete. The

effectiveness of the prediction unit is dependent on application characteritics.

tStalled = MApp × LMem (4.3)

To formulate the time stalled in an encrypted application, Equation 4.3 is modified to

account for differences between encrypted and unencrypted fetches and latencies. In the

Secure Software architecture, an application can have encrypted and unencrypted pages.

Time stalled in an encrypted environment is shown in Equation 4.4. MEnc is the number

of encrypted cache misses, while MUnenc is the number of unencrypted cache misses for an

application. MEnc+MUnenc will equal MApp from 4.3. LEMU is strictly the additional latency

of the EMU.

tStalledEnc = MEnc(LMem + LEMU) + MUnencLMem (4.4)

In a standard implementation, the EMU acts purely as a delay element within the memory

stream. There are no acceleration or performance enhancing features within the EMU.

Therefore, the EMU directly adds a fixed latency based on decryption mode and algorithm



Anthony J. Mahar Chapter 4. Modeling 60

for encrypted transactions. Inserting Equation 4.4 into 4.1 produces Equation 4.5, which

represents the total execution time as a function of EMU latency, memory latency, and

application behavior.

TTotalEnc = tbusy + tStalledEnc (4.5)

With the effect of the EMU framed within total execution time, a new model is generated

to show the relative change in performance by the EMU with an encrypted application. The

relative effect is an important metric for understanding the performance change caused by

the EMU. It places the direct effect of the EMU within the context of the application type

and system load.

Application types, which are important to this modeling, vary on two primary parameters:

system call usage and instruction locality. System calls are issued by an application volun-

tarily, producing a context switch that results in the application waiting until the system

call completes. This includes instances such as device I/O, sleep timers, and more. Instruc-

tion locality represents how effective an application is at keeping its instructinos in lower

level cache units, which also depends on the hardware cache size and replacement strategy.

System load reflects the level of involuntary waiting by the application such as waiting in

the process queue on a heavily loaded system.

High code locality, high system call usage, and high system load individually increase the

time busy relative to tstalled. If tbusy � tstalled for an unencrypted application, then there

will be little difference in performance with increases to tstalled when encrypted. Likewise, if

tstalled � tbusy, then small increases to tstalled due to the EMU will have a larger effect on the

total execution time.

4.2 Modeling Slow Down

Amdahl’s equations for speed–up provides a foundation for evaluating the absolute effect

of the EMU relative to application types and system loads. As the EMU adds latency, the



Anthony J. Mahar Chapter 4. Modeling 61

corresponding slow–down variant from Amdahl is used instead, shown in Equation4.6.

SlowDown =
Tnew

Told

=
TTotalEnc

TTotal

(4.6)

Equation 4.6, expanded in Equation 4.7, produces a model supporting encrypted and

unencrypted pages. If the application instructions are always encrypted, further reductions

are possible. Treating all fetches as encrypted results in Equation 4.8. Substituting the

second term in that equation with 4.2 produces the alternative form 4.9. This last equation

is also featured in related work [25], which serves to support this model.

SlowDown

=
tbusy + MEnc(LMem + LEMU) + MUnencLMem

tbusy + MAppLMem

(4.7)

=
tbusy + MEnc(LMem + LEMU)

tbusy + MEncLMem

when MUnenc = 0, MEnc = MApp

=
tbusy + MEncLMem + MEncLEMU

tbusy + MEncLMem

= 1 +
MEncLEMU

tbusy + MEncLMem

= 1 +
MEncLEMU

tbusy + MEncLMem

× LMem

LMem

= 1 +
LEMU

LMem

× MEncLMem

tbusy + MEncLMem

(4.8)

= 1 +
LEMU

LMem

×%Tstalled from 4.2 (4.9)



Chapter 5

Benchmarking

The benchmark used in this work was created primarily to measure latency on the processor

instruction–side bus. It uses similar methods for benchmarking as the LMBench memory

latency benchmark. The lmbench’s lat mem rd has already been validated for accuracy. La-

tencies for cache hits and misses within the instruction and data–side cache on the PowerPC

405 are the same [7]. Both data and instruction interfaces attach to the same processor

bus and access the same external memory. Along this line of reasoning, validation of the

benchmark created in this work, hereafter referred to as iBench, is gained when the validated

results of the lat mem rd benchmark matches that of iBench.

5.1 Methodology

LMBench uses a circularly linked list, with each list element consisting only of a pointer to

the next node. A single C–language command is issued repeatedly to fetch the data contents

stored at the location of a pointer, and set the pointer to that value. This command is

synthesizable by most compilers and architectures to a single instruction, where data is

loaded from the location pointed by a register into that same register. This instruction

62



Anthony J. Mahar Chapter 5. Benchmarking 63

0

50

100

150

200

250

300

0.001 0.01 0.1 1 10

La
te

nc
y 

(n
s)

Stride (mb)

LMBench Latency Benchmark: Stride  256

L1 Cache Hit
10.34

L1 Cache Miss
205

UTLB Miss
263

Figure 5.1: LMBench Latency Benchmark: Data memory subsystem

is executed one–hundred times sequentially, inside of a loop that will iterate the desired

number of times, which is DesiredT imes
100

+1. As the loop is dominated by the one–hundred load

instructions, and no branch instructions are between loads within the loop, the instruction

pre–fetch unit keeps the instruction pipeline filled. Furthermore, as the 100 instructions

require 400 bytes, this loop easily remains inside the instruction cache of size pf 16 kBytes.

The LMBench lat mem rd benchmark begins by establishing a circular linked list, where

each element points backward in memory by a fixed length, referred to as the stride. The

element in the lowest addressable area of the memory, the last one pointed to, is set to

recirculate and point back to the highest list address. Elements point backward to reduce

the possibility of hardware data–side pre–fetching polluting the testing. The test is run for

a number of iterations determined by the upper level LMBench framework to ensure the

execution time is sufficiently within the resolution of the operating system timer.

The memory area of pointers that are a stride–width apart is increased and the circularly

linked list is recreated in the larger space, and the test is rerun. This testing iterates for



Anthony J. Mahar Chapter 5. Benchmarking 64

increasingly larger memory spaces until a predefined maximum size of memory is met. As

the instruction pipeline containing the load instruction is easily kept full, the fetching of

data from caches or memory becomes the dominant bottleneck. Granted, when the linked

list memory area is small, the linked list is able to fit into data cache. Execution time for

the load instruction, without counting the time the CPU is stalled on the data fetch, is a

single clock cycle. The total time stalled when fetching for each test is provided in Equation

5.1. Average latency is obtained by dividing the stalled time by the number of instructions

executed, as shown in Equation 5.2.

StalledT ime = ExecutionT ime− (NumberOfInstructions× ClockPeriod) (5.1)

Latency =
ExecutionT ime

NumberOfInstructions
− (ClockPeriod) (5.2)

When walking the linked list for the first iteration, the area that is traversed is relatively

small and can fit into the data–side cache. Accounting for instruction execution time, the

time spent in these iterations are dominated by fetches from data cache. In the next phase,

the number of strides cannot fit into the data cache. The time spent for this phase is

dominated by fetches from external memory. Lastly, a final phase consists of the case where

the area traversed becomes large enough to not fit in the area mappable by the universal

TLB of the MMU, which results in many page miss exceptions in the operating system and

increasing average latency.

5.2 iBench Design

As the methodology used in lat mem rd provides a clean way of testing and calculating

latency it was decided that an instruction–side version of the LMBench data–side latency

benchmark be created. A direct correlation to walking a linked list is to instruction branch

in fixed stride lengths in a given memory area, with branches wrapping around from the

end back to the beginning. To setup this branching structure for varying memory widths,

iBench would have to allocate and write instructions into memory during run–time for later



Anthony J. Mahar Chapter 5. Benchmarking 65

execution. While self–modifying code is possible, and has been done with certain iterations

of this benchmark, it is not permitted with the Virginia Tech Secure Software architecture.

The basic reason for this is that there is no data–side cryptographic unit, and therefore the

program cannot create properly encrypted instructions.

The solution to the variable memory width problem was to write a utility that would inject

assembly code consisting of the branching table setup for the correct size and stride into a

base source file. A file would be generated for each desired width and stride. Furthermore,

because of having to establish the table in the executable before run–time, it was necessary

to use PowerPC assembly code. Problems that would arise attempting to force high–level

languages to produce such an exact table were avoided. Assembly was also used to ensure

that iBench would easily fit into instruction cache. Heavy–weight libraries, including those

needed for system calls, print formatting, and program init/finialization were avoided. Lastly,

assembly code was required to ensure proper branching techniques were used.

In lat mem rd there were two nested loops for each memory width test. As load instruc-

tions were performed in blocks of one–hundred, an inner loop counted off how many blocks of

one–hundred were necessary to achieve at least MemorySize
MemoryStride

strides. The outer loop counted

down how many iterations were requested for the particular test. While overhead for these

was minimal, the PowerPC offered a superior solution that had no overhead of either loop.

The PowerPC 405 instruction set contains a dedicated 32–bit counting register, CTR,

which can be initialized to a particular count value. To compliment this register, there are a

number of branching mnemonic instructions which will automatically decrement this counter

and test if the CTR register has, or has not, reached zero. Depending on the result of that

test, and the mnemonic used, the absolute or relatively addressed branch may be taken. The

complete operation of decrement, test, and set next instruction address occurs within the

same cycle.

With iBench, CTR is initialized to MemorySize
MemoryStride

× Iterations. The overhead of the loops

seen in lat mem rd is packed into the branch instructions. Following the conditional branches



Anthony J. Mahar Chapter 5. Benchmarking 66

is an unconditional branch to the location stored in the LR register. When the test frame

established the counter and branched into the jump table, LR was set as the return location

of the calling function. An unconditional branch to this location, while walking the table,

will return to the next instruction after the calling instruction.

The default behavior of the branch instruction used in iBench, when traversing the

branches, is to not pre–fetch the next location. All conditional branch instructions to CTR

are followed immediately by unconditional branches to the calling function in LR. Both

of these instructions reside in the same cache line fetched from memory. As a result, the

hardware instruction pre–fetch unit will pre–fetch instructions after the branch instruction

location, instead of the branch target. However, these instructions are already in cache and

do not require pre–fetching. Lastly, as the PowerPC 405 will speculatively access up to nine-

teen instructions down the predicted path, the first instruction is the unconditional return

to LR, which places the next instruction of the path as coming from the calling function.

Because this speculative access occurs on every stride, the entire path remains in cache un-

der the least recently used cache replacement algorithm. This avoids the pre–fetch unit not

only from reducing delay on a correctly predicted pre–fetch, but also from adding delay on

a miss–predicted pre–fetch.

5.3 iBench Validation

The PowerPC 405 on the Virtex–II Pro FPGA contains a minimal memory subsystem. In the

CPU hard processor core is 16 kB of instruction cache and 16 kB of data cache. Each cache

unit attaches to the same processor local bus. Fetches from memory are performed similarly,

and use the same external memory controller. Fetching instructions or data contained in

cache requires one cycle operating at CPU core frequency. If the respective instruction TLB,

ITLB, or data TLB, DTLB, do not contain the page entry requested, three CPU cycles

are spent automatically retrieving the entry from the universal TLB, UTLB. A software



Anthony J. Mahar Chapter 5. Benchmarking 67

0

50

100

150

200

250

300

0.001 0.01 0.1 1 10

La
te

nc
y 

(n
s)

Stride (mb)

iBench Latency Benchmark: Stride  256

L1 Cache Hit
9.30

L1 Cache Miss
205

UTLB Miss
260

Figure 5.2: iBench Latency Benchmark: Instruction memory subsystem

exception is generated in the event the entry is also not in the UTLB.

From this structure, three distinct plateaus of latency, with respect to area, are expected.

The plateaus represent latency for cache hits, memory fetches from cache misses, and TLB

misses. This is verified by the results from lat mem rd in plot 5.1.

The same stride is run using iBench on the same platform, with the bus decryption unit

entirely removed to ensure test purity. The results are shown in plot 5.2. Comparing the first

plateaus, where latency is primarily from local cache, iBench shows an average latency of 9.3,

compared with a LMBench result of 10.3. Future revisions of this benchmark will account

for this discrepancy, however it is only 10% variance and cache latency is not of particular

interest to this work. Memory latency is the next plateau, and of the most importance to

this work. The data points between LMBench and iBench reveal iBench is accurate within

0.25%. Comparing TLB miss latency plateaus shows that iBench has less latency, however

it remains within 1.75% of lat mem rd results.

The processor bus has two primary phases: an address acknowledge phase followed by



Anthony J. Mahar Chapter 5. Benchmarking 68

Table 5.1: Memory Latency by Stage

Stage Cycles Period Latency

ITLB Miss 3/16 3.33 ns 0.625 ns

Cache Fetch 1 3.33 ns 3.33 ns

Bus Address 3 10 ns 30 ns

Bus Wait 13 10 ns 130 ns

Bus Data 4 10 ns 40 ns

Total 204 ns

a data acknowledge phase. On a cache miss, the L1 cache will request a transaction for

an eight–word cache line of the missed address. The external memory controller will ac-

knowledge the address and begin retrieving the data or instructions from memory. Once

the external controller–memory fetch is complete, the requested transaction is returned in

64–bit transfer beats to the cache, where it is stored and returned to the processor.

With respect memory bus latency, observations using internal bus analyzers have revealed

the timing characteristics for the phases of a bus transaction. First, once the operating sys-

tem has passed its initial boot stage, it turns the cache and the MMU on. With both the

cache and MMU enabled, the processor switches from single beat and four–word line transac-

tions to eight–word cache line fetches from external memory. This simplifies characterization

of the data transfer phase as the external memory controller will primarily return four 64–bit

data beats. Secondly, when there is no contention on the processor bus, a total of three bus

clock cycles are required to acknowledge the transfer request signal.

Cycles, clock periods, and resulting latency for each stage of a memory request is listed in

Table 5.1. These numbers support the memory fetch latencies measured by lat mem rd and

iBench. In the plateaus dominated by memory fetch latency in plots 5.1 and 5.2, the shadow

TLB (ITLB and DTLB) and universal TLB are not often replaced. This reduces the average



Anthony J. Mahar Chapter 5. Benchmarking 69

latency impact in updating the shadow TLB from the UTLB as they are not updated for

every fetch, but after PageSize
Stride

= 4096
256

= 16 fetches. Comparing the analytical memory latency

estimate with measured latency further illustrates the validity of both benchmarks.



Chapter 6

Results

The intent of characterizing the EMU is to determine the difference between running en-

crypted and unencrypted applications on a given platform. To accomplish this, latency and

slow down measurements are taken between encrypted and unencrypted executables under

varying system load. Although the block and counter modes of the EMU support both

encrypted and unencrypted executables, a third configuration connecting the memory bus

directly to the CPU provides the base comparison. This base profile still contains the inter-

faces for CPU and SKU configuration, allowing the kernel and SKU to maintain a constant

performance effect of page loading and key management.

Two primary focuses of performance in this work are the direct and relative effects of the

EMU. These correspond to the measurable parameters of latency and slow down. Latency

describes time required to complete an instruction fetch in various configurations. Slow down

describes the relative effect on performance when utilizing the EMU.

The analysis presented in this chapter focuses on five primary modes of operation: the base

profile running unencrypted executables, unencrypted and encrypted executables using block

mode, and unencrypted and encrypted executables using counter mode. All measurements

were taken by the the iBench instruction–side memory latency benchmark developed in

70



Anthony J. Mahar Chapter 6. Results 71

Chapter 5.

It should be noted that these measurements do not reflect actual application performance.

To achieve precise latency measurement, the benchmark artificially executes instructions in

a way that local cache is not effective. It also does not contain any system calls or data

operations that would have any significant impact and lessen the performance degradation

of the EMU.

6.1 Latency

Latency measurements for the five configurations are shown in Figure 6.1. Immediately

visible are three plateaus of data points. The first plateau represents execution purely from

L1 cache, and is about 10 ns of latency for each profile. The PowerPC 405 has a single

L1 cache, without additional internal or external L2 and L3 caches. Therefore, the second

plateau represents external memory latency resulting from cache misses. The final plateau

is a result of TLB misses. This benchmark calculates average latency, therefore there are

PageSize
Stride

= 4096
256

= 16 fetches within a single page. When the system is loaded with page

misses, the time for a TLB miss divided among the fetches within each page.

Figure 6.2 depicts the average latency for a memory fetch with profile. The average is

computed from the values contained in the second plateau of Figure 6.1.

Analyzing the latency plots demonstrates that EMU latency for unencrypted execution

is close expected results. One observation is the slightly higher latency for unencrypted

executables in block and counter modes within the EMU system, compared to the base

system without an EMU.

In block mode, there is no additional processing incurred when processing unencrypted

full cache–line sized transfers. Each 10 ns is a single cycle on a 100 MHz bus. This cycle

of delay arises from the lack of support for fetch pipe–lining in block mode. Because the



Anthony J. Mahar Chapter 6. Results 72

0

50

100

150

200

250

300

350

400

450

500

0.001 0.01 0.1 1 10

La
te

nc
y 

(n
s)

Stride (mb)

iBench Latency Benchmarks: Stride  256

Base Profile
Block Mode, Unencrypted

Block Mode, Encrypted
Counter Mode, Unencrypted

Counter Mode, Encrypted

Figure 6.1: Complete iBench latency measurements



Anthony J. Mahar Chapter 6. Results 73

 0

 50

 100

 150

 200

 250

 300

 350

 400

Counter ModeBlock ModeBase

La
te

nc
y 

(n
s)

iBench Latency: Stride  256

205
216

375

226
237

Unencrypted
Encrypted

Figure 6.2: iBench memory fetch latency measurements



Anthony J. Mahar Chapter 6. Results 74

counter mode also does not support fetch pipe–lining, a cycle of delay is also attributed

to this reason. However, counter mode has an additional cycle of delay for unencrypted

transfers due to all fetches, encrypted or not, passing through the data FIFO.

The difference in latency between encrypted executables in block mode is as expected.

The unit requires four cycles to completely buffer eight–word transactions, and then re-

quires twelve cycles to decrypt with dual cryptographic cores. Once decrypted, the re-

sult is immediately transmitted. The total latency for decryption is 4 + 12 = 16cycles or

16cycles × 10ns
cycle

= 160ns more than unencrypted execution. This shows the expected and

actual latency in block mode encrypted executable processing precisely match.

Counter mode also exhibits expected latency. Latency comes from any additional time

spent encrypting the counter, beyond the standard memory access latency. The memory

access latency is the time after address acknowledge and before the first data beat arrives.

An ideal system would complete counter encryption before any data arrives, however the

prototype platform takes slightly longer to encrypt than to fetch.

As shown in Chapter 5, a normal access is 13 cycles long. Before encrypting, however,

the table look–up must occur. This completes in two cycles after address acknowledge. This

is followed by 12 cycles of encryption, and one final cycle for latching the output into the

XOR map. The result is a transaction consisting of a total of 15 cycles. Compared with

a normal access of 13 cycles, the counter mode encrypted latency is indeed 2 cycles, or

20ns. Furthermore, this compares favorably with the 14 cycles of counter mode unencrypted

latency, which 13+1FIFO cycles correctly relates to 10ns of difference from the base profile.

6.2 Slow Down

Figure 6.3 shows the slow down of iBench execution time for each profile, and under 1x, 2x,

and 4x loads. Each load indicates the number of concurrent instances of the benchmarks

running when performing measurements. The 1x load corresponds to the same measurements



Anthony J. Mahar Chapter 6. Results 75

used in Figure 6.2. All slow down results calculated from equations based on time or latency

are included in Appendix C.

Slow down was calculated using Equation 4.6, where the raw execution time of the bench-

mark is used. The old time parameter used in the equation is the base profile for each load.

Each corresponding load for each profile is used as the new parameter.

The most important observation from these results is that slow down is reduced as load

increases. This is to be expected; as load increases, the applications incur an overhead from

context switching and other operating system management. The base profile also suffers

this same context switch penalty, which is why difference in slow down is minimal. The

encrypted applications show a speed up as the system becomes more heavily loaded, relative

to an unloaded system. This correctly follows the reasoning that as an application is stalled

less often on instruction fetches, the encrypted slow down will converge to the unencrypted

slow down.

The slow down results verify the model derived earlier in Chapter 4. For 1x load, it is a

safe assumption that the benchmark is stalled approximately 100% of the time on a memory

fetch. LEnc and LMem of Equation 4.9 are substituted for the external memory fetch latencies

in Figure 6.2. Memory latency is defined as time spent fetching from unencrypted external

memory. Encryption latency is the time spent fetching and decrypting from external memory,

less the time spent on an unencrypted fetch.



Anthony J. Mahar Chapter 6. Results 76

 1

 1.2

 1.4

 1.6

 1.8

 2

4x Load2x Load1x Load

S
lo

w
 D

ow
n

iBench Slow Down: Stride  256

Base
Block, Unenc

Block, Enc
Counter, Unenc

Counter, Enc

Figure 6.3: Slow down over various loads and profiles



Anthony J. Mahar Chapter 6. Results 77

BlockUnencSlowDown = 1 + 204ns+1PrefetchLoss
204ns

= 1.05 (6.1)

BlockEncSlowDown = 1 + 204ns+12Decrypt+4Buffer+1PrefetchLoss
204ns

= 1.83 (6.2)

CounterUnencSlowDown = 1 + 204ns+1FIFO+1PrefetchLoss
204ns

= 1.10 (6.3)

CounterEncSlowDown = 1 + 204ns+2Lookup+12Encrypt−13Fetch+1FIFO+1PrefetchLoss
204ns

= 1.15 (6.4)

For block mode, solving Equation 4.9 under 1x load results in a calculated slow down

of 1.83 for encrypted execution, and 1.05ns for unencrypted execution. In counter mode,

encrypted execution slow down is 1.15, and 1.10 for unencrypted execution. These directly

correspond to the measured slow down using iBench.

For 2x and 4x execution, slow down is slightly mitigated in each profile. The latency

of encrypted or unencrypted transactions certainly do not change. Instead, the percent

stalled parameter of Equation 4.9 is decreased from the 100% used in 1x loaded benchmarks,

as applications spend less of a percent of time stalled on encrypted instructions as load is

increased.



Chapter 7

Future Directions

There are a number of interesting possibilities for improvement and extension of the work

presented in this thesis. With the EMU there is opportunity in design, performance, and its

feature set. The iBench benchmark offers similar opportunities for expansion.

7.1 EMU Design Directions

The most immediate direction of the EMU within the Secure Software Project would likely

be the addition of data protections. The Secure Software project is currently exploring

a number of options for providing increased protection of program data. Many platform

options require the encryption and decryption as data is accessed from external memory.

The instruction–side decryption unit cannot be reused, as the data–side bus interface

handles more complex transactions than the instruction–side bus. Additional transaction

types such as master–terminated or slave–terminated burst and byte steering modes can

be very difficult to keep aligned for certain block cryptographic modes. Furthermore, the

data–side bus can access memory mapped I/O (MMIO). Effort will be required to ensure

transactions conform to requirements by the slave device. If protections are afforded to

78



Anthony J. Mahar Chapter 7. Future Directions 79

MMIO, additional logic may be required to handle instances where different slave devices

using different credentials reside within the same page.

There are several ways for the EMU support data protection. The first method would

insert a data–enhanced EMU between the processor data–side interface and the processor

local bus, similar to the way the EMU presented in this work is located. The second usage

model would partially integrate the instruction–side and data–side encryption management

unit. Each unit would remain unique, but they would share state information such as page

mappings and keys. The third method would create a small bus and arbiter, and connect

the processor instruction–side and data–side bus interfaces to this EMU managed bus. The

EMU would be extended to properly support the additional data transaction types. This last

option would have similar performance as the first two options, however it would eliminate

the need for two cryptographic units and/or two sets of page mapping tables.

A third possible direction for the EMU takes advantage of advances in run–time reconfig-

urable hardware. With the current state of technology, it is possible to selectively reconfigure

logic in specific areas of integrated circuits that support such operations. While the security

of such a model would require validation, it is possible to associate a specific cryptographic

set with a particular page in physical memory, similar to the way keys and ancillary data

are associated with pages. This would allow a secure application to select cryptographic

algorithms, cryptographic modes, and possibly obfuscation [40] [41] techniques. Obfuscation

would not provide security by itself, but could be used to further increase the difficulty of

various snooping and modification attacks on the platform.

A run–time reconfiguration unit would be added to the EMU that could handle individual

configuration for cryptographic algorithm and operational mode modules. The cryptographic

operational mode module is a reconfigurable version of the bridge modification unit in the

EMU. The cryptographic algorithm module is likewise a reconfigurable version of the static

cryptographic routine in the EMU. As the versions of the modules in the current EMU are al-

ready highly modular and use well defined interfaces, conversion to a run–time reconfigurable



Anthony J. Mahar Chapter 7. Future Directions 80

system should not require much modification to the rest of the system.

The last improvement would use the performance monitoring features installed in various

locations of the EMU. These signals represent activity for a specific monitor, such as an

encrypted fetch or non–encrypted fet, or page table write with zero or non–zero key pointers.

All of these strobes are exported outside of the EMU and can be connected to external

probes or internal monitoring cores. Regardless of the mechanism, these signals can provide

additional insight into the operation and performance of the secure architecture.

7.2 EMU Performance Directions

In addition to functional directions described in the previous section, the EMU implemented

in this work is receptive to improvements in performance. These include the use of pre–

fetching [42] and stream based [43] processing. In fact, with some secure architectures using

pre–decryption, applications exhibiting high locality have even demonstrated an improve-

ment in performance [44].

Another improvement would re–enable address pipe–lining of the processor bus. Presently,

decryption units operate one transaction at a time, allowing time for the transaction to

complete before servicing the next. Subsequent requests, which could begin processing during

the current transaction, are held.

Serializing requests can also result in additional performance loss. If the bus lock is lost

by the instruction–side interface of the CPU, then a data request could take over. If that

data request is not complete by the end of the decryption cycle, the instruction–side unit

has the additional latency penalty for the data transaction to complete. Using additional

chip resources it is possible to create a set of ping–ping buffers or FIFO units that would

allow transaction requests from the CPU to serviced while the current transaction is being

decrypted.



Anthony J. Mahar Chapter 7. Future Directions 81

In addition to enabling pipelined access to the bus, improvements in the control mecha-

nism for counter mode are also possible. Bypassing the FIFO for unencrypted transactions

will help reduce latency for normal, insecure applications.

7.3 iBench Directions

There are two key directions for iBench. The first improvement would increase the usability

of the benchmark. Presently, an individual executable is created for each stride and size

combination. Depending on the combination of stride and size, there are on the order of one

hundred executables created. This is necessary to establish the wrap around functionality

for the given memory size without changing instructions during run–time.

A more efficient solution would further emulate what the LMBench latency benchmark

does. For each iteration of stride and size, lat mem rd builds the linked list pointers using

the current stride and over the current memory area. A parallel to this within iBench would

require capabilities similar to self–modifying code. Once a memory space is allocated, iBench

would write individual branch instructions into memory at a set stride length, and would

cap the ends of the memory region with wrap–around branches.

Self modifying code is not typically a problem with standard architectures. However,

issues arise when benchmarking the EMU due to the protections offered by the EMU. For

iBench to measure EMU latency, the memory pages containing the branch table must be

flagged as encrypted. However, iBench must then write to those memory in a manner that

would allow proper decryption of the instructions. Either a ”null” encryption could be used

such that the ”encrypted” output is the same as the input, or the benchmark could possibly

pre–determine what the instructions should encrypt as.

The first option would let iBench write instructions directly to memory, where they

would be ”decrypted” to the same value. The second option would be a reasonable solution

when using a simple direct block mode encryption where the encrypted result of a block of



Anthony J. Mahar Chapter 7. Future Directions 82

instructions does not change with address or counter values.

Another direction for iBench would be conversion from assembly to a higher level language.

The current version relies on an assembly program targeted for the PowerPC 405 processor.

Using assembly eliminates the overhead of function calls and stacks created by compilers,

and ensures the circular branching is constructed appropriately.

Research must be given into high level languages and compilers that would allow the

branching table to be synthesized such that it is functionally similar to the current configu-

ration. If programmed appropriately, iBench would be transportable to addition processor

architectures, in addition to the PowerPC 405. Adding self–modifying code as described

above into the high-level version would require additional investigation.



Chapter 8

Conclusion

The Virginia Tech Secure Software Project defines an architecture that increases software

protection through extensions of standard hardware and software mechanisms. By main-

taining standard computer and software use models, these software protections are easily

integrated into modern computing environments. This work presents the successful design

and implementation of an Encryption Management Unit to support software protections in

hardware for the Secure Software Project.

The EMU continues the VT Secure Software goal of remaining compatible with many

modern computing architectures. In addition to demonstrating that the EMU can work with

a modern architecture, it was designed from the beginning to allow the actual implementation

to be extended and directly reused with other architectures. Defining a cohesive set of

modules allows the EMU to tailor specific sets of functionality without requiring modification

to the remaining system.

Although performance of the EMU is heavily dependent on the cryptographic routine and

operational mode, the EMU itself must still maintains minimal latency. This work provides

an efficient solution for handling page mapping look–ups and key retrievals. Encrypted

status, along with key and ancillary data, are available on the cycle following the transaction

83



Anthony J. Mahar Chapter 8. Conclusion 84

acknowledgment. Although there is a small penalty for the EMU serializing address pipe–

lining, it is still possible to invest additional hardware and logic necessary for pipe–lining

support, further increasing performance.

The models created in this work provide methods to calculate the absolute and relative

effects of the EMU on a application compared with its unencrypted version. Two equations

were derived for calculating slow down of an encrypted executable. The equations provide

the ability to determine slow down depending on different sets of information known about

the application under test. The same solution was also determined in [25], which gives

further credence to these models.

A new benchmark was created to test the EMU and to fill a significant void in bench-

marking in the secure software field of research. The benchmark emulates the methods

used by proven data–side memory latency benchmarks. The instruction–side benchmark

developed, iBench, achieves less than 0.25% error in comparison to lat mem rd for external

memory fetch latency. With the accuracy of iBench verified, the benchmark provides proper

measurement of the EMU through latency measurements of several platform configurations.

The benchmark was used to measure actual EMU latency and slow down of protected

applications under varying system load. EMU latency was shown to be as expected. An

expected small decrease in performance was revealed for unencrypted applications running

with the EMU using block and counter modes. This was attributed to disabling address pipe–

lining, which can be easily corrected in future EMU revisions. The measured slow down of an

encrypted executable matched the mathematical models within the measurement accuracy

of 1%.

As the EMU is a component within a larger developing project, the requirements of the

EMU will also change. A number of future directions for the EMU and iBench were discussed.

Possible paths that the Virginia Tech Secure Software Project could pursue and resulting

changes to the EMU were identified. These directions included functional improvements,

including data protection, and run–time reconfigurable cryptographic modules. A second



Anthony J. Mahar Chapter 8. Conclusion 85

set of directions, attributed directly to the EMU, featured performance improvements in

future generations such as allowing address pipe–lining.



Bibliography

[1] J. Edmison, “Secure software platform: Acheiving software security via COTS augmen-

tation,” June 2005, to be presented at ERSA 2005.

[2] The Trusted Computing Platform Alliance, 2005, www.trustedcomputinggroup.org.

[3] A. Huang, “Keeping secrets in hardware: the Microsoft Xbox (TM) case study,” Mas-

sachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, MA,

Tech Report AIM-2002-008, May 2002, mITLCS-TR-872.

[4] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Aegis: architecture

for tamper-evident and tamper-resistant processing,” in ICS ’03: Proceedings of the

17th Annual International Conference on Supercomputing. New York, NY, USA: ACM

Press, 2003, pp. 160–171.

[5] D. Lie, C. A. Thekkath, and M. Horowitz, “Implementing an untrusted operating system

on trusted hardware,” in SOSP ’03: Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles. New York, NY, USA: ACM Press, 2003, pp. 178–192.

[6] Virtex–II Pro and Virtex–II Pro X Platform FPGAs: Complete Data Sheet. Data Sheet

83, Xilinx, March 2005.

[7] PowerPC 405 Processor Block Reference Guide. User Guide 18, Xilinx, August 2004.

[8] ML310 User Guide. Virtex–II Pro Embedded Development Platform. User Guide 68,

Xilinx, January 2005.

86



Anthony J. Mahar Bibliography 87

[9] Platform Studio User Guide. Embedded Development Kit EDK 7.1. User Guide 113,

Xilinx, Febuary 2005.

[10] R. Best, “Preventing software piracy with crypto–microprocessors,” in Proceedings of

the IEEE Spring COMPCON 80, San Fransisco, CA, Febuary 1980, pp. 466–469.

[11] M. G. Kuhn, “Cipher instruction search attack on the bus-encryption security micro-

controller ds5002fp,” IEEE Trans. Comput., vol. 47, no. 10, pp. 1153–1157, 1998.

[12] Business Software Alliance, 2005, http://www.bsa.org/.

[13] Business Software Alliance and IDC, “Second annual BSA and IDC global software

piracy study,” May 2005.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang,

“On the (im)possibility of obfuscating programs,” in CRYPTO ’01: Proceedings of the

21st Annual International Cryptology Conference on Advances in Cryptology. London,

UK: Springer-Verlag, 2001, pp. 1–18.

[15] W. Shi, H.-H. S. Lee, C. Lu, and M. Ghosh, “Towards the issues in architectural support

for protection of software execution,” SIGARCH Computer Architure News, vol. 33,

no. 1, pp. 6–15, 2005.

[16] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Hardware mechanisms

for memory integrity checking,” Massachusetts Institute of Technology Laboratory for

Computer Science, Cambridge, MA, Tech Report MITLCS-TR-872, November 2002.

[17] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches and hash trees

for efficient memory integrity verification,” in HPCA ’03: Proceedings of the The Ninth

International Symposium on High-Performance Computer Architecture (HPCA’03).

Washington, DC, USA: IEEE Computer Society, 2003, p. 295.

[18] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel, “The

microarchitecture of the pentium 4 processor,” Intel Technology Journal Q1, 2001.



Anthony J. Mahar Bibliography 88

[19] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “POWER4 system microar-

chitecture,” IBM Journal on Research and Development, vol. 46, no. 1, January 2002.

[20] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, C. Anguille, M. Bardouillet, C. Bu-

atois, and J. B. Rigaud, “Hardware engines for bus encryption: A survey of existing

techniques,” in DATE ’05: Proceedings of the conference on Design, Automation and

Test in Europe. Washington, DC, USA: IEEE Computer Society, 2005, pp. 40–45.

[21] IBM, CodePack: PowerPC Code Compression Utility User’s Manual. Version 3.0, In-

ternational Business Machines (IBM) Corporation, 1998.

[22] T. M. Kemp, R. K. Montoye, J. D. Harper, J. D. Palmer, and D. J. Auerbach, “A

decompression core for PowerPC,” IBM Journal on Research and Development, vol. 42,

no. 6, pp. 807–812, 1998.

[23] PowerPC 405 Embedded Processor Core User’s Manual, Fifth Edition, IBM, December

2001.

[24] C. Lefurgy, E. Piccininni, and T. Mudge, “Evaluation of a high performance code com-

pression method,” in MICRO 32: Proceedings of the 32nd Annual ACM/IEEE Inter-

national Symposium on Microarchitecture. Washington, DC, USA: IEEE Computer

Society, 1999, pp. 93–102.

[25] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz,

“Architectural support for copy and tamper resistant software,” in ASPLOS-IX: Pro-

ceedings of the Ninth International Conference on Architectural Support for Program-

ming Languages and Operating Systems. New York, NY, USA: ACM Press, 2000, pp.

168–177.

[26] Standard Performance Evaluation Corporation, “SPEC CPU 2000,” 2005,

www.spec.org.



Anthony J. Mahar Bibliography 89

[27] M. J. Charney, “Prefetching and memory system behavior of the SPEC95 benchmark

suite,” IBM Journal of Research and Development, vol. 41, no. 3, Febuary 1997.

[28] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-

ishnan, and S. K. Weeratunga, “The NAS parallel benchmarks,” The International

Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, Fall 1991.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs:

characterization and methodological considerations,” SIGARCH Computer Architecture

News, vol. 23, no. 2, pp. 24–36, 1995.

[30] L. McVoy and C. Staelin, “lmbench: Portable tools for performance analysis,” Proceed-

ings of the 1996 USENIX Technical Conference, pp. 279–295, January 1996.

[31] C. Staelin, “lmbench – an extensible micro-benchmark suite,” HP Laboratories, Israel,

Tech Report HPL-2004-213, December 2004.

[32] U.S. National Institute of Standards and Technology, “Specification for the advanced en-

cryption standard,” Federal Information Processing Standards Publication 197, Novem-

ber 2001.

[33] V. Fischer and M. Drutarovsky, “Two methods of rijndael implementation in reconfig-

urable hardware,” in CHES ’01: Proceedings of the Third International Workshop on

Cryptographic Hardware and Embedded Systems. London, UK: Springer-Verlag, 2001,

pp. 77–92.

[34] M. McLoone and J. V. McCanny, “High performance single-chip fpga rijndael algorithm

implementations,” in CHES ’01: Proceedings of the Third International Workshop on

Cryptographic Hardware and Embedded Systems. London, UK: Springer-Verlag, 2001,

pp. 65–76.



Anthony J. Mahar Bibliography 90

[35] S. Morioka and A. Satoh, “A 10-gbps full-aes crypto design with a twisted bdd s-box

architecture,” IEEE Trans. Very Large Scale Integr. Syst., vol. 12, no. 7, pp. 686–691,

2004.

[36] On–Chip Peripheral Bus Architecture Specifications, 2nd ed., IBM, April 2001.

[37] M. Stein, “Crossing the abyss: asynchronous signals in a synchronous world,” EDN

Magazine, July 2003.

[38] 64-bit Procesor Local Bus Architecture Specifications, 3rd ed., IBM, May 2001.

[39] Content-Addressable Memory v5.1. Data Sheet 253, Xilinx, November 2004.

[40] X. Zhuang, T. Zhang, H.-H. S. Lee, and S. Pande, “Hardware assisted control flow

obfuscation for embedded processors,” in CASES ’04: Proceedings of the 2004 Inter-

national Conference on Compilers, Architecture, and Synthesis for Embedded Systems.

New York, NY, USA: ACM Press, 2004, pp. 292–302.

[41] X. Zhuang, T. Zhang, and S. Pande, “Hide: an infrastructure for efficiently protect-

ing information leakage on the address bus,” in ASPLOS-XI: Proceedings of the 11th

International Conference on Architectural Support for Programming Languages and Op-

erating Systems. New York, NY, USA: ACM Press, 2004, pp. 72–84.

[42] T.-F. Chen and J.-L. Baer, “Reducing memory latency via non-blocking and prefetching

caches,” in ASPLOS-V: Proceedings of the fifth international conference on Architectural

support for programming languages and operating systems. New York, NY, USA: ACM

Press, 1992, pp. 51–61.

[43] T. Sherwood, S. Sair, and B. Calder, “Predictor–directed stream buffers,” in MICRO

33: Proceedings of the 33rd anuall ACM/IEEE international symposium on Microar-

chitecture. New York, NY, USA: ACM Press, 2000, pp. 42–53.



Anthony J. Mahar Bibliography 91

[44] B. Rogers, Y. Solihin, and M. Prvulovic, “Memory predecryption: hiding the latency

overhead of memory encryption,” ACM SIGARCH Computer Architecture News, vol. 33,

no. 1, pp. 27–33, 2005.



Appendix A

Page Table Control Registers

A.1 Page Base Address Register

0 19

ReservedPage Base Address

Figure A.1: Page Table Control: Page Base Address Register

Table A.1: Page Base Address Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 19
Page

Read/Write 0x00000
Base physical memory address of the

Address page to be associated with the page–
key and page–ancillary data pairs

20 - 31 Reserved

92



Anthony J. Mahar Appendix A. Page Table Control Registers 93

A.2 Key Index Register

26 31

Key IndexReserved

Figure A.2: Page Table Control: Key Index Register

Table A.2: Key Index Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 25 Reserved

26 - 31 Key Index Read/Write 0x00
Pointer into key table associated
with a page by the page–key pair



Anthony J. Mahar Appendix A. Page Table Control Registers 94

A.3 Page Index Register

26 31

Page IndexReserved

Figure A.3: Page Table Control: Page Index Register

Table A.3: Page Index Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 25 Reserved

26 - 31 Page Index Read/Write 0x00

Table location to load page–key
and page–ancillary data pairs into.
Writing to this register loads the
page–key and page–ancillary
information into the tables.



Anthony J. Mahar Appendix A. Page Table Control Registers 95

A.4 Ancillary Data 0 Register

310

Ancillary Data 0

Figure A.4: Page Table Control: Ancillary Data 0 Register

Table A.4: Ancillary Data 0 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (96-127) of four-word data set



Anthony J. Mahar Appendix A. Page Table Control Registers 96

A.5 Ancillary Data 1 Register

310

Ancillary Data 1

Figure A.5: Page Table Control: Ancillary Data 1 Register

Table A.5: Ancillary Data 1 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (64-95) of four-word data set



Anthony J. Mahar Appendix A. Page Table Control Registers 97

A.6 Ancillary Data 2 Register

310

Ancillary Data 2

Figure A.6: Page Table Control: Ancillary Data 2 Register

Table A.6: Ancillary Data 2 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (32-63) of four-word data set



Anthony J. Mahar Appendix A. Page Table Control Registers 98

A.7 Ancillary Data 3 Register

310

Ancillary Data 3

Figure A.7: Page Table Control: Ancillary Data 3 Register

Table A.7: Ancillary Data 3 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (0-31) of four-word data set



Appendix B

Key Table Control Registers

B.1 Key Index Register

26 31

Key IndexReserved

Figure B.1: Key Table Control: Key Index Register

Table B.1: Key Index Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 25 Reserved

26 - 31 Key Index Read/Write 0x00
Pointer to where key will
be inserted into key table

99



Anthony J. Mahar Appendix B. Key Table Control Registers 100

B.2 Key Word 0 Register

310

Key, Word 0

Figure B.2: Key Table Control: Key Word 0 Register

Table B.2: Key Word 0 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (96-127) of four-word key set



Anthony J. Mahar Appendix B. Key Table Control Registers 101

B.3 Key Word 1 Register

310

Key, Word 1

Figure B.3: Key Table Control: Key Word 1 Register

Table B.3: Key Word 1 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (64-95) of four-word key set



Anthony J. Mahar Appendix B. Key Table Control Registers 102

B.4 Key Word 2 Register

310

Key, Word 2

Figure B.4: Key Table Control: Key Word 2 Register

Table B.4: Key Word 2 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (32-63) of four-word key set



Anthony J. Mahar Appendix B. Key Table Control Registers 103

B.5 Key Word 3 Register

310

Key, Word 3

Figure B.5: Key Table Control: Key Word 3 Register

Table B.5: Key Word 3 Register Bit Definitions

Bit(s) Name Access
Reset

Description
Value

0 - 31 Data Read/Write 0x00000000 Bits (0-31) of four-word key set



Appendix C

Benchmark Results

C.1 LMBench

256–bit stride, Base platform (no EMU).

0.00391 10.310

0.00586 10.311

0.00781 10.311

0.00977 10.312

0.01172 10.310

0.01367 10.313

0.01562 10.311

0.01758 75.063

0.01953 126.741

0.02148 133.986

0.02344 171.629

0.02539 203.001

0.02734 176.270

0.02930 203.353

0.03125 203.293

0.03516 204.635

0.03906 204.636

0.04297 204.642

0.04688 204.678

0.05078 204.676

0.05469 204.683

0.05859 204.669

0.06250 204.699

104



Anthony J. Mahar Appendix C. Benchmark Results 105

0.07031 205.373

0.07812 205.378

0.08594 205.422

0.09375 205.470

0.10156 205.492

0.10938 205.535

0.11719 205.564

0.12500 264.510

0.14062 263.897

0.15625 264.078

0.17188 263.679

0.18750 263.648

0.20312 263.755

0.21875 263.712

0.23438 263.474

0.25000 263.557

0.28125 263.545

0.31250 263.519

0.34375 263.631

0.37500 263.494

0.40625 263.800

0.43750 263.784

0.46875 263.627

0.50000 263.653

0.56250 263.859

0.62500 264.384

0.68750 264.475

0.75000 264.846

0.81250 264.740

0.87500 265.189

0.93750 264.916

1.00000 264.890

1.12500 265.317

1.25000 265.674

1.37500 265.792

1.50000 266.320

1.62500 266.384

1.75000 266.591

1.87500 266.800

2.00000 266.910

2.25000 267.402

2.50000 267.629



Anthony J. Mahar Appendix C. Benchmark Results 106

2.75000 267.793

3.00000 268.022

3.25000 268.105

3.50000 268.149

3.75000 268.175

4.00000 268.285

4.50000 268.378

5.00000 268.507

5.50000 268.470

6.00000 268.515

6.50000 268.511

7.00000 268.488

7.50000 268.451

8.00000 268.459



Anthony J. Mahar Appendix C. Benchmark Results 107

C.2 iBench

C.2.1 Complete Latency Measurement

256–bit stride, Base platform (no EMU).

256, 0.00391, 409600, 60572000.000, 11744.051, 8.697

256, 0.00586, 273066, 65972000.000, 7207.954, 9.663

256, 0.00781, 204800, 48808000.000, 5172.975, 7.221

256, 0.00977, 163840, 63238000.000, 4026.532, 9.413

256, 0.01172, 136533, 62553000.000, 3293.289, 9.350

256, 0.01367, 117028, 62147000.000, 2784.762, 9.316

256, 0.01562, 102400, 61874000.000, 2411.725, 9.296

256, 0.01758, 91022, 490510000.000, 2126.484, 73.820

256, 0.01953, 81920, 839443000.000, 1901.418, 126.507

256, 0.02148, 74472, 1122672000.000, 1719.284, 169.383

256, 0.02344, 68266, 1359136000.000, 1568.950, 205.251

256, 0.02539, 63015, 1356806000.000, 1442.757, 205.061

256, 0.02734, 58514, 1356077000.000, 1335.316, 205.091

256, 0.02930, 54613, 1354939000.000, 1242.742, 205.040

256, 0.03125, 51200, 1354213000.000, 1162.172, 205.034

256, 0.03516, 45511, 1352585000.000, 1028.721, 204.965

256, 0.03906, 40960, 1350078000.000, 922.747, 204.726

256, 0.04297, 37236, 1350206000.000, 836.534, 204.863

256, 0.04688, 34133, 1349193000.000, 765.057, 204.806

256, 0.05078, 31507, 1348997000.000, 704.811, 204.860

256, 0.05469, 29257, 1348843000.000, 653.392, 204.903

256, 0.05859, 27306, 1347604000.000, 608.921, 204.780

256, 0.06250, 25600, 1347405000.000, 570.163, 204.798

256, 0.07031, 22755, 1350423000.000, 505.708, 205.350

256, 0.07812, 20480, 1350677000.000, 454.383, 205.455

256, 0.08594, 18618, 1350053000.000, 412.490, 205.420

256, 0.09375, 17066, 1350503000.000, 377.652, 205.543

256, 0.10156, 15753, 1349935000.000, 348.247, 205.501

256, 0.10938, 14628, 1350253000.000, 323.107, 205.581

256, 0.11719, 13653, 1350376000.000, 301.354, 205.628

256, 0.12500, 12800, 1350505000.000, 282.351, 205.669

256, 0.14062, 11377, 1700981000.000, 250.675, 259.117

256, 0.15625, 10240, 1700687000.000, 225.444, 259.099

256, 0.17188, 9309, 1701432000.000, 204.801, 259.252

256, 0.18750, 8533, 1700110000.000, 187.612, 259.089



Anthony J. Mahar Appendix C. Benchmark Results 108

256, 0.20312, 7876, 1700234000.000, 173.068, 259.154

256, 0.21875, 7314, 1699794000.000, 160.662, 259.089

256, 0.23438, 6826, 1699231000.000, 149.878, 259.038

256, 0.25000, 6400, 1699784000.000, 140.493, 259.113

256, 0.28125, 5688, 1699019000.000, 124.776, 259.065

256, 0.31250, 5120, 1699587000.000, 112.285, 259.134

256, 0.34375, 4654, 1702834000.000, 102.017, 259.678

256, 0.37500, 4266, 1699969000.000, 93.481, 259.266

256, 0.40625, 3938, 1699477000.000, 86.275, 259.194

256, 0.43750, 3657, 1699861000.000, 80.108, 259.244

256, 0.46875, 3413, 1701912000.000, 74.745, 259.581

256, 0.50000, 3200, 1702227000.000, 70.076, 259.612

256, 0.56250, 2844, 1702655000.000, 62.253, 259.732

256, 0.62500, 2560, 1699464000.000, 56.033, 259.216

256, 0.68750, 2327, 1703464000.000, 50.918, 259.866

256, 0.75000, 2133, 1704587000.000, 46.665, 260.055

256, 0.81250, 1969, 1705902000.000, 43.073, 260.252

256, 0.87500, 1828, 1708058000.000, 39.976, 260.638

256, 0.93750, 1706, 1711259000.000, 37.302, 261.151

256, 1.00000, 1600, 1714249000.000, 34.995, 261.510

256, 1.12500, 1422, 1710602000.000, 31.093, 261.001

256, 1.25000, 1280, 1711669000.000, 27.989, 261.129

256, 1.37500, 1163, 1710872000.000, 25.415, 261.155

256, 1.50000, 1066, 1711140000.000, 23.292, 261.220

256, 1.62500, 984, 1717667000.000, 21.499, 262.220

256, 1.75000, 914, 1720600000.000, 19.974, 262.588

256, 1.87500, 853, 1723281000.000, 18.639, 263.020

256, 2.00000, 800, 1726781000.000, 17.487, 263.454

256, 2.25000, 711, 1724578000.000, 15.538, 263.162

256, 2.50000, 640, 1732793000.000, 13.988, 264.377

256, 2.75000, 581, 1731713000.000, 12.680, 264.587

256, 3.00000, 533, 1736049000.000, 11.641, 265.044

256, 3.25000, 492, 1736926000.000, 10.745, 265.180

256, 3.50000, 457, 1737473000.000, 9.984, 265.182

256, 3.75000, 426, 1735619000.000, 9.295, 265.232

256, 4.00000, 400, 1739295000.000, 8.741, 265.379

256, 4.50000, 355, 1735783000.000, 7.745, 265.260

256, 5.00000, 320, 1738163000.000, 6.992, 265.210

256, 5.50000, 290, 1733629000.000, 6.317, 265.348

256, 6.00000, 266, 1734165000.000, 5.798, 265.265

256, 6.50000, 246, 1737340000.000, 5.372, 265.253

256, 7.00000, 228, 1737288000.000, 4.969, 265.744



Anthony J. Mahar Appendix C. Benchmark Results 109

256, 7.50000, 213, 1735714000.000, 4.647, 265.255

256, 8.00000, 200, 1738310000.000, 4.370, 265.237



Anthony J. Mahar Appendix C. Benchmark Results 110

C.2.2 EMU Memory Fetch Latency

Table C.1: Base Profile Memory Fetch Latency

Size (kB) 1x 2x 4x

2.40E + 01 2.05E + 02 4.21E + 02 8.62E + 02

2.60E + 01 2.05E + 02 4.10E + 02 8.53E + 02

2.80E + 01 2.05E + 02 4.10E + 02 8.53E + 02

3.00E + 01 2.05E + 02 4.22E + 02 8.24E + 02

3.20E + 01 2.05E + 02 4.27E + 02 8.31E + 02

3.60E + 01 2.05E + 02 4.10E + 02 8.60E + 02

4.00E + 01 2.05E + 02 4.22E + 02 8.56E + 02

4.40E + 01 2.05E + 02 4.21E + 02 8.43E + 02

4.80E + 01 2.05E + 02 4.11E + 02 8.43E + 02

5.20E + 01 2.05E + 02 4.10E + 02 8.33E + 02

5.60E + 01 2.05E + 02 4.10E + 02 8.43E + 02

6.00E + 01 2.05E + 02 4.10E + 02 8.80E + 02

6.40E + 01 2.05E + 02 4.22E + 02 8.49E + 02

7.20E + 01 2.05E + 02 4.16E + 02 8.33E + 02

8.00E + 01 2.06E + 02 4.13E + 02 8.35E + 02

8.80E + 01 2.06E + 02 4.24E + 02 8.43E + 02

9.60E + 01 2.06E + 02 4.23E + 02 8.35E + 02

1.04E + 02 2.06E + 02 4.12E + 02 8.42E + 02

1.12E + 02 2.06E + 02 4.12E + 02 8.40E + 02

1.20E + 02 2.06E + 02 4.12E + 02 8.72E + 02

Avg (ns) 2.05E + 02 4.16E + 02 8.46E + 02



Anthony J. Mahar Appendix C. Benchmark Results 111

Table C.2: Block Mode Profile Memory Fetch Latency

Size (kB) Unenc 1x Unenc 2x Unenc 4x Enc 1x Enc 2x Enc 4x

2.40E + 01 2.16E + 02 4.43E + 02 8.84E + 02 3.75E + 02 7.59E + 02 1.54E + 03

2.60E + 01 2.16E + 02 4.32E + 02 8.85E + 02 3.74E + 02 7.61E + 02 1.54E + 03

2.80E + 01 2.15E + 02 4.38E + 02 8.60E + 02 3.75E + 02 7.61E + 02 1.53E + 03

3.00E + 01 2.15E + 02 4.20E + 02 8.63E + 02 3.75E + 02 7.49E + 02 1.52E + 03

3.20E + 01 2.16E + 02 4.22E + 02 8.45E + 02 3.75E + 02 7.61E + 02 1.54E + 03

3.60E + 01 2.16E + 02 4.43E + 02 8.66E + 02 3.75E + 02 7.61E + 02 1.53E + 03

4.00E + 01 2.15E + 02 4.32E + 02 8.67E + 02 3.74E + 02 7.63E + 02 1.50E + 03

4.40E + 01 2.16E + 02 4.32E + 02 8.64E + 02 3.74E + 02 7.61E + 02 1.52E + 03

4.80E + 01 2.16E + 02 4.44E + 02 8.73E + 02 3.75E + 02 7.49E + 02 1.51E + 03

5.20E + 01 2.16E + 02 4.33E + 02 8.51E + 02 3.75E + 02 7.60E + 02 1.50E + 03

5.60E + 01 2.15E + 02 4.32E + 02 8.51E + 02 3.75E + 02 7.49E + 02 1.51E + 03

6.00E + 01 2.15E + 02 4.20E + 02 8.54E + 02 3.75E + 02 7.50E + 02 1.50E + 03

6.40E + 01 2.16E + 02 4.22E + 02 8.51E + 02 3.75E + 02 7.50E + 02 1.50E + 03

7.20E + 01 2.16E + 02 4.27E + 02 8.61E + 02 3.74E + 02 7.49E + 02 1.50E + 03

8.00E + 01 2.17E + 02 4.34E + 02 8.65E + 02 3.77E + 02 7.65E + 02 1.54E + 03

8.80E + 01 2.17E + 02 4.32E + 02 8.72E + 02 3.77E + 02 7.65E + 02 1.54E + 03

9.60E + 01 2.17E + 02 4.46E + 02 8.66E + 02 3.77E + 02 7.66E + 02 1.54E + 03

1.04E + 02 2.17E + 02 4.34E + 02 8.54E + 02 3.77E + 02 7.65E + 02 1.55E + 03

1.12E + 02 2.17E + 02 4.23E + 02 8.53E + 02 3.77E + 02 7.66E + 02 1.58E + 03

1.20E + 02 2.17E + 02 4.22E + 02 8.86E + 02 3.77E + 02 7.66E + 02 1.56E + 03

Avg(ns) 2.16E + 02 4.32E + 02 8.64E + 02 3.75E + 02 7.59E + 02 1.53E + 03

Slow Down 1.05 1.04 1.02 1.83 1.82 1.81



Anthony J. Mahar Appendix C. Benchmark Results 112

Table C.3: Counter Mode Profile Memory Fetch Latency

Size (kB) Unenc 1x Unenc 2x Unenc 4x Enc 1x Enc 2x Enc 4x

2.40E + 01 2.25E + 02 4.57E + 02 9.36E + 02 2.36E + 02 4.75E + 02 9.64E + 02

2.60E + 01 2.25E + 02 4.50E + 02 9.09E + 02 2.36E + 02 4.74E + 02 9.62E + 02

2.80E + 01 2.25E + 02 4.53E + 02 9.03E + 02 2.36E + 02 4.75E + 02 9.73E + 02

3.00E + 01 2.25E + 02 4.52E + 02 9.14E + 02 2.36E + 02 4.74E + 02 9.58E + 02

3.20E + 01 2.25E + 02 4.51E + 02 9.05E + 02 2.36E + 02 4.74E + 02 9.48E + 02

3.60E + 01 2.25E + 02 4.52E + 02 9.10E + 02 2.36E + 02 4.74E + 02 9.54E + 02

4.00E + 01 2.25E + 02 4.57E + 02 9.10E + 02 2.36E + 02 4.71E + 02 9.58E + 02

4.40E + 01 2.25E + 02 4.47E + 02 9.14E + 02 2.36E + 02 4.74E + 02 9.48E + 02

4.80E + 01 2.25E + 02 4.42E + 02 9.10E + 02 2.36E + 02 4.74E + 02 9.46E + 02

5.20E + 01 2.25E + 02 4.53E + 02 9.01E + 02 2.37E + 02 4.74E + 02 9.47E + 02

5.60E + 01 2.25E + 02 4.59E + 02 8.98E + 02 2.36E + 02 4.73E + 02 9.59E + 02

6.00E + 01 2.25E + 02 4.46E + 02 9.43E + 02 2.36E + 02 4.73E + 02 9.70E + 02

6.40E + 01 2.25E + 02 4.59E + 02 9.08E + 02 2.36E + 02 4.74E + 02 9.50E + 02

7.20E + 01 2.25E + 02 4.54E + 02 9.13E + 02 2.36E + 02 4.75E + 02 9.50E + 02

8.00E + 01 2.27E + 02 4.55E + 02 9.11E + 02 2.38E + 02 4.76E + 02 9.68E + 02

8.80E + 01 2.27E + 02 4.54E + 02 9.09E + 02 2.38E + 02 4.74E + 02 9.62E + 02

9.60E + 01 2.27E + 02 4.55E + 02 9.09E + 02 2.38E + 02 4.76E + 02 9.49E + 02

1.04E + 02 2.27E + 02 4.60E + 02 9.25E + 02 2.38E + 02 4.77E + 02 9.55E + 02

1.12E + 02 2.27E + 02 4.56E + 02 9.30E + 02 2.38E + 02 4.88E + 02 9.53E + 02

1.20E + 02 2.27E + 02 4.67E + 02 9.36E + 02 2.38E + 02 4.77E + 02 9.53E + 02

Avg(ns) 2.26E + 02 4.54E + 02 9.15E + 02 2.37E + 02 4.75E + 02 9.56E + 02

Slow Down 1.10 1.09 1.08 1.15 1.14 1.13



Anthony J. Mahar Appendix C. Benchmark Results 113

C.2.3 EMU Execution Time

Table C.4: Base Profile Execution Time

Size (kB) 1x 2x 4x

2.40E + 01 1.36E + 09 2.79E + 09 5.71E + 09

2.60E + 01 1.36E + 09 2.71E + 09 5.64E + 09

2.80E + 01 1.36E + 09 2.71E + 09 5.64E + 09

3.00E + 01 1.35E + 09 2.79E + 09 5.45E + 09

3.20E + 01 1.35E + 09 2.82E + 09 5.49E + 09

3.60E + 01 1.35E + 09 2.71E + 09 5.67E + 09

4.00E + 01 1.35E + 09 2.78E + 09 5.65E + 09

4.40E + 01 1.35E + 09 2.78E + 09 5.56E + 09

4.80E + 01 1.35E + 09 2.71E + 09 5.55E + 09

5.20E + 01 1.35E + 09 2.70E + 09 5.48E + 09

5.60E + 01 1.35E + 09 2.70E + 09 5.55E + 09

6.00E + 01 1.35E + 09 2.70E + 09 5.79E + 09

6.40E + 01 1.35E + 09 2.77E + 09 5.59E + 09

7.20E + 01 1.35E + 09 2.74E + 09 5.48E + 09

8.00E + 01 1.35E + 09 2.71E + 09 5.49E + 09

8.80E + 01 1.35E + 09 2.78E + 09 5.54E + 09

9.60E + 01 1.35E + 09 2.78E + 09 5.48E + 09

1.04E + 02 1.35E + 09 2.71E + 09 5.53E + 09

1.12E + 02 1.35E + 09 2.71E + 09 5.52E + 09

1.20E + 02 1.35E + 09 2.70E + 09 5.72E + 09

Avg(ns) 1.35E + 09 2.74E + 09 5.58E + 09



Anthony J. Mahar Appendix C. Benchmark Results 114

Table C.5: Block Mode Profile Execution Time

Size (kB) Unenc 1x Unenc 2x Unenc 4x Enc 1x Enc 2x Enc 4x

2.40E + 01 1.43E + 09 2.93E + 09 5.85E + 09 2.48E + 09 5.03E + 09 1.02E + 10

2.60E + 01 1.43E + 09 2.86E + 09 5.85E + 09 2.48E + 09 5.04E + 09 1.02E + 10

2.80E + 01 1.42E + 09 2.89E + 09 5.69E + 09 2.48E + 09 5.03E + 09 1.01E + 10

3.00E + 01 1.42E + 09 2.78E + 09 5.70E + 09 2.47E + 09 4.95E + 09 1.01E + 10

3.20E + 01 1.43E + 09 2.79E + 09 5.58E + 09 2.47E + 09 5.03E + 09 1.02E + 10

3.60E + 01 1.43E + 09 2.93E + 09 5.72E + 09 2.47E + 09 5.02E + 09 1.01E + 10

4.00E + 01 1.42E + 09 2.85E + 09 5.72E + 09 2.47E + 09 5.03E + 09 9.91E + 09

4.40E + 01 1.42E + 09 2.85E + 09 5.69E + 09 2.47E + 09 5.02E + 09 1.00E + 10

4.80E + 01 1.42E + 09 2.92E + 09 5.75E + 09 2.47E + 09 4.93E + 09 9.94E + 09

5.20E + 01 1.42E + 09 2.85E + 09 5.61E + 09 2.47E + 09 5.01E + 09 9.88E + 09

5.60E + 01 1.42E + 09 2.84E + 09 5.60E + 09 2.47E + 09 4.93E + 09 9.97E + 09

6.00E + 01 1.42E + 09 2.76E + 09 5.62E + 09 2.47E + 09 4.94E + 09 9.87E + 09

6.40E + 01 1.42E + 09 2.78E + 09 5.60E + 09 2.46E + 09 4.93E + 09 9.87E + 09

7.20E + 01 1.42E + 09 2.81E + 09 5.66E + 09 2.46E + 09 4.93E + 09 9.85E + 09

8.00E + 01 1.42E + 09 2.85E + 09 5.69E + 09 2.48E + 09 5.03E + 09 1.01E + 10

8.80E + 01 1.43E + 09 2.84E + 09 5.73E + 09 2.47E + 09 5.03E + 09 1.01E + 10

9.60E + 01 1.43E + 09 2.93E + 09 5.69E + 09 2.48E + 09 5.03E + 09 1.01E + 10

1.04E + 02 1.43E + 09 2.85E + 09 5.61E + 09 2.47E + 09 5.03E + 09 1.02E + 10

1.12E + 02 1.42E + 09 2.78E + 09 5.60E + 09 2.48E + 09 5.03E + 09 1.04E + 10

1.20E + 02 1.42E + 09 2.77E + 09 5.82E + 09 2.48E + 09 5.03E + 09 1.03E + 10

Avg(ns) 1.42E + 09 2.84E + 09 5.69E + 09 2.47E + 09 5.00E + 09 1.01E + 10

Slow down 1.05 1.04 1.02 1.83 1.82 1.81



Anthony J. Mahar Appendix C. Benchmark Results 115

Table C.6: Counter Mode Profile Execution Time

Size (kB) Unenc 1x Unenc 2x Unenc 4x Enc 1x Enc 2x Enc 4x

2.40E + 01 1.49E + 09 3.03E + 09 6.20E + 09 1.56E + 09 3.15E + 09 6.38E + 09

2.60E + 01 1.49E + 09 2.98E + 09 6.01E + 09 1.56E + 09 3.14E + 09 6.37E + 09

2.80E + 01 1.49E + 09 2.99E + 09 5.97E + 09 1.56E + 09 3.14E + 09 6.44E + 09

3.00E + 01 1.49E + 09 2.99E + 09 6.04E + 09 1.56E + 09 3.13E + 09 6.33E + 09

3.20E + 01 1.49E + 09 2.98E + 09 5.98E + 09 1.56E + 09 3.13E + 09 6.26E + 09

3.60E + 01 1.49E + 09 2.98E + 09 6.01E + 09 1.56E + 09 3.13E + 09 6.29E + 09

4.00E + 01 1.49E + 09 3.02E + 09 6.00E + 09 1.56E + 09 3.10E + 09 6.32E + 09

4.40E + 01 1.48E + 09 2.95E + 09 6.02E + 09 1.56E + 09 3.12E + 09 6.25E + 09

4.80E + 01 1.48E + 09 2.91E + 09 5.99E + 09 1.56E + 09 3.12E + 09 6.23E + 09

5.20E + 01 1.48E + 09 2.98E + 09 5.94E + 09 1.56E + 09 3.12E + 09 6.24E + 09

5.60E + 01 1.48E + 09 3.02E + 09 5.91E + 09 1.56E + 09 3.11E + 09 6.31E + 09

6.00E + 01 1.48E + 09 2.93E + 09 6.20E + 09 1.55E + 09 3.11E + 09 6.39E + 09

6.40E + 01 1.48E + 09 3.02E + 09 5.98E + 09 1.55E + 09 3.12E + 09 6.25E + 09

7.20E + 01 1.48E + 09 2.98E + 09 6.01E + 09 1.55E + 09 3.12E + 09 6.24E + 09

8.00E + 01 1.49E + 09 2.99E + 09 5.99E + 09 1.56E + 09 3.13E + 09 6.36E + 09

8.80E + 01 1.49E + 09 2.98E + 09 5.98E + 09 1.56E + 09 3.11E + 09 6.32E + 09

9.60E + 01 1.49E + 09 2.99E + 09 5.97E + 09 1.56E + 09 3.13E + 09 6.24E + 09

1.04E + 02 1.49E + 09 3.02E + 09 6.08E + 09 1.56E + 09 3.13E + 09 6.27E + 09

1.12E + 02 1.49E + 09 2.99E + 09 6.11E + 09 1.56E + 09 3.21E + 09 6.26E + 09

1.20E + 02 1.49E + 09 3.07E + 09 6.15E + 09 1.56E + 09 3.13E + 09 6.26E + 09

Avg(ns) 1.49E + 09 2.99E + 09 6.03E + 09 1.56E + 09 3.13E + 09 6.30E + 09

Slow down 1.10 1.09 1.08 1.15 1.14 1.13



Appendix D

Source Listings

D.1 Encryption Management Unit HDL

D.1.1 Bridge.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : Encrypted Memory Bus Bridge
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : Bridge . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−03−21
−− Last update : 2005/07/19
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : High l e v e l module to b r i dge to i n t e r f a c e between lower l e v e l
−− PPC405 cache and upper l e v e l memory bus , i n c l ud ing any
−− in t ermed ia te modules such as decryp t ion uni ts , caches , e t c .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−05−05 amahar Added ” decryp t ion ” module
−− 2005−05−02 amahar Switched from the o ld Req/Ack/Addr/Data to pseudo−PLB
−− 2005−04−11 amahar Removed l o g i c from t h i s module and i n s t a n t i a t e d
−− the CPU/Memory i n t e r f a c e modules
−− 2005−03−25 amahar Switched from complete pass through to s e l e c t i v e XOR
−− decryp t ion
−− 2005−03−21 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
l ibrary unisim ;
use unisim . vcomponents . a l l ;

l ibrary plb emu v1 00 a ;

116



Anthony J. Mahar Appendix D. Source Listing 117

use plb emu v1 00 a . a l l ;

entity Bridge i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

generic (
C CPUBUS NUM MASTERS : i n t e g e r := 1 ;
C CPUBUS MID WIDTH : i n t e g e r := 1 ;
C CPUBUS AWIDTH : i n t e g e r := 32 ;
C CPUBUS DWIDTH : i n t e g e r := 64 ;
C MEMBUS AWIDTH : i n t e g e r := 32 ;
C MEMBUS DWIDTH : i n t e g e r := 64 ;
C PAGE AWIDTH : i n t e g e r := 20 ;
C KEYSIZE : i n t e g e r := 128 ;
C ANCILLARY DWIDTH : i n t e g e r := 128) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

port (
MemClk : in s t d l o g i c ;
MemReset : in s t d l o g i c ;

−− Master s i d e PLB bus s i g n a l s
−− Request Qua l i f i e r s
iMemBus PLB MAddrAck : in s t d l o g i c ;
iMemBus PLB MBusy : in s t d l o g i c ;
iMemBus PLB MErr : in s t d l o g i c ;
iMemBus PLB MRearbitrate : in s t d l o g i c ;
iMemBus PLB MSSize : in s t d l o g i c v e c t o r (0 to 1) ;
oMemBus M abort : out s t d l o g i c ;
oMemBus M ABus : out s t d l o g i c v e c t o r (0 to C MEMBUS AWIDTH−1) ;
oMemBus M BE : out s t d l o g i c v e c t o r (0 to ( (C MEMBUS DWIDTH/8) )−1) ;
oMemBus M busLock : out s t d l o g i c ;
oMemBus M compress : out s t d l o g i c ;
oMemBus M guarded : out s t d l o g i c ;
oMemBus M lockErr : out s t d l o g i c ;
oMemBus M MSize : out s t d l o g i c v e c t o r (0 to 1) ;
oMemBus M ordered : out s t d l o g i c ;
oMemBus M priority : out s t d l o g i c v e c t o r (0 to 1) ;
oMemBus M request : out s t d l o g i c ;
oMemBus M RNW : out s t d l o g i c ;
oMemBus M size : out s t d l o g i c v e c t o r (0 to 3) ;
oMemBus M type : out s t d l o g i c v e c t o r (0 to 2) ;
iMemBus PLB SMBusy : in s t d l o g i c ;
iMemBus PLB SMErr : in s t d l o g i c ;
−− Write Data Bus
oMemBus M wrBurst : out s t d l o g i c ;
oMemBus M wrDBus : out s t d l o g i c v e c t o r (0 to C MEMBUS DWIDTH−1) ;
iMemBus PLB MWrBTerm : in s t d l o g i c ;
iMemBus PLB MWrDAck : in s t d l o g i c ;
−− Read Data Bus
oMemBus M rdBurst : out s t d l o g i c ;
iMemBus PLB MRdBTerm : in s t d l o g i c ;
iMemBus PLB MRdDAck : in s t d l o g i c ;
iMemBus PLB MRdDBus : in s t d l o g i c v e c t o r (0 to C MEMBUS DWIDTH−1) ;
iMemBus PLB MRdWdAddr : in s t d l o g i c v e c t o r (0 to 3) ;
−− Unused Master s i d e s i g n a l s
−−iMemBus PLB pendReq : in s t d l o g i c ;
−−iMemBus PLB pendPri : in s t d l o g i c v e c t o r (0 to 1) ;
−−iMemBus PLB reqPri : in s t d l o g i c v e c t o r (0 to 1) ;

−− Slave s i d e PLB bus s i g n a l s



Anthony J. Mahar Appendix D. Source Listing 118

−− Request Qua l i f i e r s
oTransBus Sl addrAck : out s t d l o g i c ;
oTransBus Sl MBusy : out s t d l o g i c v e c t o r (0 to C CPUBUS NUM MASTERS−1) ;
oTransBus Sl MErr : out s t d l o g i c v e c t o r (0 to C CPUBUS NUM MASTERS−1) ;
oTran sBus S l r e a rb i t r a t e : out s t d l o g i c ;
oTransBus Sl SSize : out s t d l o g i c v e c t o r (0 to 1) ;
iTransBus PLB abort : in s t d l o g i c ;
iTransBus PLB ABus : in s t d l o g i c v e c t o r (0 to C CPUBUS AWIDTH−1) ;
iTransBus PLB BE : in s t d l o g i c v e c t o r (0 to (C CPUBUS DWIDTH/8)−1) ;
iTransBus PLB busLock : in s t d l o g i c ;
iTransBus PLB compress : in s t d l o g i c ;
iTransBus PLB guarded : in s t d l o g i c ;
iTransBus PLB lockErr : in s t d l o g i c ;
iTransBus PLB MSize : in s t d l o g i c v e c t o r (0 to 1) ;
iTransBus PLB ordered : in s t d l o g i c ;
iTransBus PLB pendPri : in s t d l o g i c v e c t o r (0 to 1) ;
iTransBus PLB pendReq : in s t d l o g i c ;
iTransBus PLB RNW : in s t d l o g i c ;
iTransBus PLB size : in s t d l o g i c v e c t o r (0 to 3) ;
iTransBus PLB type : in s t d l o g i c v e c t o r (0 to 2) ;
oTransBus Sl rdComp : out s t d l o g i c ;
oTransBus Sl wrComp : out s t d l o g i c ;
−− Write Data Bus
iTransBus PLB wrBurst : in s t d l o g i c ;
iTransBus PLB wrDBus : in s t d l o g i c v e c t o r (0 to C CPUBUS DWIDTH−1) ;
oTransBus Sl wrBTerm : out s t d l o g i c ;
oTransBus Sl wrDAck : out s t d l o g i c ;
−− Read Data Bus
iTransBus PLB rdBurst : in s t d l o g i c ;
oTransBus Sl rdBTerm : out s t d l o g i c ;
oTransBus Sl rdDAck : out s t d l o g i c ;
oTransBus Sl rdDBus : out s t d l o g i c v e c t o r (0 to C CPUBUS DWIDTH−1) ;
oTransBus Sl rdWdAddr : out s t d l o g i c v e c t o r (0 to 3) ;
−− Unused S lave s i d e s i g n a l s
−−iTransBus PLB masterID : in s t d l o g i c v e c t o r (0 to C PLB MID WIDTH−1)) ;
−−iTransBus PLB PAValid : out s t d l o g i c ;
−−iTransBus PLB SAValid : out s t d l o g i c ;
−−iTransBus PLB reqPri : out s t d l o g i c v e c t o r (0 to 1) ;
−−iTransBus PLB rdPrim : out s t d l o g i c ;
−−iTransBus PLB wrPrim : out s t d l o g i c ;
−−oTransBus Sl wait : out s t d l o g i c ;

−− Table Search In t e r f a c e
oTableReq : out s t d l o g i c ;
iTableSearchDone : in s t d l o g i c ;
oPageAddress : out s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;
iPageEncrypted : in s t d l o g i c ;
iPageKey : in s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;
iPageAnc i l l a ry : in s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ;
oPerformance Fetch : out s t d l o g i c ;
oPerformance EncFetch : out s t d l o g i c ) ;

end Bridge ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture Sect ion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of Bridge i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
signal s1 M ABus : s t d l o g i c v e c t o r (0 to C CPUBUS AWIDTH−1) ;
signal s1 M request : s t d l o g i c ;



Anthony J. Mahar Appendix D. Source Listing 119

signal s1 M s i z e : s t d l o g i c v e c t o r (0 to 1) ;
signal s1 M abort : s t d l o g i c ;
signal s1 M BE : s t d l o g i c v e c t o r (0 to (C CPUBUS DWIDTH/8)−1) ;
signal s1 PLB MAddrAck : s t d l o g i c ;
signal s1 PLB MBusy : s t d l o g i c ;
signal s1 PLB MRdDAck : s t d l o g i c ;
signal s1 PLB MRdDBus : s t d l o g i c v e c t o r (0 to C CPUBUS DWIDTH−1) ;
signal s1 PLB MRdWdAddr : s t d l o g i c v e c t o r (0 to 3) ;

signal s2 M ABus : s t d l o g i c v e c t o r (0 to C MEMBUS AWIDTH−1) ;
signal s2 M request : s t d l o g i c ;
signal s2 M s i z e : s t d l o g i c v e c t o r (0 to 1) ;
signal s2 M abort : s t d l o g i c ;
signal s2 M BE : s t d l o g i c v e c t o r (0 to (C CPUBUS DWIDTH/8)−1) ;
signal s2 PLB MAddrAck : s t d l o g i c ;
signal s2 PLB MBusy : s t d l o g i c ;
signal s2 PLB MRdDAck : s t d l o g i c ;
signal s2 PLB MRdDBus : s t d l o g i c v e c t o r (0 to C MEMBUS DWIDTH−1) ;
signal s2 PLB MRdWdAddr : s t d l o g i c v e c t o r (0 to 3) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Sani ty check
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
assert (C MEMBUS AWIDTH = C CPUBUS AWIDTH) report ”ERROR: CPU and Memory Address Busses
width d i f f e r ! ” severity f a i l u r e ;
assert (C MEMBUS DWIDTH = C CPUBUS DWIDTH) report ”ERROR: CPU and Memory Data Busses width

d i f f e r ! ” severity f a i l u r e ;
assert (C MEMBUS AWIDTH = 32) report ”ERROR: Address bus not 32−b i t s ” severity f a i l u r e ;
assert (C MEMBUS DWIDTH = 64) report ”ERROR: Data bus not 64−b i t s ” severity f a i l u r e ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Component i n s t a n t i a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Bridge CPU Inter face 1 : entity plb emu v1 00 a . Br idge CPU Inter face

generic map (
C CPUBUS AWIDTH => C CPUBUS AWIDTH,
C CPUBUS DWIDTH => C CPUBUS DWIDTH)

port map (
oMemBus PLB MAddrAck => oTransBus Sl AddrAck ,
oMemBus PLB MBusy => oTransBus Sl MBusy (0 ) ,
oMemBus PLB MErr => oTransBus Sl MErr (0 ) ,
oMemBus PLB MRearbitrate => oTransBus S l r ea rb i t ra t e ,
oMemBus PLB MSSize => oTransBus Sl SSize ,
iMemBus M abort => iTransBus PLB abort ,
iMemBus M ABus => iTransBus PLB ABus ,
iMemBus M BE => iTransBus PLB BE ,
iMemBus M busLock => iTransBus PLB busLock ,
iMemBus M compress => iTransBus PLB compress ,
iMemBus M guarded => iTransBus PLB guarded ,
iMemBus M lockErr => iTransBus PLB lockErr ,
iMemBus M MSize => iTransBus PLB MSize ,
iMemBus M ordered => iTransBus PLB ordered ,
iMemBus M priority => iTransBus PLB pendPri ,
iMemBus M request => iTransBus PLB pendReq ,
iMemBus M RNW => iTransBus PLB RNW ,
iMemBus M size => iTransBus PLB size ,
iMemBus M type => iTransBus PLB type ,
oMemBus PLB SMBusy => oTransBus Sl rdComp ,
oMemBus PLB SMErr => oTransBus Sl wrComp ,



Anthony J. Mahar Appendix D. Source Listing 120

iMemBus M wrBurst => iTransBus PLB wrBurst ,
iMemBus M wrDBus => iTransBus PLB wrDBus ,
oMemBus PLB MWrBTerm => oTransBus Sl wrBTerm ,
oMemBus PLB MWrDAck => oTransBus Sl wrDAck ,
iMemBus M rdBurst => iTransBus PLB rdBurst ,
oMemBus PLB MRdBTerm => oTransBus Sl rdBTerm ,
oMemBus PLB MRdDAck => oTransBus Sl rdDAck ,
oMemBus PLB MRdDBus => oTransBus Sl rdDBus ,
oMemBus PLB MRdWdAddr => oTransBus Sl rdWdAddr ,
oMem M ABus => s1 M ABus ,
oMem M request => s1 M request ,
oMem M size => s1 M size ,
oMem M abort => s1 M abort ,
oMem M BE => s1 M BE ,
iMem PLB MAddrAck => s1 PLB MAddrAck ,
iMem PLB MBusy => s1 PLB MBusy ,
iMem PLB MRdDAck => s1 PLB MRdDAck ,
iMem PLB MRdDBus => s1 PLB MRdDBus ,
iMem PLB MRdWdAddr => s1 PLB MRdWdAddr) ;

Br idge Decrypt 1 : entity plb emu v1 00 a . Bridge CounterModeDecrypt
port map (

Clk => MemClk ,
Reset => MemReset ,
iCPU M ABus => s1 M ABus ,
iCPU M request => s1 M request ,
iCPU M size => s1 M size ,
iCPU M abort => s1 M abort ,
iCPU M BE => s1 M BE ,
oCPU PLB MAddrAck => s1 PLB MAddrAck ,
oCPU PLB MBusy => s1 PLB MBusy ,
oCPU PLB MRdDAck => s1 PLB MRdDAck ,
oCPU PLB MRdDBus => s1 PLB MRdDBus ,
oCPU PLB MRdWdAddr => s1 PLB MRdWdAddr ,
oMem M ABus => s2 M ABus ,
oMem M request => s2 M request ,
oMem M size => s2 M size ,
oMem M abort => s2 M abort ,
oMem M BE => s2 M BE ,
iMem PLB MAddrAck => s2 PLB MAddrAck ,
iMem PLB MBusy => s2 PLB MBusy ,
iMem PLB MRdDAck => s2 PLB MRdDAck ,
iMem PLB MRdDBus => s2 PLB MRdDBus ,
iMem PLB MRdWdAddr => s2 PLB MRdWdAddr ,
oTableReq => oTableReq ,
iTableSearchDone => iTableSearchDone ,
oPageAddress => oPageAddress ,
iPageEncrypted => iPageEncrypted ,
iPageKey => iPageKey ,
iPageAnc i l l a ry => iPageAnc i l l a ry ,
oPerformance EncFetch => oPerformance EncFetch ,
oPerformance Fetch => oPerformance Fetch ) ;

Br idge Memory Inter face 1 : entity plb emu v1 00 a . Br idge Memory Inter face
generic map (

C MEMBUS AWIDTH => C MEMBUS AWIDTH,
C MEMBUS DWIDTH => C MEMBUS DWIDTH)

port map (
iMemBus PLB MAddrAck => iMemBus PLB MAddrAck ,
iMemBus PLB MBusy => iMemBus PLB MBusy ,
iMemBus PLB MErr => iMemBus PLB MErr ,
iMemBus PLB MRearbitrate => iMemBus PLB MRearbitrate ,
iMemBus PLB MSSize => iMemBus PLB MSSize ,
oMemBus M abort => oMemBus M abort ,



Anthony J. Mahar Appendix D. Source Listing 121

oMemBus M ABus => oMemBus M ABus ,
oMemBus M BE => oMemBus M BE,
oMemBus M busLock => oMemBus M busLock ,
oMemBus M compress => oMemBus M compress ,
oMemBus M guarded => oMemBus M guarded ,
oMemBus M lockErr => oMemBus M lockErr ,
oMemBus M MSize => oMemBus M MSize ,
oMemBus M ordered => oMemBus M ordered ,
oMemBus M priority => oMemBus M priority ,
oMemBus M request => oMemBus M request ,
oMemBus M RNW => oMemBus M RNW,
oMemBus M size => oMemBus M size ,
oMemBus M type => oMemBus M type ,
iMemBus PLB SMBusy => iMemBus PLB SMBusy ,
iMemBus PLB SMErr => iMemBus PLB SMErr ,
oMemBus M wrBurst => oMemBus M wrBurst ,
oMemBus M wrDBus => oMemBus M wrDBus ,
iMemBus PLB MWrBTerm => iMemBus PLB MWrBTerm,
iMemBus PLB MWrDAck => iMemBus PLB MWrDAck ,
oMemBus M rdBurst => oMemBus M rdBurst ,
iMemBus PLB MRdBTerm => iMemBus PLB MRdBTerm ,
iMemBus PLB MRdDAck => iMemBus PLB MRdDAck ,
iMemBus PLB MRdDBus => iMemBus PLB MRdDBus ,
iMemBus PLB MRdWdAddr => iMemBus PLB MRdWdAddr ,
iCPU M ABus => s2 M ABus ,
iCPU M request => s2 M request ,
iCPU M size => s2 M size ,
iCPU M abort => s2 M abort ,
ICPU M BE => s2 M BE ,
oCPU PLB MAddrAck => s2 PLB MAddrAck ,
oCPU PLB MBusy => s2 PLB MBusy ,
oCPU PLB MRdDAck => s2 PLB MRdDAck ,
oCPU PLB MRdDBus => s2 PLB MRdDBus ,
oCPU PLB MRdWdAddr => s2 PLB MRdWdAddr) ;

end arch ;



Anthony J. Mahar Appendix D. Source Listing 122

D.1.2 Bridge CPU Interface.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : PLB CPU s ide i n t e r f a c e module
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : Bridge CPU Interface . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igruab l e Computing Lab
−− Created : 2005−04−11
−− Last update : 2005−07−10
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Reduces the f u l l PLB bus s p e c i f i c a t i o n to the complete sub s e t
−− o f s i g n a l s and t ransac t i on types used by the PPC405 In s t r u c t i on
−− s i d e bus , in add i t i on to be ing a read only i n t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Assumptions : Read only i n t e r f a c e
−− Ignores a l l modes but s i n g l e beat , 4−wd cache , and 8−wd cache
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−05−02 amahar Switched from o ld s t y l e Req/Addr/Ack/Data r e que s t i n g
−− i n t e r f a c e to pseudo−PLB in t e r f a c e to a l l ow 0− l a t ency
−− op t i ona l t r an s f e r s
−− 2005−04−11 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

entity Bridge CPU Inter face i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
generic (

C CPUBUS AWIDTH : i n t e g e r := 32 ;
C CPUBUS DWIDTH : i n t e g e r := 64) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
port (
−− Master s i d e PLB bus s i g n a l s
−− Request Qua l i f i e r s
oMemBus PLB MAddrAck : out s t d l o g i c ;
oMemBus PLB MBusy : out s t d l o g i c ;
oMemBus PLB MErr : out s t d l o g i c ;
oMemBus PLB MRearbitrate : out s t d l o g i c ;
oMemBus PLB MSSize : out s t d l o g i c v e c t o r (0 to 1) ;
iMemBus M abort : in s t d l o g i c ;
iMemBus M ABus : in s t d l o g i c v e c t o r (0 to C CPUBUS AWIDTH−1) ;
iMemBus M BE : in s t d l o g i c v e c t o r (0 to ( (C CPUBUS DWIDTH/8) )−1) ;
iMemBus M busLock : in s t d l o g i c ;
iMemBus M compress : in s t d l o g i c ;
iMemBus M guarded : in s t d l o g i c ;
iMemBus M lockErr : in s t d l o g i c ;
iMemBus M MSize : in s t d l o g i c v e c t o r (0 to 1) ;



Anthony J. Mahar Appendix D. Source Listing 123

iMemBus M ordered : in s t d l o g i c ;
iMemBus M priority : in s t d l o g i c v e c t o r (0 to 1) ;
iMemBus M request : in s t d l o g i c ;
iMemBus M RNW : in s t d l o g i c ;
iMemBus M size : in s t d l o g i c v e c t o r (0 to 3) ;
iMemBus M type : in s t d l o g i c v e c t o r (0 to 2) ;
oMemBus PLB SMBusy : out s t d l o g i c ;
oMemBus PLB SMErr : out s t d l o g i c ;
−− Write Data Bus
iMemBus M wrBurst : in s t d l o g i c ;
iMemBus M wrDBus : in s t d l o g i c v e c t o r (0 to C CPUBUS DWIDTH−1) ;
oMemBus PLB MWrBTerm : out s t d l o g i c ;
oMemBus PLB MWrDAck : out s t d l o g i c ;
−− Read Data Bus
iMemBus M rdBurst : in s t d l o g i c ;
oMemBus PLB MRdBTerm : out s t d l o g i c ;
oMemBus PLB MRdDAck : out s t d l o g i c ;
oMemBus PLB MRdDBus : out s t d l o g i c v e c t o r (0 to C CPUBUS DWIDTH−1) ;
oMemBus PLB MRdWdAddr : out s t d l o g i c v e c t o r (0 to 3) ;
−− Unused Master s i d e s i g n a l s
−−iMemBus PLB pendReq : in s t d l o g i c ;
−−iMemBus PLB pendPri : in s t d l o g i c v e c t o r (0 to 1) ;
−−iMemBus PLB reqPri : in s t d l o g i c v e c t o r (0 to 1) ;

−− Standard br i dge plug−in i n t e r f a c e
oMem M ABus : out s t d l o g i c v e c t o r (0 to C CPUBUS AWIDTH−1) ;
oMem M request : out s t d l o g i c ;
oMem M size : out s t d l o g i c v e c t o r (0 to 1) ;
oMem M abort : out s t d l o g i c ;
oMem M BE : out s t d l o g i c v e c t o r (0 to ( (C CPUBUS DWIDTH/8) )−1) ;
iMem PLB MAddrAck : in s t d l o g i c ;
iMem PLB MBusy : in s t d l o g i c ;
iMem PLB MRdDAck : in s t d l o g i c ;
iMem PLB MRdDBus : in s t d l o g i c v e c t o r (0 to C CPUBUS DWIDTH−1) ;
iMem PLB MRdWdAddr : in s t d l o g i c v e c t o r (0 to 3) ) ;

end entity Bridge CPU Inter face ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture s e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of Bridge CPU Inter face i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Constant Logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
oMemBus PLB MErr <= ’0 ’ ;
oMemBus PLB MRdBTerm <= ’0 ’ ;
oMemBus PLB MRearbitrate <= ’0 ’ ;
oMemBus PLB MWrBTerm <= ’0 ’ ;
oMemBus PLB MWrDAck <= ’0 ’ ;
oMemBus PLB SMBusy <= ’0 ’ ;
oMemBus PLB SMErr <= ’0 ’ ;
oMemBus PLB MSSize <= ”01” ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Forwarded Logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 124

oMem M request <= iMemBus M request ;
oMem M abort <= iMemBus M abort ;
oMem M ABus <= iMemBus M ABus ;
oMem M size (0 to 1) <= iMemBus M size (2 to 3) ;
oMem M BE <= iMemBus M BE ;

oMemBus PLB MAddrAck <= iMem PLB MAddrAck ;
oMemBus PLB MBusy <= iMem PLB MBusy ;
oMemBus PLB MRdDAck <= iMem PLB MRdDAck ;
oMemBus PLB MRdDBus <= iMem PLB MRdDBus ;
oMemBus PLB MRdWdAddr <= iMem PLB MRdWdAddr ;

end architecture arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 125

D.1.3 Bridge Memory Interface.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : PLB memory s i d e i n t e r f a c e module
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : Bridge Memory Interface . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−04−12
−− Last update : 2005−07−16
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Reduces the f u l l PLB bus s p e c i f i c a t i o n to the complete sub s e t
−− o f s i g n a l s and t ransac t i on types used by the PPC405 In s t r u c t i on
−− s i d e bus , in add i t i on to be ing a read only i n t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Assumptions : Read only i n t e r f a c e
−− Ignores a l l modes but s i n g l e beat , 4−wd cache , and 8−wd cache
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−05−02 amahar Switched from o ld s t y l e Req/Addr/Ack/Data r e que s t i n g
−− i n t e r f a c e to pseudo−PLB in t e r f a c e to a l l ow 0− l a t ency
−− op t i ona l t r an s f e r s
−− 2005−04−12 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

entity Bridge Memory Inter face i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
generic (

C MEMBUS AWIDTH : i n t e g e r := 32 ;
C MEMBUS DWIDTH : i n t e g e r := 64) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
port (
−− Master s i d e PLB bus s i g n a l s
−− Request Qua l i f i e r s
iMemBus PLB MAddrAck : in s t d l o g i c ;
iMemBus PLB MBusy : in s t d l o g i c ;
iMemBus PLB MErr : in s t d l o g i c ;
iMemBus PLB MRearbitrate : in s t d l o g i c ;
iMemBus PLB MSSize : in s t d l o g i c v e c t o r (0 to 1) ;
oMemBus M abort : out s t d l o g i c ;
oMemBus M ABus : out s t d l o g i c v e c t o r (0 to C MEMBUS AWIDTH−1) ;
oMemBus M BE : out s t d l o g i c v e c t o r (0 to ( (C MEMBUS DWIDTH/8) )−1) ;
oMemBus M busLock : out s t d l o g i c ;
oMemBus M compress : out s t d l o g i c ;
oMemBus M guarded : out s t d l o g i c ;
oMemBus M lockErr : out s t d l o g i c ;
oMemBus M MSize : out s t d l o g i c v e c t o r (0 to 1) ;



Anthony J. Mahar Appendix D. Source Listing 126

oMemBus M ordered : out s t d l o g i c ;
oMemBus M priority : out s t d l o g i c v e c t o r (0 to 1) ;
oMemBus M request : out s t d l o g i c ;
oMemBus M RNW : out s t d l o g i c ;
oMemBus M size : out s t d l o g i c v e c t o r (0 to 3) ;
oMemBus M type : out s t d l o g i c v e c t o r (0 to 2) ;
iMemBus PLB SMBusy : in s t d l o g i c ;
iMemBus PLB SMErr : in s t d l o g i c ;
−− Write Data Bus
oMemBus M wrBurst : out s t d l o g i c ;
oMemBus M wrDBus : out s t d l o g i c v e c t o r (0 to C MEMBUS DWIDTH−1) ;
iMemBus PLB MWrBTerm : in s t d l o g i c ;
iMemBus PLB MWrDAck : in s t d l o g i c ;
−− Read Data Bus
oMemBus M rdBurst : out s t d l o g i c ;
iMemBus PLB MRdBTerm : in s t d l o g i c ;
iMemBus PLB MRdDAck : in s t d l o g i c ;
iMemBus PLB MRdDBus : in s t d l o g i c v e c t o r (0 to C MEMBUS DWIDTH−1) ;
iMemBus PLB MRdWdAddr : in s t d l o g i c v e c t o r (0 to 3) ;
−− Unused Master s i d e s i g n a l s
−−iMemBus PLB pendReq : in s t d l o g i c ;
−−iMemBus PLB pendPri : in s t d l o g i c v e c t o r (0 to 1) ;
−−iMemBus PLB reqPri : in s t d l o g i c v e c t o r (0 to 1) ;

−− Standard Bridge plug−in i n t e r f a c e
iCPU M ABus : in s t d l o g i c v e c t o r (0 to C MEMBUS AWIDTH−1) ;
iCPU M request : in s t d l o g i c ;
iCPU M size : in s t d l o g i c v e c t o r (0 to 1) ;
iCPU M abort : in s t d l o g i c ;
iCPU M BE : in s t d l o g i c v e c t o r (0 to ( (C MEMBUS DWIDTH/8) )−1) ;
oCPU PLB MAddrAck : out s t d l o g i c ;
oCPU PLB MBusy : out s t d l o g i c ;
oCPU PLB MRdDAck : out s t d l o g i c ;
oCPU PLB MRdDBus : out s t d l o g i c v e c t o r (0 to C MEMBUS DWIDTH−1) ;
oCPU PLB MRdWdAddr : out s t d l o g i c v e c t o r (0 to 3) ) ;

end entity Bridge Memory Inter face ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture s e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of Bridge Memory Inter face i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Constant Logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
oMemBus M wrDBus <= ( others => ’ 0 ’ ) ;
oMemBus M wrBurst <= ’0 ’ ;
oMemBus M RNW <= ’1 ’ ;
oMemBus M type <= ”000” ;
oMemBus M guarded <= ’0 ’ ;
oMemBus M ordered <= ’0 ’ ;
oMemBus M compress <= ’0 ’ ;
oMemBus M busLock <= ’0 ’ ;
oMemBus M lockErr <= ’0 ’ ;
oMemBus M priority <= ”11” ;
oMemBus M rdBurst <= ’0 ’ ;
oMemBus M size (0 to 1) <= ”00” ;
oMemBus M MSize <= ”01” ;



Anthony J. Mahar Appendix D. Source Listing 127

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Forwarded Logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
oMemBus M request <= iCPU M request ;
oMemBus M abort <= iCPU M abort ;
oMemBus M ABus <= iCPU M ABus ;
oMemBus M size (2 to 3) <= iCPU M size (0 to 1) ;
oMemBus M BE <= iCPU M BE ;

oCPU PLB MAddrAck <= iMemBus PLB MAddrAck ;
oCPU PLB MBusy <= iMemBus PLB MBusy ;
oCPU PLB MRdDAck <= iMemBus PLB MRdDAck ;
oCPU PLB MRdDBus <= iMemBus PLB MRdDBus ;
oCPU PLB MRdWdAddr <= iMemBus PLB MRdWdAddr ;

end architecture arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 128

D.1.4 Bridge BlockModeDecrypt.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : Block Mode Decryption Unit
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : Bridge BlockModeDecrypt . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−05−05
−− Last update : 2005−07−17
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Decryption plug−in module f o r the EMU memory br i dge .
−− Uses a d i r e c t b l o c k mode po l i cy , and r e qu i r e s en t i r e
−− t r ansac t i on to be bu f f e r e d be f o re b l o c k decryp t ing n∗BlockSize
−− chunks .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−07−09 amahar Code cleanup , commenting
−− 2005−06−25 amahar Added Anc i l l a ry input f o r plug−in compa t i b i l i t y , even
−− though not used
−− 2005−05−05 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;

l ibrary plb emu v1 00 a ;
use plb emu v1 00 a . a l l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

entity Bridge BlockModeDecrypt i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
generic (

C AWIDTH : i n t e g e r := 32 ;
C DWIDTH : i n t e g e r := 64 ;
C PAGE AWIDTH : i n t e g e r := 20 ;
C KEYSIZE : i n t e g e r := 128 ;
C ANCILLARY DWIDTH : i n t e g e r := 128) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
port (

Clk : in s t d l o g i c ;
Reset : in s t d l o g i c ;

−− Plug−in CPU In t e r f a c e
iCPU M ABus : in s t d l o g i c v e c t o r (0 to C AWIDTH−1) ;
iCPU M request : in s t d l o g i c ;
iCPU M size : in s t d l o g i c v e c t o r (0 to 1) ;
iCPU M abort : in s t d l o g i c ;
iCPU M BE : in s t d l o g i c v e c t o r (0 to ( (C DWIDTH/8) )−1) ;
oCPU PLB MAddrAck : out s t d l o g i c ;



Anthony J. Mahar Appendix D. Source Listing 129

oCPU PLB MBusy : out s t d l o g i c ;
oCPU PLB MRdDAck : out s t d l o g i c ;
oCPU PLB MRdDBus : out s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
oCPU PLB MRdWdAddr : out s t d l o g i c v e c t o r (0 to 3) ;

−− Plug−in Memory In t e r f a c e
oMem M ABus : out s t d l o g i c v e c t o r (0 to C AWIDTH−1) ;
oMem M request : out s t d l o g i c ;
oMem M size : out s t d l o g i c v e c t o r (0 to 1) ;
oMem M abort : out s t d l o g i c ;
oMem M BE : out s t d l o g i c v e c t o r (0 to ( (C DWIDTH/8) )−1) ;
iMem PLB MAddrAck : in s t d l o g i c ;
iMem PLB MBusy : in s t d l o g i c ;
iMem PLB MRdDAck : in s t d l o g i c ;
iMem PLB MRdDBus : in s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
iMem PLB MRdWdAddr : in s t d l o g i c v e c t o r (0 to 3) ;

−− Table In t e r f a c e
oTableReq : out s t d l o g i c ;
iTableSearchDone : in s t d l o g i c ;
oPageAddress : out s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;
iPageEncrypted : in s t d l o g i c ;
iPageKey : in s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;
iPageAnc i l l a ry : in s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ;
oPerformance Fetch : out s t d l o g i c ;
oPerformance EncFetch : out s t d l o g i c ) ;

end entity Bridge BlockModeDecrypt ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture s e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of Bridge BlockModeDecrypt i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l cons tant d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
type StateType i s ( ST WaitAddrAck , ST Read , ST Decrypt , ST Write ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
signal sClk CurrState : StateType := ST WaitAddrAck ;
signal sNextState : StateType := ST WaitAddrAck ;

signal sPLB MAddrAck : s t d l o g i c ;
signal sPLB MRdDBus : s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
signal sPLB MRdDBus 0 : s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
signal sM request : s t d l o g i c ;
signal sM abort : s t d l o g i c ;
signal sM s ize : s t d l o g i c v e c t o r (0 to 1) ;
signal sM BE : s t d l o g i c v e c t o r (0 to ( (C DWIDTH/8) )−1) ;

signal sClk DataIn : s t d l o g i c v e c t o r (0 to 255) ;
signal sClk DataOut : s t d l o g i c v e c t o r (0 to 255) ;
signal sClk PLB MBusy : s t d l o g i c ;
signal sClk PLB MRdDAck : s t d l o g i c ;
signal sClk PLB MRdWdAddr : s t d l o g i c v e c t o r (0 to 2) ;

signal sClk MemReadCount : s t d l o g i c v e c t o r (0 to 1) ;
signal sClk CPUReadCount : s t d l o g i c v e c t o r (0 to 1) ;
signal sClk MaxMemReadCount : s t d l o g i c v e c t o r (0 to 1) ;
signal sClk MaxCPUReadCount : s t d l o g i c v e c t o r (0 to 1) ;



Anthony J. Mahar Appendix D. Source Listing 130

signal sClk Encrypted : s t d l o g i c ;
signal sClk Key : s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;

signal sDecryptDataOut : s t d l o g i c v e c t o r (0 to 255) ;
signal sDecryptAck : s t d l o g i c ;
signal sDecryptDone : s t d l o g i c ;
signal sClk DecryptReq : s t d l o g i c ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Crypto core i n s t a n t i a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
crypto module 1 : entity plb emu v1 00 a . c rypto xor

port map (
Clk => Clk ,
Reset => Reset ,
iRequest => sClk DecryptReq ,
iData => sClk DataIn (0 to 127) ,
iKey => sClk Key ,
oAcknowledge => sDecryptAck ,
oDone => sDecryptDone ,
oData => sDecryptDataOut (0 to 127) ) ;

crypto module 2 : entity plb emu v1 00 a . c rypto xor
port map (

Clk => Clk ,
Reset => Reset ,
iRequest => sClk DecryptReq ,
iData => sClk DataIn (128 to 255) ,
iKey => sClk Key ,
oAcknowledge => open ,
oDone => open ,
oData => sDecryptDataOut (128 to 255) ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Address Transaction Se l e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TransReq : process ( iCPU M abort , iCPU M request , iMem PLB MAddrAck ,

sClk CurrState ) i s
begin

i f ( sClk CurrState = ST WaitAddrAck ) then
−− Pass through a l l s i g n a l s when not invo l v ed in a t ransac t i on
sPLB MAddrAck <= iMem PLB MAddrAck ;
sM request <= iCPU M request ;
sM abort <= iCPU M abort ;
sM BE <= iCPU M BE ;

else
−− Loop−back abor t s i g n a l to acknowledge per PLB spec
−− d i s a b l e r e que s t / abor t to memory bus
sPLB MAddrAck <= iCPU M abort ;
sM request <= ’0 ’ ;
sM abort <= ’0 ’ ;
sM BE <= ( others => ’ 0 ’ ) ;

end i f ;
end process TransReq ;

−− Up−conver t 64− b i t t r an sac t i on s to 128− b i t
sM s ize <= ”01” when iCPU M size = ”00” else iCPU M size ;

−− Forward any muxed s i g n a l s



Anthony J. Mahar Appendix D. Source Listing 131

oMem M ABus <= iCPU M ABus ;
oMem M size <= sM size ;
oMem M abort <= sM abort ;
oMem M request <= sM request ;
oMem M BE <= sM BE ;
oCPU PLB MAddrAck <= sPLB MAddrAck ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Data Transaction Se l e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− I f not encrypted , or not dea l i n g with a mu l t i p l e o f 128− b i t b lock , forward
−− s i g n a l s from memory s i d e to CPU side , o therwi se use the delayed , decrypted
−− s i g n a l s
TransAck : process ( iMem PLB MBusy , iMem PLB MRdDAck , iMem PLB MRdDBus ,

iMem PLB MRdWdAddr , sClk Encrypted , sClk MaxCPUReadCount ,
sClk PLB MBusy , sClk PLB MRdDAck , sClk PLB MRdWdAddr ,
sPLB MRdDBus)

begin
i f ( sClk Encrypted = ’0 ’ and sClk MaxCPUReadCount /= ”00” ) then

oCPU PLB MRdDBus <= iMem PLB MRdDBus ;
oCPU PLB MBusy <= iMem PLB MBusy ;
oCPU PLB MRdDAck <= iMem PLB MRdDAck ;
oCPU PLB MRdWdAddr <= iMem PLB MRdWdAddr ;

else
oCPU PLB MRdDBus <= sPLB MRdDBus ;
oCPU PLB MBusy <= sClk PLB MBusy ;
oCPU PLB MRdDAck <= sClk PLB MRdDAck ;
oCPU PLB MRdWdAddr <= sClk PLB MRdWdAddr & ’ 0 ’ ;

end i f ;
end process TransAck ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Table Search In t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− A reques t occurs on every o f f i c i a l address t ransac t i on acknowledge
oTableReq <= iCPU M request and (not iCPU M abort ) and iMem PLB MAddrAck ;
oPageAddress <= iCPU M ABus(0 to C PAGE AWIDTH−1) ;

EncLatch : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk Encrypted <= ’0 ’ ;
sClk Key <= ( others => ’ 0 ’ ) ;

e l s i f r i s i n g e d g e ( Clk ) then
i f ( iTableSearchDone = ’1 ’ ) then

sClk Encrypted <= iPageEncrypted ;
sClk Key <= iPageKey ;

end i f ;
end i f ;

end process EncLatch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Input and Output b u f f e r i n g / s e l e c t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− On data acknowledge , s e l e c t the appropra i t e 64− b i t data beat from the
−− output b u f f e r
process ( sClk DataOut , sClk PLB MRdWdAddr) i s
begin

case sClk PLB MRdWdAddr(1 to 2) i s
when ”00” => sPLB MRdDBus 0 <= sClk DataOut (0 to 63) ;
when ”01” => sPLB MRdDBus 0 <= sClk DataOut (64 to 127) ;
when ”10” => sPLB MRdDBus 0 <= sClk DataOut (128 to 191) ;
when others => sPLB MRdDBus 0 <= sClk DataOut (192 to 255) ;



Anthony J. Mahar Appendix D. Source Listing 132

end case ;
end process ;
sPLB MRdDBus <= sPLB MRdDBus 0 when sClk PLB MRdDAck = ’1 ’ else ( others => ’ 0 ’ ) ;

−− Store incoming read data bus from Memory in to b u f f e r . Buf fer i s s imply
−− not used i f t r ansac t i on i s not encrypted
process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk DataIn <= ( others => ’ 0 ’ ) ;

e l s i f r i s i n g e d g e ( Clk ) then
i f (iMem PLB MRdDAck = ’1 ’ ) then

case iMem PLB MRdWdAddr(1 to 2) i s
when ”00” => sClk DataIn (0 to 63) <= iMem PLB MRdDBus ;
when ”01” => sClk DataIn (64 to 127) <= iMem PLB MRdDBus ;
when ”10” => sClk DataIn (128 to 191) <= iMem PLB MRdDBus ;
when ”11” => sClk DataIn (192 to 255) <= iMem PLB MRdDBus ;
when others => null ;

end case ;
end i f ;

end i f ;
end process ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Block Decryption F in i t e S ta t e Machine
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Combinational FSM process
FSM Cmb : process ( iCPU M abort , iCPU M request , iMem PLB MAddrAck ,

iMem PLB MRdDAck , sClk CPUReadCount , sClk CurrState ,
sClk Encrypted , sClk MaxCPUReadCount ,
sClk MaxMemReadCount , sClk MemReadCount , sDecryptDone ) i s

begin
case sClk CurrState i s

when ST WaitAddrAck =>
−− Trans i t ion to reading a f t e r o f f i c i a l address t ransac t i on acknowledge
i f ( iCPU M request = ’1 ’ and iCPU M abort = ’0 ’ and iMem PLB MAddrAck = ’1 ’ ) then

sNextState <= ST Read ;
else

sNextState <= ST WaitAddrAck ;
end i f ;

when ST Read =>
−− I f l a s t read data beat has been achieved , e i t h e r progres s to decrypt ion ,
−− or re turn to wa i t ing f o r next t ransac t i on . I f l a s t bea t has not
−− been reached , cont inue to wait
i f ( sClk MemReadCount = sClk MaxMemReadCount and iMem PLB MRdDAck = ’1 ’ ) then

i f ( sClk Encrypted = ’1 ’ or sClk MaxCPUReadCount = ”00” ) then
sNextState <= ST Decrypt ;

else
sNextState <= ST WaitAddrAck ;

end i f ;
else

sNextState <= ST Read ;
end i f ;

when ST Decrypt =>
−− I f in t h i s s ta t e , but not encrypted , then move data from input b u f f e r
−− d i r e c t l y to output bu f f e r , and progres s to wr i t e s t a t e . Otherwise ,
−− wait f o r data b l o c k s to be decrypted
i f ( sClk Encrypted = ’0 ’ ) then

sNextState <= ST Write ;



Anthony J. Mahar Appendix D. Source Listing 133

e l s i f ( sDecryptDone = ’1 ’ ) then
sNextState <= ST Write ;

else
sNextState <= ST Decrypt ;

end i f ;

when ST Write =>
−− Write co r r ec t t ransac t i on words and s i z e to the CPU
i f ( sClk CPUReadCount = sClk MaxCPUReadCount ) then

sNextState <= ST WaitAddrAck ;
else

sNextState <= ST Write ;
end i f ;

when others =>
sNextState <= ST WaitAddrAck ;

end case ;
end process FSM Cmb;

−− Sequen t i a l FSM process
FSM Seq : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk CurrState <= ST WaitAddrAck ;
sClk PLB MBusy <= ’0 ’ ;
sClk PLB MRdDAck <= ’0 ’ ;
sClk PLB MRdWdAddr <= ”000” ;
sClk MemReadCount <= ”00” ;
sClk CPUReadCount <= ”00” ;
sClk MaxMemReadCount <= ”00” ;
sClk MaxCPUReadCount <= ”00” ;
sClk DataOut <= ( others => ’ 0 ’ ) ;
sClk DecryptReq <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk CurrState <= sNextState ;

case sClk CurrState i s

when ST WaitAddrAck =>
−− Latch in busy when address phase i s complete
sClk PLB MBusy <= iCPU M request and (not iCPU M abort ) and iMem PLB MAddrAck ;

−− Es t a b l i s h co r r ec t memory and cpu t ransac t i on s i z e s . They d i f f e r
−− only on a 64− b i t r e que s t
case iCPU M size i s

when ”01” =>
sClk MaxMemReadCount <= ”01” ;
sClk MaxCPUReadCount <= ”01” ;

when ”10” =>
sClk MaxMemReadCount <= ”11” ;
sClk MaxCPUReadCount <= ”11” ;

when others =>
sClk MaxMemReadCount <= ”01” ;
sClk MaxCPUReadCount <= ”00” ;

end case ;

−− Store the t a r g e t f i r s t word
sClk PLB MRdWdAddr <= iCPU M ABus(C AWIDTH−6 to C AWIDTH−4) ;
−− Disab l e data acknowledge to the CPU
sClk PLB MRdDAck <= ’0 ’ ;
−− Zero out Memory , CPU transac t i on counters and decryp t ion
sClk MemReadCount <= ”00” ;
sClk CPUReadCount <= ”00” ;



Anthony J. Mahar Appendix D. Source Listing 134

when ST Read =>
−− Increment Memory read counter when memory data ack occurs
i f (iMem PLB MRdDAck = ’1 ’ ) then

sClk MemReadCount <= sClk MemReadCount + ’ 1 ’ ;
end i f ;
i f ( sClk MemReadCount = sClk MaxMemReadCount and iMem PLB MRdDAck = ’1 ’ and
sClk Encrypted = ’1 ’ ) then

sClk DecryptReq <= ’1 ’ ;
end i f ;

when ST Decrypt =>
i f ( sClk Encrypted = ’0 ’ ) then
−− I f not encrypted , but in t h i s s ta t e , a s i n g l e bea t
−− t r ansac t i on has occured . S h i f t input d i r e c t l y to output .
−− as t h i s i s a s i n g l e data beat , enab le CPU data output
sClk DataOut <= sClk DataIn ;
sClk PLB MRdDAck <= ’1 ’ ;

e l s i f ( sDecryptDone = ’1 ’ ) then
−− I f encrypted and decryp t ion complete , s t o r e in output bu f f e r ,
−− and enab le output
sClk DataOut <= sDecryptDataOut ;
sClk PLB MRdDAck <= ’1 ’ ;

end i f ;

−− Disab l e r eque s t once crypto module has acknowledged r e c e i p t
i f sDecryptAck = ’1 ’ then

sClk DecryptReq <= ’0 ’ ;
end i f ;

when ST Write =>
−− Note , the f i r s t c y c l e o f t h i s s t a t e hand les the s i n g l e bea t case ,
−− the f i r s t s i n g l e bea t i s always i n i t i a t e d from the prev ious s t a t e
i f ( sClk CPUReadCount = sClk MaxCPUReadCount ) then
−− When complete d i s a b l e busy and data ack .
sClk PLB MBusy <= ’0 ’ ;
sClk PLB MRdDAck <= ’0 ’ ;

else
−− Increment word po in ters , and wrap at the appropr ia te boundary
−− depending on t ransac t i on s i z e
i f ( sClk MaxCPUReadCount = ”01” ) then

sClk PLB MRdWdAddr <= sClk PLB MRdWdAddr(0 to 1) & not sClk PLB MRdWdAddr (2 ) ;
else

sClk PLB MRdWdAddr <= sClk PLB MRdWdAddr (0 ) & (sClk PLB MRdWdAddr(1 to 2) +
’1 ’ ) ;

end i f ;
end i f ;

−− Increment the read count
sClk CPUReadCount <= sClk CPUReadCount + ’ 1 ’ ;

when others => null ;
end case ;

end i f ;
end process FSM Seq ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Performance Counter Handler
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Create a s t r o b e f o r every encrypted t ransac t i on
process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then



Anthony J. Mahar Appendix D. Source Listing 135

oPerformance Fetch <= ’0 ’ ;
oPerformance EncFetch <= ’0 ’ ;

e l s i f ( r i s i n g e d g e ( Clk ) ) then
i f iTableSearchDone = ’1 ’ then

oPerformance Fetch <= ’1 ’ ;
else

oPerformance Fetch <= ’0 ’ ;
end i f ;
i f iTableSearchDone = ’1 ’ and iPageEncrypted = ’1 ’ then

oPerformance EncFetch <= ’1 ’ ;
else

oPerformance EncFetch <= ’0 ’ ;
end i f ;

end i f ;
end process ;

end architecture arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 136

D.1.5 Bridge CounterModeDecrypt.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : Counter Mode Decryption Unit
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : Bridge CounterModeDecrypt . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−06−25
−− Last update : 2005/07/28
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Counter−mode decryp t ion un i t f o r encrypted / unencrypted memory
−− t r an sac t i on s wi th in the Secure Software a r c h i t e c t u r e . Fol lows
−− plug−in module i n t e r f a c e f o r the SecSof t b r i d ge un i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−06−25 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;

l ibrary plb emu v1 00 a ;
use plb emu v1 00 a . a l l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

entity Bridge CounterModeDecrypt i s

generic (
C AWIDTH : i n t e g e r := 32 ;
C DWIDTH : i n t e g e r := 64 ;
C PAGE AWIDTH : i n t e g e r := 20 ;
C KEYSIZE : i n t e g e r := 128 ;
C ANCILLARY DWIDTH : i n t e g e r := 128) ;

port (
Clk : in s t d l o g i c ;
Reset : in s t d l o g i c ;
iCPU M ABus : in s t d l o g i c v e c t o r (0 to C AWIDTH−1) ;
iCPU M request : in s t d l o g i c ;
iCPU M size : in s t d l o g i c v e c t o r (0 to 1) ;
iCPU M abort : in s t d l o g i c ;
iCPU M BE : in s t d l o g i c v e c t o r (0 to ( (C DWIDTH/8) )−1) ;
oCPU PLB MAddrAck : out s t d l o g i c ;
oCPU PLB MBusy : out s t d l o g i c ;
oCPU PLB MRdDAck : out s t d l o g i c ;
oCPU PLB MRdDBus : out s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
oCPU PLB MRdWdAddr : out s t d l o g i c v e c t o r (0 to 3) ;

oMem M ABus : out s t d l o g i c v e c t o r (0 to C AWIDTH−1) ;
oMem M request : out s t d l o g i c ;
oMem M size : out s t d l o g i c v e c t o r (0 to 1) ;
oMem M abort : out s t d l o g i c ;
oMem M BE : out s t d l o g i c v e c t o r (0 to ( (C DWIDTH/8) )−1) ;

iMem PLB MAddrAck : in s t d l o g i c ;



Anthony J. Mahar Appendix D. Source Listing 137

iMem PLB MBusy : in s t d l o g i c ;
iMem PLB MRdDAck : in s t d l o g i c ;
iMem PLB MRdDBus : in s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
iMem PLB MRdWdAddr : in s t d l o g i c v e c t o r (0 to 3) ;

oTableReq : out s t d l o g i c ;
iTableSearchDone : in s t d l o g i c ;
oPageAddress : out s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;
iPageEncrypted : in s t d l o g i c ;
iPageKey : in s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;
iPageAnc i l l a ry : in s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ;
oPerformance EncFetch : out s t d l o g i c ;
oPerformance Fetch : out s t d l o g i c ) ;

end entity Bridge CounterModeDecrypt ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

architecture arch of Bridge CounterModeDecrypt i s

type StateType i s ( ST Wait , ST Encrypt , ST Write ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

signal sClk CurrState , sNextState : StateType := ST Wait ;

−− Crypto S i gna l s
signal sClk CryptoRequest : s t d l o g i c ;
signal sClk Key : s t d l o g i c v e c t o r (0 to 127) ;
signal sC lk Anc i l l a r y : s t d l o g i c v e c t o r (0 to 127) ;

−− FIFO Signa l s
signal sFIFO Push , sFIFO Pop , sFIFO Empty : s t d l o g i c ;
signal sDataFIFO DataIn : s t d l o g i c v e c t o r (0 to 255) ;
signal sDataFIFO DataOut : s t d l o g i c v e c t o r (0 to 63) ;
signal sRdWdAddrFIFO DataIn : s t d l o g i c v e c t o r (0 to 3) ;
signal sRdWdAddrFIFO DataOut : s t d l o g i c v e c t o r (0 to 3) ;

−− Crypto S i gna l s
signal sCrypto Acknowledge , sCrypto Done : s t d l o g i c ;
signal sCounter 1 , sCounter 0 : s t d l o g i c v e c t o r (0 to 127) ;
signal sCryptoOut : s t d l o g i c v e c t o r (0 to 255) ;
signal sClk CounterEncrypted : s t d l o g i c v e c t o r (0 to 255) ;
signal sXOR : s t d l o g i c v e c t o r (0 to 63) ;

−− Transaction s i g n a l s
signal sClk WordAddress : s t d l o g i c v e c t o r (0 to 3) ;
signal sClk LineAddress : s t d l o g i c v e c t o r (0 to C AWIDTH −
C PAGE AWIDTH − 5 − 1) ;
signal sClk PLB MBusy : s t d l o g i c ;
signal sTransac t i onSta r t : s t d l o g i c ;
signal sClk BeatCounter : s t d l o g i c v e c t o r (0 to 1) ;
signal sClk MaxBeatCounter : s t d l o g i c v e c t o r (0 to 1) ;
signal sM request , sM abort , sPLB MAddrAck : s t d l o g i c ;
signal sM BE : s t d l o g i c v e c t o r (0 to ( (C DWIDTH/8) )−1) ;
signal sCPU PLB MRdDAck : s t d l o g i c ;

begin

−− Performance outputs
oPerformance Fetch <= sTransac t i onSta r t ;
oPerformance EncFetch <= iTableSearchDone and iPageEncrypted ;



Anthony J. Mahar Appendix D. Source Listing 138

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Crypto Core In t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sCounter 1 <= sC lk Anc i l l a r y (0 to C ANCILLARY DWIDTH − 8 − 1) & sClk LineAddress & ”1” ;
sCounter 0 <= sC lk Anc i l l a r y (0 to C ANCILLARY DWIDTH − 8 − 1) & sClk LineAddress & ”0” ;

c rypto 1 : entity plb emu v1 00 a . c rypto xor
port map (

Clk => Clk ,
Reset => Reset ,
iRequest => sClk CryptoRequest ,
iData => sCounter 1 ,
iKey => sClk Key ,
oAcknowledge => sCrypto Acknowledge ,
oDone => sCrypto Done ,
oData => sCryptoOut (0 to 127) ) ;

c rypto 0 : entity plb emu v1 00 a . c rypto xor
port map (

Clk => Clk ,
Reset => Reset ,
iRequest => sClk CryptoRequest ,
iData => sCounter 0 ,
iKey => sClk Key ,
oAcknowledge => open ,
oDone => open ,
oData => sCryptoOut (128 to 255) ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− FIFO In t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sFIFO Push <= iMem PLB MRdDAck ;
sFIFO Pop <= sCPU PLB MRdDAck ;
sRdWdAddrFIFO DataIn <= sClk WordAddress when sClk MaxBeatCounter = ”00” else
iMem PLB MRdWdAddr ;

sXOR <= sClk CounterEncrypted (0 to 63) when sRdWdAddrFIFO DataOut(1 to 2) = ”10” else
sClk CounterEncrypted (64 to 127) when sRdWdAddrFIFO DataOut(1 to 2) = ”11” else
sClk CounterEncrypted (128 to 191) when sRdWdAddrFIFO DataOut(1 to 2) = ”00” else
sClk CounterEncrypted (192 to 255) ;

s f i f o d a t a : entity plb emu v1 00 a . s f i f o
generic map (

C WIDTH => 64)
port map (

Clk => Clk ,
Reset => Reset ,
iPush => sFIFO Push ,
iData => iMem PLB MRdDBus ,
iPop => sFIFO Pop ,
oData => sDataFIFO DataOut ,
oEmpty => sFIFO Empty ,
oFul l => open) ;

s f i f o rdwdaddr : entity plb emu v1 00 a . s f i f o
generic map (

C WIDTH => 4)
port map (

Clk => Clk ,
Reset => Reset ,
iPush => sFIFO Push ,
iData => sRdWdAddrFIFO DataIn ,



Anthony J. Mahar Appendix D. Source Listing 139

iPop => sFIFO Pop ,
oData => sRdWdAddrFIFO DataOut ,
oEmpty => open ,
oFu l l => open) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Table Search In t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− A reques t occurs on every o f f i c i a l address t ransac t i on acknowledge
oTableReq <= sTransac t i onSta r t ;
oPageAddress <= iCPU M ABus(0 to C PAGE AWIDTH−1) ;

TableLatch : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk Key <= ( others => ’ 0 ’ ) ;
sC l k Anc i l l a r y <= ( others => ’ 0 ’ ) ;

e l s i f r i s i n g e d g e ( Clk ) then
i f ( iTableSearchDone = ’1 ’ ) then

sClk Key <= iPageKey ;
sC lk Anc i l l a r y <= iPageAnc i l l a ry ;

end i f ;
end i f ;

end process TableLatch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Address Transaction Se l e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sTransac t i onSta r t <= iCPU M request and (not iCPU M abort ) and iMem PLB MAddrAck ;
sCPU PLB MRdDAck <= ’1 ’ when sFIFO Empty = ’0 ’ and sClk CurrState = ST Write else ’ 0 ’ ;

TransReq : process ( iCPU M BE , iCPU M abort , iCPU M request ,
iMem PLB MAddrAck , sClk CurrState ) i s

begin
i f ( sClk CurrState = ST Wait ) then
−− Pass through a l l s i g n a l s when not invo l v ed in a t ransac t i on
sPLB MAddrAck <= iMem PLB MAddrAck ;
sM request <= iCPU M request ;
sM abort <= iCPU M abort ;
sM BE <= iCPU M BE ;

else
−− Loop−back abor t s i g n a l to acknowledge per PLB spec
−− d i s a b l e r e que s t / abor t to memory bus
sPLB MAddrAck <= iCPU M abort ;
sM request <= ’0 ’ ;
sM abort <= ’0 ’ ;
sM BE <= ( others => ’ 0 ’ ) ;

end i f ;
end process TransReq ;

−− Forward any muxed s i g n a l s
oMem M ABus <= iCPU M ABus ;
oMem M size <= iCPU M size ;
oMem M abort <= sM abort ;
oMem M request <= sM request ;
oMem M BE <= sM BE ;
oCPU PLB MAddrAck <= sPLB MAddrAck ;
oCPU PLB MRdDAck <= sCPU PLB MRdDAck ;
oCPU PLB MRdWdAddr <= sRdWdAddrFIFO DataOut when sCPU PLB MRdDAck = ’1 ’ else ( others
=> ’ 0 ’ ) ;
oCPU PLB MRdDBus <= sDataFIFO DataOut xor sXOR when sCPU PLB MRdDAck = ’1 ’ else ( others
=> ’ 0 ’ ) ;
oCPU PLB MBusy <= sClk PLB MBusy ;



Anthony J. Mahar Appendix D. Source Listing 140

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Counter−Mode Fin i t e S ta te machine
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Sequen t i a l process
FSM Seq : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk CurrState <= ST Wait ;
sClk LineAddress <= ( others => ’ 0 ’ ) ;
sClk CryptoRequest <= ’0 ’ ;
sClk CounterEncrypted <= ( others => ’ 0 ’ ) ;
sClk BeatCounter <= ( others => ’ 0 ’ ) ;
sClk MaxBeatCounter <= ( others => ’ 0 ’ ) ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk CurrState <= sNextState ;

case sClk CurrState i s
when ST Wait =>

−− Store the reques t ed address f o r counter mode
sClk LineAddress <= iCPU M ABus(C PAGE AWIDTH to C AWIDTH − 5 − 1) ;

−− Begin the busy per iod when the t ransac t i on s t a r t s
sClk PLB MBusy <= sTransac t i onSta r t ;

−− Store the number o f bea t s f o r the t ransac t i on
case iCPU M size i s

when ”01” =>
sClk MaxBeatCounter <= ”01” ;

when ”10” =>
sClk MaxBeatCounter <= ”11” ;

when others =>
sClk MaxBeatCounter <= ”00” ;

end case ;

−− Reset the nubmer o f bea t s t r an s f e r r e d
sClk BeatCounter <= ”00” ;

−− Word address ( needed l a t e r f o r s i n g l e bea t t rans )
sClk WordAddress <= iCPU M ABus(C AWIDTH−6 to C AWIDTH−3) ;

when ST Encrypt =>

−− Assert r e que s t to the crypto cores to process i f the t ransac t i on
−− i s encrypted , d ea s s e r t when crypto process complete
i f iTableSearchDone = ’1 ’ and iPageEncrypted = ’1 ’ then

sClk CryptoRequest <= ’1 ’ ;
e l s i f sCrypto Acknowledge = ’1 ’ then

sClk CryptoRequest <= ’0 ’ ;
end i f ;

−− I f the t ransac t i on i s not encrypted , c l e a r out the encrypted
−− counter b u f f e r to xor aga in s t 0
i f iTableSearchDone = ’1 ’ and iPageEncrypted = ’0 ’ then

sClk CounterEncrypted <= ( others => ’ 0 ’ ) ;
else

sClk CounterEncrypted <= sCryptoOut ;
end i f ;

when ST Write =>
−− Increment counted bea t s on i n t e r n a l l y generated Address ack
i f sCPU PLB MRdDAck = ’1 ’ then

sClk BeatCounter <= sClk BeatCounter + ’ 1 ’ ;



Anthony J. Mahar Appendix D. Source Listing 141

end i f ;

−− Deassert busy a f t e r a l l reads have been completed
i f sClk BeatCounter = sClk MaxBeatCounter and sCPU PLB MRdDAck = ’1 ’ then

sClk PLB MBusy <= ’0 ’ ;
end i f ;

when others => null ;
end case ;

end i f ;
end process FSM Seq ;

−− Combinational process
FSM Cmb : process ( iPageEncrypted , iTableSearchDone , sCPU PLB MRdDAck,

sClk BeatCounter , sClk CurrState , sClk MaxBeatCounter ,
sCrypto Done , sTransac t i onSta r t ) i s

begin
case sClk CurrState i s

when ST Wait =>
i f sTransac t i onSta r t = ’1 ’ then

sNextState <= ST Encrypt ;
else

sNextState <= ST Wait ;
end i f ;

when ST Encrypt =>
i f ( iTableSearchDone = ’1 ’ and iPageEncrypted = ’0 ’ ) or ( sCrypto Done = ’1 ’ ) then

sNextState <= ST Write ;
else

sNextState <= ST Encrypt ;
end i f ;

when ST Write =>
i f sClk BeatCounter = sClk MaxBeatCounter and sCPU PLB MRdDAck = ’1 ’ then

sNextState <= ST Wait ;
else

sNextState <= ST Write ;
end i f ;

when others =>
sNextState <= ST Wait ;

end case ;
end process FSM Cmb;

end architecture arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 142

D.1.6 Tables.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : Page/Key Lookup Tables
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : Tables . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−03−10
−− Last update : 2005−07−17
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Container f o r the page look up , key address l ook up , key look
−− up , and an c i l l a r y data look up . Inc ludes both a search / f i nd
−− i n t e r f a c e , and t a b l e wr i t i n g i n t e r f a c e s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−07−09 amahar General code clean−up and commenting . Switched to
−− StateType FSM encoding ra ther than d i r e c t encoding .
−− 2005−06−25 amahar Added an c i l l a r y data to t a b l e lookups
−− 2005−05−07 amahar Removed unecessary in termed ia te r e g i s t e r s f o r the
−− cross c l o c k domain synchronizers , f i x e d up s t a t e
−− machines to proper format r e co gn i z a b l e by XST,
−− removed the s t a r t /done f ea t u r e which i s no longer
−− needed
−− 2005−04−01 amahar Added c l o c k synchron i zer s
−− 2005−03−10 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;

l ibrary unisim ;
use unisim . vcomponents . a l l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

entity Tables i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

generic (
C PAGE AWIDTH : i n t e g e r := 20 ;
C PAGETABLE AWIDTH : i n t e g e r := 6 ;
C KEYTABLE AWIDTH : i n t e g e r := 6 ;
C KEYSIZE : i n t e g e r := 128 ;
C ANCILLARY DWIDTH : i n t e g e r := 128) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

port (
Clk : in s t d l o g i c ;
Reset : in s t d l o g i c ;
iPTCtoPT Req : in s t d l o g i c ;
oPTCtoPT Ack : out s t d l o g i c ;
iPTCtoPT PageBase : in s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;



Anthony J. Mahar Appendix D. Source Listing 143

iPTCtoPT KeyIndex : in s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
iPTCtoPT PageIndex : in s t d l o g i c v e c t o r (0 to C PAGETABLE AWIDTH−1) ;
iPTCtoPT Ancillary : in s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ;
iKTCtoKT Req : in s t d l o g i c ;
oKTCtoKT Ack : out s t d l o g i c ;
iKTCtoKT KeyIndex : in s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
iKTCtoKT Key : in s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;
iTableReq : in s t d l o g i c ;
oTableSearchDone : out s t d l o g i c ;
iPageAddress : in s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;
oPageEncrypted : out s t d l o g i c ;
oPageKey : out s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;
oPageAnci l lary : out s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ;
oPerformance TableWrite : out s t d l o g i c ;
oPerformance EncTableWrite : out s t d l o g i c ) ;

end Tables ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture s e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of Tables i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Component d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
component cam20bx64

port (
c l k : in s t d l o g i c ;
cmp din : in s t d l o g i c v e c t o r (19 downto 0) ;
din : in s t d l o g i c v e c t o r (19 downto 0) ;
we : in s t d l o g i c ;
wr addr : in s t d l o g i c v e c t o r (5 downto 0) ;
busy : out s t d l o g i c ;
match : out s t d l o g i c ;
match addr : out s t d l o g i c v e c t o r (5 downto 0) ) ;

end component ;

component ram128bx64
port (

addra : in s t d l o g i c v e c t o r (5 downto 0) ;
addrb : in s t d l o g i c v e c t o r (5 downto 0) ;
c l ka : in s t d l o g i c ;
c lkb : in s t d l o g i c ;
dinb : in s t d l o g i c v e c t o r (127 downto 0) ;
douta : out s t d l o g i c v e c t o r (127 downto 0) ;
web : in s t d l o g i c ) ;

end component ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Type de c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
type PTCtoPT StateType i s ( ST PTCtoPT Write , ST PTCtoPT WaitReqActive ,
ST PTCtoPT WaitReqInactive ) ;
type KTCtoKT StateType i s (ST KTCtoKT Write , ST KTCtoKT WaitReqActive ,
ST KTCtoKT WaitReqInactive ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l cons tant d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant NULLADDR : s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) := ( others => ’ 0 ’ ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s



Anthony J. Mahar Appendix D. Source Listing 144

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− S i gna l s : PageTable handshake s i g n a l s
signal sClk PTCtoPT CurrState : PTCtoPT StateType := ST PTCtoPT WaitReqActive ;
signal sPTCtoPT NextState : PTCtoPT StateType := ST PTCtoPT WaitReqActive ;
signal sClk PTCtoPT Req d1 : s t d l o g i c ;
signal sClk PTCtoPT Req d2 : s t d l o g i c ;
signal sClk PTCtoPT Ack : s t d l o g i c ;

−− S i gna l s : KeyTable handshake s i g n a l s
signal sClk KTCtoKT CurrState : KTCtoKT StateType := ST KTCtoKT WaitReqActive ;
signal sKTCtoKT NextState : KTCtoKT StateType := ST KTCtoKT WaitReqActive ;
signal sClk KTCtoKT Req d1 : s t d l o g i c ;
signal sClk KTCtoKT Req d2 : s t d l o g i c ;
signal sClk KTCtoKT Ack : s t d l o g i c ;

−− Table con t ro l s i g n a l s
signal sClk PTWrite : s t d l o g i c ;
signal sClk KTWrite : s t d l o g i c ;

signal sMatchAddr : s t d l o g i c v e c t o r (0 to C PAGETABLE AWIDTH−1) ;
signal sKeyAddr : s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
signal sKey : s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ;
signal sAnc i l l a r y : s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ;
signal sClk Timer : s t d l o g i c v e c t o r (0 to 1) ;
signal sClk Enc : s t d l o g i c ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Component i n s t a n t i a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Content Addressab le Memory : 64x128−b i t
cam20bx64 1 : cam20bx64

port map (
c l k => Clk ,
cmp din => iPageAddress ,
din => iPTCtoPT PageBase ,
we => sClk PTWrite ,
wr addr => iPTCtoPT PageIndex ,
busy => open ,
match => open ,
match addr => sMatchAddr ) ;

−− Key Address Table : 64x6−b i t
ram6bx64 1 : for i in 0 to 5 generate
begin

ram64x1d inst : ram64x1d
port map (

DPO => sKeyAddr ( i ) ,
SPO => open ,
A0 => iPTCtoPT PageIndex (0 ) ,
A1 => iPTCtoPT PageIndex (1 ) ,
A2 => iPTCtoPT PageIndex (2 ) ,
A3 => iPTCtoPT PageIndex (3 ) ,
A4 => iPTCtoPT PageIndex (4 ) ,
A5 => iPTCtoPT PageIndex (5 ) ,
D => iPTCtoPT KeyIndex ( i ) ,
DPRA0 => sMatchAddr (0 ) ,
DPRA1 => sMatchAddr (1 ) ,



Anthony J. Mahar Appendix D. Source Listing 145

DPRA2 => sMatchAddr (2 ) ,
DPRA3 => sMatchAddr (3 ) ,
DPRA4 => sMatchAddr (4 ) ,
DPRA5 => sMatchAddr (5 ) ,
WCLK => Clk ,
WE => sClk PTWrite
) ;

end generate ;

−− Key Table : 64x128−b i t
ram128bx64 1 : ram128bx64

port map (
addra => sKeyAddr ,
addrb => iKTCtoKT KeyIndex ,
c lka => Clk ,
c lkb => Clk ,
dinb => iKTCtoKT Key ,
douta => sKey ,
web => sClk KTWrite ) ;

−− Anc i l l a ry Data Table : 64x128−b i t
ram128bx64 2 : ram128bx64

port map (
addra => sMatchAddr ,
addrb => iPTCtoPT PageIndex ,
c lka => Clk ,
c lkb => Clk ,
dinb => iPTCtoPT Ancillary ,
douta => sAnc i l l a ry ,
web => sClk PTWrite ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Look−up t imers
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TimerProc : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk Timer <= ( others => ’ 0 ’ ) ;
sClk Enc <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk Timer (0 ) <= iTableReq ;
sClk Timer (1 ) <= sClk Timer (0 ) ;
i f ( sKeyAddr /= NULLADDR and sClk Timer (0 ) = ’1 ’ ) then

sClk Enc <= ’1 ’ ;
else

sClk Enc <= ’0 ’ ;
end i f ;

end i f ;
end process TimerProc ;

−− Map in t e rna l s i g n a l s to t iming i n t e r f a c e
oTableSearchDone <= sClk Timer (1 ) ; −− Search take s 1 c l o c k c y c l e
oPageEncrypted <= sClk Enc ;
oPageKey <= sKey ;
oPageAnci l lary <= sAnc i l l a r y ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− PageTable In t e r f a c e handshaking ( r e c e i v e )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− S t a b a l i z e Acknowledgement s i g n a l from PTC uni t
PTC Meta Ack : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then



Anthony J. Mahar Appendix D. Source Listing 146

sClk PTCtoPT Req d1 <= ’0 ’ ;
sClk PTCtoPT Req d2 <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk PTCtoPT Req d1 <= iPTCtoPT Req ;
sClk PTCtoPT Req d2 <= sClk PTCtoPT Req d1 ;

end i f ;
end process PTC Meta Ack ;

−− Protoco l FSM Sequen t i a l process
PTCtoPT Seq Ifc : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk PTCtoPT CurrState <= ST PTCtoPT WaitReqActive ;
sClk PTCtoPT Ack <= ’0 ’ ;
sClk PTWrite <= ’0 ’ ;
oPerformance TableWrite <= ’0 ’ ;
oPerformance EncTableWrite <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk PTCtoPT CurrState <= sPTCtoPT NextState ;
case sClk PTCtoPT CurrState i s

when ST PTCtoPT WaitReqActive =>
oPerformance TableWrite <= ’0 ’ ;
oPerformance EncTableWrite <= ’0 ’ ;
sClk PTCtoPT Ack <= ’0 ’ ;
sClk PTWrite <= sClk PTCtoPT Req d2 ;

when ST PTCtoPT Write =>
i f iPTCtoPT KeyIndex /= ”000000” then

oPerformance EncTableWrite <= ’1 ’ ;
end i f ;
oPerformance TableWrite <= ’1 ’ ;
sClk PTCtoPT Ack <= ’0 ’ ;
sClk PTWrite <= ’1 ’ ;

when ST PTCtoPT WaitReqInactive =>
oPerformance TableWrite <= ’0 ’ ;
oPerformance EncTableWrite <= ’0 ’ ;
sClk PTCtoPT Ack <= ’1 ’ ;
sClk PTWrite <= ’0 ’ ;

when others =>
oPerformance TableWrite <= ’0 ’ ;
oPerformance EncTableWrite <= ’0 ’ ;
sClk PTCtoPT Ack <= ’0 ’ ;
sClk PTWrite <= ’0 ’ ;

end case ;
end i f ;

end process PTCtoPT Seq Ifc ;

−− Protoco l FSM Combinational process
PTCtoPT Cmb Ifc : process ( sClk PTCtoPT CurrState , sClk PTCtoPT Req d2 ) i s
begin

case sClk PTCtoPT CurrState i s
when ST PTCtoPT WaitReqActive =>

i f ( sClk PTCtoPT Req d2 = ’1 ’ ) then
sPTCtoPT NextState <= ST PTCtoPT Write ;

else
sPTCtoPT NextState <= ST PTCtoPT WaitReqActive ;

end i f ;
when ST PTCtoPT Write =>

sPTCtoPT NextState <= ST PTCtoPT WaitReqInactive ;
when ST PTCtoPT WaitReqInactive =>

i f ( sClk PTCtoPT Req d2 = ’0 ’ ) then
sPTCtoPT NextState <= ST PTCtoPT WaitReqActive ;

else
sPTCtoPT NextState <= ST PTCtoPT WaitReqInactive ;

end i f ;



Anthony J. Mahar Appendix D. Source Listing 147

when others =>
sPTCtoPT NextState <= ST PTCtoPT WaitReqActive ;

end case ;
end process PTCtoPT Cmb Ifc ;

−− Map in t e rna l s i g n a l s to PTC−PT In t e r f a c e
oPTCtoPT Ack <= sClk PTCtoPT Ack ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− KeyTable In t e r f a c e handshaking ( r e c e i v e )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− S t a b a l i z e Acknowledgement s i g n a l from KTC uni t
KTC Meta Ack : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk KTCtoKT Req d1 <= ’0 ’ ;
sClk KTCtoKT Req d2 <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk KTCtoKT Req d1 <= iKTCtoKT Req ;
sClk KTCtoKT Req d2 <= sClk KTCtoKT Req d1 ;

end i f ;
end process KTC Meta Ack ;

−− Protoco l FSM Sequen t i a l process
KTCtoKT Seq Ifc : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk KTCtoKT CurrState <= ST KTCtoKT WaitReqActive ;
sClk KTCtoKT Ack <= ’0 ’ ;
sClk KTWrite <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk KTCtoKT CurrState <= sKTCtoKT NextState ;
case sClk KTCtoKT CurrState i s

when ST KTCtoKT WaitReqActive =>
sClk KTCtoKT Ack <= ’0 ’ ;
sClk KTWrite <= sClk KTCtoKT Req d2 ;

when ST KTCtoKT Write =>
sClk KTCtoKT Ack <= ’0 ’ ;
sClk KTWrite <= ’1 ’ ;

when ST KTCtoKT WaitReqInactive =>
sClk KTCtoKT Ack <= ’1 ’ ;
sClk KTWrite <= ’0 ’ ;

when others =>
sClk KTCtoKT Ack <= ’0 ’ ;
sClk KTWrite <= ’0 ’ ;

end case ;
end i f ;

end process KTCtoKT Seq Ifc ;

−− Protoco l FSM Combinational process
KTCtoKT Cmb Ifc : process ( sClk KTCtoKT CurrState , sClk KTCtoKT Req d2 ) i s
begin

case sClk KTCtoKT CurrState i s
when ST KTCtoKT WaitReqActive =>

i f ( sClk KTCtoKT Req d2 = ’1 ’ ) then
sKTCtoKT NextState <= ST KTCtoKT Write ;

else
sKTCtoKT NextState <= ST KTCtoKT WaitReqActive ;

end i f ;
when ST KTCtoKT Write =>

sKTCtoKT NextState <= ST KTCtoKT WaitReqInactive ;
when ST KTCtoKT WaitReqInactive =>

i f ( sClk KTCtoKT Req d2 = ’0 ’ ) then



Anthony J. Mahar Appendix D. Source Listing 148

sKTCtoKT NextState <= ST KTCtoKT WaitReqActive ;
else

sKTCtoKT NextState <= ST KTCtoKT WaitReqInactive ;
end i f ;

when others =>
sKTCtoKT NextState <= ST KTCtoKT WaitReqActive ;

end case ;
end process KTCtoKT Cmb Ifc ;

−− Map in t e rna l s i g n a l s to KTC−kT In t e r f a c e
oKTCtoKT Ack <= sClk KTCtoKT Ack ;

end arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 149

D.1.7 PageTableControl.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : Page Table Control Unit
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : PageTableControl . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−03−07
−− Last update : 2005−07−15
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Unit f o r c o n t r o l l i n g the Page t a b l e s in the Table un i t .
−− This un i t i s con t ro l ed by a standard Control I n t e r f a c e .
−− Clock domain synchron i za t ion i s used when wr i t i n g to Table
−− uni t .
−− Assumptions : Bus i n t e r f a c e con t ro l un i t i s in the same c l o ck domain .
−− Table un i t i s in a d i f f e r e n t c l o c k domain .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−07−09 amahar Switched s t a t e machine f o r b e t t e r in f e r ence with synth .
−− Used StateType dec l a ra t i on ins t ead o f hard coding
−− 2005−06−25 amahar Removed KTC/PTC Communication . not cohes i ve .
−− 2005−03−31 amahar F ina l i z ed KTCtoPTC and PTCtoKTC cross c l o c k
−− domain synchron i za t ion
−− 2005−03−25 amahar Relocated the PageTable wri te−enab le s i g n a l
−− to i t s own ded ica ted process
−− 2005−03−25 amahar Added comments , swi tched to Zero bus padding
−− on reads
−− 2005−03−15 amahar Fixed high / low l o ca t i on o f sku con t ro l / s t a t u s
−− con t ro l now in upper 16− b i t s
−− 2005−03−09 amahar Switched to address / wr i t e enab l e i n t e r f a c e
−− 2005−03−08 amahar Added core f u n c t i o n a l i t y
−− 2005−03−07 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;

entity PageTableControl i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

generic (
CONTROLDWIDTH : i n t e g e r := 32 ;
CONTROL AWIDTH : i n t e g e r := 3 ;
C PAGE AWIDTH : i n t e g e r := 20 ;
C PAGETABLE AWIDTH : i n t e g e r := 6 ;
C KEYTABLE AWIDTH : i n t e g e r := 6 ;
C ANCILLARY DWIDTH : i n t e g e r := 128) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

port (
Clk : in s t d l o g i c ;
Reset : in s t d l o g i c ;
iContro l Addr : in s t d l o g i c v e c t o r (0 to CONTROL AWIDTH−1) ;



Anthony J. Mahar Appendix D. Source Listing 150

iContro l Req : in s t d l o g i c ;
oControl Ack : out s t d l o g i c ;
oControl Wait : out s t d l o g i c ;
iControl RNW : in s t d l o g i c ;
iControl BE : in s t d l o g i c v e c t o r (0 to (CONTROLDWIDTH/8)−1) ;
iControl WrBus : in s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
oControl RdBus : out s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
oPTCtoPT Req : out s t d l o g i c ;
iPTCtoPT Ack : in s t d l o g i c ;
oPTCtoPT PageBase : out s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;
oPTCtoPT KeyIndex : out s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
oPTCtoPT PageIndex : out s t d l o g i c v e c t o r (0 to C PAGETABLE AWIDTH−1) ;
oPTCtoPT Ancillary : out s t d l o g i c v e c t o r (0 to C ANCILLARY DWIDTH−1) ) ;

end PageTableControl ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture Sect ion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of PageTableControl i s

type PTCtoPT StateType i s ( ST PTCtoPT WaitWrite , ST PTCtoPT WaitAckActive ,
ST PTCtoPT WaitAckInactive ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l cons tant d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Constants : Zero Pads
constant PAGE ZEROS : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−C PAGE AWIDTH−1) := (
others => ’ 0 ’ ) ;
constant KEYINDEX ZEROS : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−C KEYTABLE AWIDTH−1) := (
others => ’ 0 ’ ) ;
constant PAGEINDEX ZEROS : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−C PAGETABLE AWIDTH−1) := (
others => ’ 0 ’ ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− S i gna l s : Control Unit Reg i s t e r s
signal sClk PageBase : s t d l o g i c v e c t o r (0 to C PAGE AWIDTH−1) ;
signal sClk KeyIndex : s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
signal sClk PageIndex : s t d l o g i c v e c t o r (0 to C PAGETABLE AWIDTH−1) ;
signal sC lk Anc i l l a ry0 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
signal sC lk Anc i l l a ry1 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
signal sC lk Anc i l l a ry2 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
signal sC lk Anc i l l a ry3 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;

−− S i gna l s : PageTable handshake s i g n a l s
signal sClk PTCtoPT CurrState : PTCtoPT StateType := ST PTCtoPT WaitWrite ;
signal sPTCtoPT NextState : PTCtoPT StateType := ST PTCtoPT WaitWrite ;
signal sClk PTCtoPT Req : s t d l o g i c ;
signal sClk PTCtoPT Ack d1 : s t d l o g i c ;
signal sClk PTCtoPT Ack d2 : s t d l o g i c ;

−− S i gna l s : Control I n t e r f a c e handshake s i g n a l s
signal sClk Control PTCtoPT Ack : s t d l o g i c ;
signal sClk Contro l Ack : s t d l o g i c ;
signal sClk Contro l Wait : s t d l o g i c ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin



Anthony J. Mahar Appendix D. Source Listing 151

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− PageTable In t e r f a c e handshaking ( transmit )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− S t a b a l i z e Acknowledgement s i g n a l from Table un i t
Meta Ack : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk PTCtoPT Ack d1 <= ’0 ’ ;
sClk PTCtoPT Ack d2 <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk PTCtoPT Ack d1 <= iPTCtoPT Ack ;
sClk PTCtoPT Ack d2 <= sClk PTCtoPT Ack d1 ;

end i f ;
end process Meta Ack ;

−− Protoco l FSM Sequen t i a l process
PTCtoPT Seq Ifc : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk PTCtoPT CurrState <= ST PTCtoPT WaitWrite ;
sClk PTCtoPT Req <= ’0 ’ ;
sClk Control PTCtoPT Ack <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk PTCtoPT CurrState <= sPTCtoPT NextState ;
case sClk PTCtoPT CurrState i s

when ST PTCtoPT WaitWrite =>
sClk PTCtoPT Req <= ’0 ’ ;
sClk Control PTCtoPT Ack <= ’0 ’ ;

when ST PTCtoPT WaitAckActive =>
sClk PTCtoPT Req <= ’1 ’ ;
sClk Control PTCtoPT Ack <= ’0 ’ ;

when ST PTCtoPT WaitAckInactive =>
sClk PTCtoPT Req <= ’0 ’ ;
sClk Control PTCtoPT Ack <= ’1 ’ ;

when others =>
sClk PTCtoPT Req <= ’0 ’ ;
sClk Control PTCtoPT Ack <= ’0 ’ ;

end case ;
end i f ;

end process PTCtoPT Seq Ifc ;

−− Protoco l FSM Combinational process
PTCtoPT Cmb Ifc : process ( iControl Addr , iControl RNW , iControl Req ,

sClk PTCtoPT Ack d2 , sClk PTCtoPT CurrState ) i s
begin

case sClk PTCtoPT CurrState i s
when ST PTCtoPT WaitWrite =>

i f ( iControl RNW = ’0 ’ and iContro l Addr = ”010” and iContro l Req = ’1 ’ ) then
sPTCtoPT NextState <= ST PTCtoPT WaitAckActive ;

else
sPTCtoPT NextState <= ST PTCtoPT WaitWrite ;

end i f ;
when ST PTCtoPT WaitAckActive =>

i f ( sClk PTCtoPT Ack d2 = ’1 ’ ) then
sPTCtoPT NextState <= ST PTCtoPT WaitAckInactive ;

else
sPTCtoPT NextState <= ST PTCtoPT WaitAckActive ;

end i f ;
when ST PTCtoPT WaitAckInactive =>

i f ( sClk PTCtoPT Ack d2 = ’0 ’ ) then
sPTCtoPT NextState <= ST PTCtoPT WaitWrite ;

else



Anthony J. Mahar Appendix D. Source Listing 152

sPTCtoPT NextState <= ST PTCtoPT WaitAckInactive ;
end i f ;

when others =>
sPTCtoPT NextState <= ST PTCtoPT WaitWrite ;

end case ;
end process PTCtoPT Cmb Ifc ;

−− Map in t e rna l s i g n a l s to PTC−PT In t e r f a c e
oPTCtoPT Req <= sClk PTCtoPT Req ;
oPTCtoPT PageBase <= sClk PageBase ;
oPTCtoPT PageIndex <= sClk PageIndex ;
oPTCtoPT KeyIndex <= sClk KeyIndex ;
oPTCtoPT Ancillary <= sClk Anc i l l a ry3 & sC lk Anc i l l a ry2 & sC lk Anc i l l a ry1 &
sC lk Anc i l l a r y0 ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Control I n t e r f a c e handshaking
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ControlAck : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk Contro l Ack <= ’0 ’ ;
sClk Contro l Wait <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
i f ( iContro l Req = ’1 ’ and iControl RNW = ’1 ’ ) then −− Read reque s t

sClk Contro l Ack <= ’1 ’ ;
sClk Contro l Wait <= ’0 ’ ;

e l s i f ( iContro l Req = ’1 ’ and iControl RNW = ’0 ’ ) then −− Write r eque s t
i f ( iContro l Addr = ”010” ) then −− PageTable Write

sClk Contro l Ack <= sClk Control PTCtoPT Ack ;
sClk Contro l Wait <= ’1 ’ ;

else −− Regular r e g i s t e r wr i t e
sClk Contro l Ack <= ’1 ’ ;
sClk Contro l Wait <= ’0 ’ ;

end i f ;
else −− No reque s t

sClk Contro l Ack <= ’0 ’ ;
sClk Contro l Wait <= ’0 ’ ;

end i f ;
end i f ;

end process ControlAck ;

−− Map in t e rna l s i g n a l s to PTC−Control I n t e r f a c e
oControl Ack <= sClk Contro l Ack ;
oControl Wait <= sClk Contro l Wait ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Reg i s t e r hand l ing
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Write i n t e r f a c e
Regi s terWri te : process (Clk , Reset )
begin

i f ( Reset = ’1 ’ ) then
sClk PageBase <= ( others => ’ 0 ’ ) ;
sClk KeyIndex <= ( others => ’ 0 ’ ) ;
sClk PageIndex <= ( others => ’ 0 ’ ) ;
sC lk Anc i l l a ry0 <= ( others => ’ 0 ’ ) ;
sC lk Anc i l l a ry1 <= ( others => ’ 0 ’ ) ;
sC lk Anc i l l a ry2 <= ( others => ’ 0 ’ ) ;
sC lk Anc i l l a ry3 <= ( others => ’ 0 ’ ) ;

e l s i f r i s i n g e d g e ( Clk ) then



Anthony J. Mahar Appendix D. Source Listing 153

i f ( iControl RNW = ’0 ’ and iContro l Req = ’1 ’ ) then
case iContro l Addr (0 to 2) i s

when ”000” =>
i f ( iControl BE (0) = ’1 ’ ) then

sClk PageBase (0 to 7) <= iControl WrBus (0 to 7) ;
end i f ;
i f ( iControl BE (1) = ’1 ’ ) then

sClk PageBase (8 to 15) <= iControl WrBus (8 to 15) ;
end i f ;
i f ( iControl BE (2) = ’1 ’ ) then

sClk PageBase (16 to C PAGE AWIDTH−1) <= iControl WrBus (16 to C PAGE AWIDTH−1) ;
end i f ;

when ”001” =>
i f ( iControl BE (3) = ’1 ’ ) then

sClk KeyIndex <= iControl WrBus (CONTROL DWIDTH−C KEYTABLE AWIDTH to
CONTROL DWIDTH−1) ;

end i f ;
when ”010” =>

i f ( iControl BE (3) = ’1 ’ ) then
sClk PageIndex <= iControl WrBus (CONTROL DWIDTH−C PAGETABLE AWIDTH to
CONTROL DWIDTH−1) ;

end i f ;
when ”100” =>

for i in 0 to (CONTROLDWIDTH/8)−1 loop
i f ( iControl BE ( i ) = ’1 ’ ) then

sC lk Anc i l l a r y0 ( i ∗8 to i ∗8+7) <= iControl WrBus ( i ∗8 to i ∗8+7) ;
end i f ;

end loop ;
when ”101” =>

for i in 0 to (CONTROLDWIDTH/8)−1 loop
i f ( iControl BE ( i ) = ’1 ’ ) then

sC lk Anc i l l a r y1 ( i ∗8 to i ∗8+7) <= iControl WrBus ( i ∗8 to i ∗8+7) ;
end i f ;

end loop ;
when ”110” =>

for i in 0 to (CONTROLDWIDTH/8)−1 loop
i f ( iControl BE ( i ) = ’1 ’ ) then

sC lk Anc i l l a r y2 ( i ∗8 to i ∗8+7) <= iControl WrBus ( i ∗8 to i ∗8+7) ;
end i f ;

end loop ;
when ”111” =>

for i in 0 to (CONTROLDWIDTH/8)−1 loop
i f ( iControl BE ( i ) = ’1 ’ ) then

sC lk Anc i l l a r y3 ( i ∗8 to i ∗8+7) <= iControl WrBus ( i ∗8 to i ∗8+7) ;
end i f ;

end loop ;
when others => null ;

end case ;
end i f ;

end i f ;
end process Regi s terWri te ;

−− Read i n t e r f a c e
RegisterRead : process ( iControl Addr , sC lk Anc i l l a ry0 ,

sC lk Anc i l l a ry1 , sC lk Anc i l l a ry2 , sC lk Anc i l l a ry3 ,
sClk KeyIndex , sClk PageBase , sClk PageIndex )

begin
case iContro l Addr (0 to 2) i s

when ”000” => oControl RdBus <= sClk PageBase & PAGE ZEROS;
when ”001” => oControl RdBus <= KEYINDEX ZEROS & sClk KeyIndex ;
when ”010” => oControl RdBus <= PAGEINDEX ZEROS & sClk PageIndex ;
when ”100” => oControl RdBus <= sClk Anc i l l a ry0 ;
when ”101” => oControl RdBus <= sClk Anc i l l a ry1 ;
when ”110” => oControl RdBus <= sClk Anc i l l a ry2 ;



Anthony J. Mahar Appendix D. Source Listing 154

when ”111” => oControl RdBus <= sClk Anc i l l a ry3 ;
when others => oControl RdBus <= ( others => ’ 0 ’ ) ;

end case ;
end process RegisterRead ;

end arch ;



Anthony J. Mahar Appendix D. Source Listing 155

D.1.8 KeyTableControl.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : Key Table Control Unit
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : KeyTableControl . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−03−07
−− Last update : 2005−07−10
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Unit f o r c o n t r o l l i n g the Key t a b l e s o f the Table un i t .
−− This un i t i s con t ro l ed by a standard Control I n t e r f a c e .
−− Clock domain synchron i za t ion i s used when wr i t i n g to Table
−− uni t .
−− Assumptions : Bus i n t e r f a c e con t ro l un i t i s in the same c l o ck domain .
−− Table un i t i s in a d i f f e r e n t c l o c k domain .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−07−09 amahar Switched s t a t e machine f o r b e t t e r in f e r ence with synth .
−− Used StateType dec l a ra t i on ins t ead o f hard coding
−− 2005−06−25 amahar Removed PTC/KTC handshaking . not cohes i ve .
−− 2005−03−31 amahar F ina l i z ed KTCtoPTC and PTCtoKTC cross c l o c k
−− domain synchron i za t ion
−− 2005−03−25 amahar Relocated the PageTable wri te−enab le s i g n a l
−− to i t s own ded ica ted process
−− 2005−03−25 amahar Added comments , swi tched to Zero bus padding
−− on reads
−− 2005−03−15 amahar Fixed high / low l o ca t i on o f sku con t ro l / s t a t u s
−− con t ro l now in upper 16− b i t s
−− 2005−03−09 amahar Switched to address / wr i t e enab l e i n t e r f a c e
−− 2005−03−08 amahar Added core f u n c t i o n a l i t y
−− 2005−03−07 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

entity KeyTableControl i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : g ener i c s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

generic (
CONTROLDWIDTH : i n t e g e r := 32 ;
CONTROL AWIDTH : i n t e g e r := 8 ;
C KEYTABLE AWIDTH : i n t e g e r := 6 ;
C KEYSIZE : i n t e g e r := 128) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i ty : por t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

port (
Clk : in s t d l o g i c ;
Reset : in s t d l o g i c ;
iContro l Addr : in s t d l o g i c v e c t o r (0 to 2) ;
iContro l Req : in s t d l o g i c ;
oControl Ack : out s t d l o g i c ;



Anthony J. Mahar Appendix D. Source Listing 156

oControl Wait : out s t d l o g i c ;
iControl RNW : in s t d l o g i c ;
iControl BE : in s t d l o g i c v e c t o r (0 to (CONTROLDWIDTH/8)−1) ;
iControl WrBus : in s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
oControl RdBus : out s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
oKTCtoKT Req : out s t d l o g i c ;
iKTCtoKT Ack : in s t d l o g i c ;
oKTCtoKT KeyIndex : out s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
oKTCtoKT Key : out s t d l o g i c v e c t o r (0 to C KEYSIZE−1) ) ;

end entity KeyTableControl ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Arch i t ec ture s e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
architecture arch of KeyTableControl i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Type de c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
type KTCtoKT StateType i s (ST KTCtoKT WaitWrite , ST KTCtoKT WaitAckActive ,
ST KTCtoKT WaitAckInactive ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l cons tant d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Constants : Zero Pads
constant ZEROS KeyIndex : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−C KEYTABLE AWIDTH−1) := (
others => ’ 0 ’ ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− S i gna l s : Control Unit Reg i s t e r s
signal sClk KeyIndex : s t d l o g i c v e c t o r (0 to C KEYTABLE AWIDTH−1) ;
signal sClk Key0 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
signal sClk Key1 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
signal sClk Key2 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
signal sClk Key3 : s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;

−− S i gna l s : KeyTable handshake s i g n a l s
signal sClk KTCtoKT CurrState : KTCtoKT StateType := ST KTCtoKT WaitWrite ;
signal sKTCtoKT NextState : KTCtoKT StateType := ST KTCtoKT WaitWrite ;
signal sClk KTCtoKT Req : s t d l o g i c ;
signal sClk KTCtoKT Ack d1 : s t d l o g i c ;
signal sClk KTCtoKT Ack d2 : s t d l o g i c ;

−− S i gna l s : Control I n t e r f a c e handshake s i g n a l s
signal sClk Control KTCtoKT Ack : s t d l o g i c ;
signal sClk Contro l Ack : s t d l o g i c ;
signal sClk Contro l Wait : s t d l o g i c ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Begin a r c h i t e c t u r e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− KeyTable In t e r f a c e handshaking
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− S t a b a l i z e Acknowledgement s i g n a l from Table un i t
Meta Ack : process (Clk , Reset ) i s
begin



Anthony J. Mahar Appendix D. Source Listing 157

i f Reset = ’1 ’ then
sClk KTCtoKT Ack d1 <= ’0 ’ ;
sClk KTCtoKT Ack d2 <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk KTCtoKT Ack d1 <= iKTCtoKT Ack ;
sClk KTCtoKT Ack d2 <= sClk KTCtoKT Ack d1 ;

end i f ;
end process Meta Ack ;

−− Protoco l FSM Sequen t i a l process
KTCtoKT Seq Ifc : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk KTCtoKT CurrState <= ST KTCtoKT WaitWrite ;
sClk KTCtoKT Req <= ’0 ’ ;
sClk Control KTCtoKT Ack <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
sClk KTCtoKT CurrState <= sKTCtoKT NextState ;
case sClk KTCtoKT CurrState i s

when ST KTCtoKT WaitWrite =>
sClk KTCtoKT Req <= ’0 ’ ;
sClk Control KTCtoKT Ack <= ’0 ’ ;

when ST KTCtoKT WaitAckActive =>
sClk KTCtoKT Req <= ’1 ’ ;
sClk Control KTCtoKT Ack <= ’0 ’ ;

when ST KTCtoKT WaitAckInactive =>
sClk KTCtoKT Req <= ’0 ’ ;
sClk Control KTCtoKT Ack <= ’1 ’ ;

when others =>
sClk KTCtoKT Req <= ’0 ’ ;
sClk Control KTCtoKT Ack <= ’0 ’ ;

end case ;
end i f ;

end process KTCtoKT Seq Ifc ;

−− Protoco l FSM Combinational process
KTCtoKT Cmb Ifc : process ( iControl Addr , iControl RNW , iControl Req ,

sClk KTCtoKT Ack d2 , sClk KTCtoKT CurrState ) i s
begin

case sClk KTCtoKT CurrState i s
when ST KTCtoKT WaitWrite =>

i f ( iControl RNW = ’0 ’ and iContro l Addr = ”000” and iContro l Req = ’1 ’ ) then
sKTCtoKT NextState <= ST KTCtoKT WaitAckActive ;

else
sKTCtoKT NextState <= ST KTCtoKT WaitWrite ;

end i f ;
when ST KTCtoKT WaitAckActive =>

i f ( sClk KTCtoKT Ack d2 = ’1 ’ ) then
sKTCtoKT NextState <= ST KTCtoKT WaitAckInactive ;

else
sKTCtoKT NextState <= ST KTCtoKT WaitAckActive ;

end i f ;
when ST KTCtoKT WaitAckInactive =>

i f ( sClk KTCtoKT Ack d2 = ’0 ’ ) then
sKTCtoKT NextState <= ST KTCtoKT WaitWrite ;

else
sKTCtoKT NextState <= ST KTCtoKT WaitAckInactive ;

end i f ;
when others =>

sKTCtoKT NextState <= ST KTCtoKT WaitWrite ;
end case ;

end process KTCtoKT Cmb Ifc ;

−− Map in t e rna l s i g n a l s to KTC−KT In t e r f a c e



Anthony J. Mahar Appendix D. Source Listing 158

oKTCtoKT Req <= sClk KTCtoKT Req ;
oKTCtoKT KeyIndex <= sClk KeyIndex ;
oKTCtoKT Key <= sClk Key3 & sClk Key2 & sClk Key1 & sClk Key0 ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Control I n t e r f a c e handshaking
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− purpose : Generate the acknowledge s i g n a l back to the con t ro l i n t e r f a c e
−− type : s e q u en t i a l
−− comments :
ControlAck : process (Clk , Reset ) i s
begin

i f ( Reset = ’1 ’ ) then
sClk Contro l Ack <= ’0 ’ ;
sClk Contro l Wait <= ’0 ’ ;

e l s i f r i s i n g e d g e ( Clk ) then
i f ( iContro l Req = ’1 ’ and iControl RNW = ’1 ’ ) then
−− Read reque s t
sClk Contro l Ack <= ’1 ’ ;
sClk Contro l Wait <= ’0 ’ ;

e l s i f ( iContro l Req = ’1 ’ and iControl RNW = ’0 ’ ) then
−− Write Request
i f ( iContro l Addr = ”000” ) then −− KeyTable Write

sClk Contro l Ack <= sClk Control KTCtoKT Ack ;
sClk Contro l Wait <= ’1 ’ ;

else
sClk Contro l Ack <= ’1 ’ ;
sClk Contro l Wait <= ’0 ’ ;

end i f ;
else
−− No reque s t
sClk Contro l Ack <= ’0 ’ ;
sClk Contro l Wait <= ’0 ’ ;

end i f ;
end i f ;

end process ControlAck ;

−− Map in t e rna l s i g n a l s to KTC−Control I n t e r f a c e
oControl Ack <= sClk Contro l Ack ;
oControl Wait <= sClk Contro l Wait ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Reg i s t e r hand l ing
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Write i n t e r f a c e
Regi s terWri te : process (Clk , Reset ) i s
begin

i f Reset = ’1 ’ then
sClk KeyIndex <= ( others => ’ 0 ’ ) ;
sClk Key0 <= ( others => ’ 0 ’ ) ;
sClk Key1 <= ( others => ’ 0 ’ ) ;
sClk Key2 <= ( others => ’ 0 ’ ) ;
sClk Key3 <= ( others => ’ 0 ’ ) ;

e l s i f r i s i n g e d g e ( Clk ) then
i f ( iControl RNW = ’0 ’ and iContro l Req = ’1 ’ ) then

case iContro l Addr i s
when ”000” =>

i f ( iControl BE (3) = ’1 ’ ) then
sClk KeyIndex <= iControl WrBus (CONTROL DWIDTH−C KEYTABLE AWIDTH to
CONTROL DWIDTH−1) ;

end i f ;
when ”100” =>



Anthony J. Mahar Appendix D. Source Listing 159

for byte index in 0 to (CONTROLDWIDTH/8)−1 loop
i f ( iControl BE ( byte index ) = ’1 ’ ) then

sClk Key0 ( byte index ∗8 to byte index ∗8+7) <= iControl WrBus ( byte index ∗8 to
byte index ∗8+7) ;

end i f ;
end loop ;

when ”101” =>
for byte index in 0 to (CONTROLDWIDTH/8)−1 loop

i f ( iControl BE ( byte index ) = ’1 ’ ) then
sClk Key1 ( byte index ∗8 to byte index ∗8+7) <= iControl WrBus ( byte index ∗8 to
byte index ∗8+7) ;

end i f ;
end loop ;

when ”110” =>
for byte index in 0 to (CONTROLDWIDTH/8)−1 loop

i f ( iControl BE ( byte index ) = ’1 ’ ) then
sClk Key2 ( byte index ∗8 to byte index ∗8+7) <= iControl WrBus ( byte index ∗8 to
byte index ∗8+7) ;

end i f ;
end loop ;

when ”111” =>
for byte index in 0 to (CONTROLDWIDTH/8)−1 loop

i f ( iControl BE ( byte index ) = ’1 ’ ) then
sClk Key3 ( byte index ∗8 to byte index ∗8+7) <= iControl WrBus ( byte index ∗8 to
byte index ∗8+7) ;

end i f ;
end loop ;

when others => null ;
end case ;

end i f ;
end i f ;

end process Regi s terWri te ;

−− Read i n t e r f a c e
RegisterRead : process ( iControl Addr , sClk Key0 , sClk Key1 , sClk Key2 , sClk Key3 ,

sClk KeyIndex ) i s
begin

case iContro l Addr i s
when ”000” => oControl RdBus <= ZEROS KeyIndex & sClk KeyIndex ;
when ”100” => oControl RdBus <= sClk Key0 ;
when ”101” => oControl RdBus <= sClk Key1 ;
when ”110” => oControl RdBus <= sClk Key2 ;
when ”111” => oControl RdBus <= sClk Key3 ;
when others => oControl RdBus <= ( others => ’ 0 ’ ) ;

end case ;
end process RegisterRead ;

end arch ;



Anthony J. Mahar Appendix D. Source Listing 160

D.1.9 OPB ControlInterface.vhd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ti t l e : OPB Control I n t e r f a c e
−− Projec t : Secure Software
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fi l e : OPB ControlInterface . vhd
−− Author : Anthony Mahar <amahar@vt . edu>
−− Company : Virg in ia Tech Conf igurab l e Computing Lab
−− Created : 2005−03−15
−− Last update : 2005−07−15
−− Platform :
−− Standard : VHDL’93
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Descr ip t ion : Trans la tes OPB bus t ransac t i on r e que s t s to the gener i c i n t e r na l
−− r eque s t /ack and RNW bus r e que s t s used by the i n t e rna l
−− con t ro l un i t s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Copyright ( c ) 2005
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Revis ions :
−− Date Author Descr ip t ion
−− 2005−03−23 amahar removing ”Write enab le ” s i g n a l and rep laced with a
−− r eque s t and RNW s i gna l
−− 2005−03−22 amahar Modif ied un i t i n d i v i d u a l r e g i s t e r s e l e c t s to
−− r e a l 3− b i t addresses .
−− 2005−03−15 amahar Created
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

l ibrary proc common v2 00 a ;
use proc common v2 00 a . proc common pkg . a l l ;
use proc common v2 00 a . i p i f p k g . a l l ;

l ibrary opb i p i f v 3 0 1 b ;
use opb i p i f v 3 0 1 b . a l l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

entity OPB Control Inter face i s

generic (
C OPB AWIDTH : i n t e g e r := 32 ;
C OPB DWIDTH : i n t e g e r := 32 ;
C BASEADDR : s t d l o g i c v e c t o r := X”FFFFFFFF” ;
C HIGHADDR : s t d l o g i c v e c t o r := X”00000000” ;
CONTROL AWIDTH : i n t e g e r := 3 ;
CONTROLDWIDTH : i n t e g e r := 32 ;
C FAMILY : s t r i n g := ” v i r t ex2p ” ) ;

port (
Clk : in s t d l o g i c ;
Reset : in s t d l o g i c ;
oSl DBus : out s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1) ;
oS l e r rAck : out s t d l o g i c ;
o S l r e t r y : out s t d l o g i c ;
oS l toutSup : out s t d l o g i c ;
oS l x f e rAck : out s t d l o g i c ;
iOPB ABus : in s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1) ;
iOPB BE : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH/8−1) ;
iOPB DBus : in s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1) ;
iOPB RNW : in s t d l o g i c ;



Anthony J. Mahar Appendix D. Source Listing 161

iOPB se lect : in s t d l o g i c ;
iOPB seqAddr : in s t d l o g i c ;
oContro l Clk : out s t d l o g i c ;
oContro l Reset : out s t d l o g i c ;
oControl Addr : out s t d l o g i c v e c t o r (0 to CONTROL AWIDTH−1) ;
oControl Req : out s t d l o g i c ;
iContro l Wait : in s t d l o g i c ;
iContro l Ack : in s t d l o g i c ;
oControl RNW : out s t d l o g i c ;
oControl BE : out s t d l o g i c v e c t o r (0 to (CONTROLDWIDTH/8)−1) ;
oControl WrBus : out s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ;
iControl RdBus : in s t d l o g i c v e c t o r (0 to CONTROL DWIDTH−1) ) ;

end entity OPB Control Inter face ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

architecture arch of OPB Control Inter face i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l cons tant d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant ZERO ADDR PAD : s t d l o g i c v e c t o r (0 to 64−C OPB AWIDTH−1) := ( others => ’ 0 ’ )
;
constant USER NUM ADDR RNG : i n t e g e r := 1 ;

constant ARD ID ARRAY : INTEGER ARRAY TYPE :=
(

0 => USER 01
) ;

constant ARD ADDR RANGE ARRAY : SLV64 ARRAY TYPE :=
(

ZERO ADDR PAD & C BASEADDR,
ZERO ADDR PAD & C HIGHADDR
) ;

−− User address range 0 − Data Width
constant ARD DWIDTH ARRAY : INTEGER ARRAY TYPE :=

(
0 => CONTROLDWIDTH
) ;

−− User address range 0 − 1 CE
constant ARD NUM CE ARRAY : INTEGER ARRAY TYPE :=

(
0 => 1
) ;

−− Array o f unique p rop e r t i e s f o r each address range (none )
constant ARD DEPENDENT PROPS ARRAY : DEPENDENT PROPS ARRAY TYPE :=

(
0 => ( others => 0)
) ;

−− Array o f IP in t e r r up t modes (none )
constant IP INTR MODE ARRAY : INTEGER ARRAY TYPE :=

(
0 => 0
) ;

constant PIPELINE MODEL : i n t e g e r := 5 ;
constant DEV BLK ID : i n t e g e r := 0 ;
constant DEV MIR ENABLE : i n t e g e r := 0 ;
constant DEV BURST ENABLE : i n t e g e r := 0 ;
constant INCLUDE ADDR CNTR : i n t e g e r := 0 ;
constant INCLUDE WR BUF : i n t e g e r := 0 ;



Anthony J. Mahar Appendix D. Source Listing 162

constant USER01 CS INDEX : i n t e g e r := g e t i d i nd ex (ARD ID ARRAY, USER 01) ;
constant USER01 CE INDEX : i n t e g e r := c a l c s t a r t c e i n d e x (ARD NUM CE ARRAY,
USER01 CS INDEX) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− In t e rna l s i g n a l d e c l a r a t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
signal ZERO IP2Bus Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1) := (
others => ’ 0 ’ ) ;
signal ZERO IP2Bus PostedWrInh : s t d l o g i c v e c t o r (0 to ARD ID ARRAY’ length −1) := (
others => ’ 1 ’ ) ;
signal ZERO IP2RFIFO Data : s t d l o g i c v e c t o r (0 to 31) := (
others => ’ 0 ’ ) ;
signal ZERO WFIFO2IP Data : s t d l o g i c v e c t o r (0 to 31) := (
others => ’ 0 ’ ) ;
signal ZERO IP2Bus IntrEvent : s t d l o g i c v e c t o r (0 to IP INTR MODE ARRAY’ length −1) := (
others => ’ 0 ’ ) ;

signal sBus2IP Clk : s t d l o g i c ;
signal sBus2IP Reset : s t d l o g i c ;
signal sBus2IP Addr : s t d l o g i c v e c t o r (0 to C OPB AWIDTH−1) ;
signal sBus2IP Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1) ;
signal sBus2IP RNW : s t d l o g i c ;
signal sBus2IP BE : s t d l o g i c v e c t o r (0 to C OPB DWIDTH/8−1) ;
signal sBus2IP CS : s t d l o g i c v e c t o r (0 to ARD ID ARRAY’ length −1) ;
signal sIP2Bus Ack : s t d l o g i c ;
signal sIP2Bus toutSup : s t d l o g i c ;
signal sIP2Bus Data : s t d l o g i c v e c t o r (0 to C OPB DWIDTH−1) ;

begin

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Sani ty check
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
assert (C OPB DWIDTH = CONTROLDWIDTH) report ”ERROR: OPB Control Unit data width and
Control Unit data width d i f f e r ” severity warning ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Constant Logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ZERO IP2Bus Data <= ( others => ’ 0 ’ ) ;
ZERO IP2Bus PostedWrInh <= ( others => ’ 1 ’ ) ;
ZERO IP2RFIFO Data <= ( others => ’ 0 ’ ) ;
ZERO WFIFO2IP Data <= ( others => ’ 0 ’ ) ;
ZERO IP2Bus IntrEvent <= ( others => ’ 0 ’ ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Component i n s t a n t i a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OPB IPIF 1 : entity opb i p i f v 3 0 1 b . o pb i p i f

generic map
(

C ARD ID ARRAY => ARD ID ARRAY,
C ARD ADDR RANGE ARRAY => ARD ADDR RANGE ARRAY,
C ARD DWIDTH ARRAY => ARD DWIDTH ARRAY,
C ARD NUM CE ARRAY => ARD NUM CE ARRAY,
C ARD DEPENDENT PROPS ARRAY => ARD DEPENDENT PROPS ARRAY,
C PIPELINE MODEL => PIPELINE MODEL,
C DEV BLK ID => DEV BLK ID,
C DEV MIR ENABLE => DEV MIR ENABLE,
C OPB AWIDTH => C OPB AWIDTH,
C OPB DWIDTH => C OPB DWIDTH,
C FAMILY => C FAMILY,
C IP INTR MODE ARRAY => IP INTR MODE ARRAY,



Anthony J. Mahar Appendix D. Source Listing 163

C DEV BURST ENABLE => DEV BURST ENABLE,
C INCLUDE ADDR CNTR => INCLUDE ADDR CNTR,
C INCLUDE WR BUF => INCLUDE WR BUF)

port map
(

OPB select => iOPB select ,
OPB DBus => iOPB DBus ,
OPB ABus => iOPB ABus ,
OPB BE => iOPB BE ,
OPBRNW => iOPB RNW,
OPB seqAddr => iOPB seqAddr ,
Sln DBus => oSl DBus ,
S ln x fe rAck => oSl x ferAck ,
S ln errAck => oSl errAck ,
S l n r e t r y => oS l r e t r y ,
S ln toutSup => oSl toutSup ,
Bus2IP CS => sBus2IP CS ,
Bus2IP CE => open ,
Bus2IP RdCE => open ,
Bus2IP WrCE => open ,
Bus2IP Data => sBus2IP Data ,
Bus2IP Addr => sBus2IP Addr ,
Bus2IP AddrValid => open ,
Bus2IP BE => sBus2IP BE ,
Bus2IP RNW => sBus2IP RNW ,
Bus2IP Burst => open ,
IP2Bus Data => sIP2Bus Data ,
IP2Bus Ack => sIP2Bus Ack ,
IP2Bus AddrAck => ’ 0 ’ ,
IP2Bus Error => ’ 0 ’ ,
IP2Bus Retry => ’ 0 ’ ,
IP2Bus ToutSup => sIP2Bus toutSup ,
IP2Bus PostedWrInh => ZERO IP2Bus PostedWrInh ,
IP2RFIFO Data => ZERO IP2RFIFO Data ,
IP2RFIFO WrMark => ’ 0 ’ ,
IP2RFIFO WrRelease => ’ 0 ’ ,
IP2RFIFO WrReq => ’ 0 ’ ,
IP2RFIFO WrRestore => ’ 0 ’ ,
RFIFO2IP AlmostFull => open ,
RFIFO2IP Full => open ,
RFIFO2IP Vacancy => open ,
RFIFO2IP WrAck => open ,
IP2WFIFO RdMark => ’ 0 ’ ,
IP2WFIFO RdRelease => ’ 0 ’ ,
IP2WFIFO RdReq => ’ 0 ’ ,
IP2WFIFO RdRestore => ’ 0 ’ ,
WFIFO2IP AlmostEmpty => open ,
WFIFO2IP Data => ZERO WFIFO2IP Data ,
WFIFO2IP Empty => open ,
WFIFO2IP Occupancy => open ,
WFIFO2IP RdAck => open ,
IP2Bus IntrEvent => ZERO IP2Bus IntrEvent ,
IP2INTC Irpt => open ,
Freeze => ’ 0 ’ ,
Bus2IP Freeze => open ,
OPB Clk => Clk ,
Bus2IP Clk => sBus2IP Clk ,
IP2Bus Clk => ’ 0 ’ ,
Reset => Reset ,
Bus2IP Reset => sBus2IP Reset ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Forwarded Logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 164

oContro l Clk <= sBus2IP Clk ;
oContro l Reset <= sBus2IP Reset ;
oControl Addr <= sBus2IP Addr (C OPB AWIDTH−CONTROL AWIDTH−2 to C OPB AWIDTH−2−1) ;
oControl BE <= sBus2IP BE (0 to CONTROLDWIDTH/8−1) ;
oControl WrBus <= sBus2IP Data (0 to CONTROL DWIDTH−1) ;
oControl Req <= sBus2IP CS (USER01 CS INDEX) ;
oControl RNW <= sBus2IP RNW ;
sIP2Bus Ack <= iContro l Ack ;
sIP2Bus Data <= iControl RdBus (0 to CONTROL DWIDTH−1) ;
sIP2Bus toutSup <= iContro l Wait ;

end arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Anthony J. Mahar Appendix D. Source Listing 165

D.2 iBench Assembly

D.2.1 Compile and Execution

It is possible to design iBench to use self–modifying code, however it is not possible when

securing the application for reasons discussed in this work. Instead, for each iteration in size

for a stride, many executables require compilation and encryption. A series of scripts are

required, specific to size and stride, to perform these operations. The following are the steps

required to build, encrypt, and execute the benchmark suite.

• Compile the script generator: host–gcc [makescripts.c] -o makescripts

• Compile the time converter: target–gcc [time conv.c] -o time conv

• Compile the walk–table append utility: host–gcc [append.c] –o append

• Generate the scripts: makescripts [stride] [size]

• Build each benchmark: sh ./build

• Encrypt each benchmark: sh ./enc

• Execute unencrypted benchmarks (on target): sh ./run

• Execute encrypted benchmarks (on target): sh ./run

D.2.2 walk.s

. s e c t i o n ” .data ”
t imers :

. s t r i n g ”\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0”
u sag e s t r i n g :

. s t r i n g ”Usage : walk <s i z e > < i t e r a t i o n s >\n”
u s a g e s t r i n g s i z e = . − usag e s t r i n g

. s e c t i o n ” . t e x t ”

. g l o b l s t a r t

s t a r t :

#############################################



Anthony J. Mahar Appendix D. Source Listing 166

# I n i t i a l i z e
#############################################
lwz 4 , 0(1) # r1 conta in s ptr to argc /argv
cmpwi 4 , 3 # need , 3 parameters : exec name
bne usage # s ize ( mult o f s t r i d e ) , i t e r a t i o n s

lwz 5 , 8(1) # grab po in t e r f o r 2nd param ( s ize )
bl a t o i # po in t e r to numeric
addi 8 , 7 , 0 # backup s ize into r8

lwz 5 , 12(1) # grab po in t e r f o r 3 rd param ( i t e r )
bl a t o i # po in t e r to numeric

# i t e r a t i o n s s to r ed in r7

l i 6 , STRIDE # s t o r e s t r i d e s into test input r6
divwu 6 , 8 , 6 # d iv id e s ize by s t r i d e

# i t e r test input i s a l r eady in r7
b walk # begin walking

# Input :
# r5 : base s t r i n g po in t e r
# Output :
# r7 : r e s u l t i n g a t o i conver s i on

a t o i :
addi 7 , 0 , 0 # zero out r7
a t o i s t a r t :

lbzu 6 , 0(5) # grab next byte from bu f f e r
addi 5 , 5 , 1 # increment po in t e r
cmpwi 6 , 0 # end o f s t r i n g ?
beq a t o i e nd
mul l i 7 , 7 , 10 # new value , mul t ip ly cur rent by 10
sub i 6 , 6 , 0x30 # convert from a s c i i
add 7 , 7 , 6 # add new value
b a t o i s t a r t

a t o i e nd :
b l r

#############################################
# Time Walk
#############################################

walk :
# Warm up
addis 3 , 0 , page@ha # r3 conta in s addr o f page to walk
o r i 3 , 3 , page@l
addis 31 , 0 , f Walk@ha
o r i 31 ,31 , f Walk@l
mtlr 31 # load LR with walk func t i on
b l r l # branch to LR, re turn here

# Get s t a r t time
l i 0 , 78 # ca l l = gett imeofday
addis 3 , 0 , ( t imers +16)@ha # param1 = ptr s t r u c t t imeva l
o r i 3 , 3 , ( t imers +16)@l
l i 4 , 0 # param2 = ptr s t r u c t timezone
sc

# Walk tab l e
addis 3 , 0 , page@ha # r3 conta in s addr o f page to walk
o r i 3 , 3 , page@l
addis 31 , 0 , f Walk@ha
o r i 31 ,31 , f Walk@l
mtlr 31 # load LR with walk func t i on



Anthony J. Mahar Appendix D. Source Listing 167

b l r l # branch to LR, re turn here

# Get stop time
l i 0 , 78 # ca l l = gett imeofday
addis 3 , 0 , ( t imers +24)@ha # param1 = ptr s t r u c t t imeva l
o r i 3 , 3 , ( t imers +24)@l
l i 4 , 0 # param2 = ptr s t r u c t timezone
sc

#############################################
# Output t imings
#############################################

# Write test s t a r t time
l i 0 , 4 # ca l l = s td wr i t e
l i 3 , 1 # param1 = Fi leDesc = stdout
addis 4 , 0 , ( t imers+0)@ha # param2 = ptr bu f f e r
o r i 4 , 4 , ( t imers+0)@l
dcbst 0 , 4 # f o r c e cache to wr i t e back
sync
l i 5 , 8 # param3 = bu f f e r l en
sc

# Write test stop time
l i 0 , 4 # ca l l = s td wr i t e
l i 3 , 1 # param1 = Fi leDesc = stdout
addis 4 , 0 , ( t imers+8)@ha # param2 = ptr bu f f e r
o r i 4 , 4 , ( t imers+8)@l
dcbst 0 , 4 # f o r c e cache to wr i t e back
sync
l i 5 , 8 # param3 = bu f f e r l en
sc

# Write walk s t a r t time
l i 0 , 4 # ca l l = s td wr i t e
l i 3 , 1 # param1 = Fi leDesc = stdout
addis 4 , 0 , ( t imers +16)@ha # param2 = ptr bu f f e r
o r i 4 , 4 , ( t imers +16)@l
dcbst 0 , 4 # f o r c e cache to wr i t e back
sync
l i 5 , 8 # param3 = bu f f e r l en
sc

# Write walk stop time
l i 0 , 4 # ca l l = s td wr i t e
l i 3 , 1 # param1 = Fi leDesc = stdout
addis 4 , 0 , ( t imers +24)@ha # param2 = ptr bu f f e r
o r i 4 , 4 , ( t imers +24)@l
dcbst 0 , 4 # f o r c e cache to wr i t e back
sync
l i 5 , 8 # param3 = bu f f e r l en
sc

b end
usage :

# Write walk stop time
l i 0 , 4 # ca l l = s td wr i t e
l i 3 , 1 # param1 = Fi leDesc = stdout
addis 4 , 0 , ( u s ag e s t r i n g )@ha # param2 = ptr bu f f e r
o r i 4 , 4 , ( u s ag e s t r i n g )@l
l i 5 , u s a g e s t r i n g s i z e # param3 = bu f f e r l en
sc
b end # qu i t out



Anthony J. Mahar Appendix D. Source Listing 168

end :
# Exit
l i 0 , 1 # ca l l = ex i t
l i 3 , 13 # param1 = return code
sc

# Function Walk
# Walks the jump t a b l e .
# Memory pre− i n i t i a l i z e d to branch in s t r i d e−length un i t s . l a s t entry in
# tab l e branches to LR, which i s in local loop
# Reg i s t e r s modi f i ed :
# CTR, r29 , r30 , r31
# Inputs :
# LR: re turn address
# r3 : page to walk
# r6 : number o f s t r i d e s to walk
# r7 : number o f i t e r a t i o n s
# In t e r na l :
# r30 : i t e r a t i o n down counter
# r31 : c a l l e r f unc t i on LR backup
# LR: jump back and f o r t h between walk counter and walking
# Returns :
# none

f Walk :

# I n i t
mf l r 31 # Backup LR into r31

mullw 30 , 6 , 7 # Total branch count=n s t r i d e s ∗ i t e r a t i o n s

mtlr 3 # Load LR with page to walk
b l r l # branch to walk bu f f e r , LR to re turn here

mtlr 31 # r e s t o r e c a l l e r LR
b l r # return to c a l l e r



Anthony J. Mahar Appendix D. Source Listing 169

D.2.3 append.c

#include <s t d i o . h>
#include <s t d l i b . h>

int main ( int argc , char ∗ argv [ ] )
{

FILE ∗ fp ;
unsigned int i ;
unsigned int s t r i d e ;
unsigned int s i z e ;

i f ( argc != 4) {
p r i n t f ( ”Usage : %s <Appendable f i l e > <s t r i d e > <s i z e >\n” , argv [ 0 ] ) ;
e x i t (1 ) ;

}

s t r i d e=a t o i ( argv [ 2 ] ) ;
s i z e=a t o i ( argv [ 3 ] ) ;

fp = fopen ( argv [ 1 ] , ”a” ) ;
i f ( fp == NULL) {

p r i n t f ( ”Unable to open %s \n” , argv [ 1 ] ) ;
e x i t (1 ) ;

}

i f ( s i z e % s t r i d e != 0) {
p r i n t f ( ” S i z e i s not a mul t ip l e o f s t r i d e !\n” ) ;
e x i t (1 ) ;

}

// Print s e c t i on informat ion
f p r i n t f ( fp , ” . s e c t i o n \” . pages \” , \”awx\”\n” ) ;
f p r i n t f ( fp , ” . ba l i gn 0x1000 \n” ) ;
f p r i n t f ( fp , ” page :\n” ) ;

f p r i n t f ( fp , ”mtctr 30\n” ) ;
f p r i n t f ( fp , ”bdnz STRIDE−4\n” ) ;
f p r i n t f ( fp , ” b l r \n” ) ;
f p r i n t f ( fp , ” . r ept (STRIDE/4)−3\n” ) ;
f p r i n t f ( fp , ”nop\n” ) ;
f p r i n t f ( fp , ” . endr\n” ) ;

// Print r epea t ing s t r i d e s
for ( i =0; i <( s i z e / s t r i d e )−2 ; i++)
{

f p r i n t f ( fp , ”\ tbdnz STRIDE\n” ) ;
f p r i n t f ( fp , ”\ t b l r \n” ) ;
f p r i n t f ( fp , ”\ t . r ept (STRIDE/4)−2\n” ) ;
f p r i n t f ( fp , ”\ t \ tnop\n” ) ;
f p r i n t f ( fp , ”\ t . endr\n” ) ;

}

f p r i n t f ( fp , ”mfctr 30\n” ) ;
f p r i n t f ( fp , ”mtctr 3\n” ) ;
f p r i n t f ( fp , ” bct r \n” ) ;
f p r i n t f ( fp , ” . r ept (STRIDE/4)−3\n” ) ;
f p r i n t f ( fp , ”nop\n” ) ;
f p r i n t f ( fp , ” . endr\n” ) ;

f c l o s e ( fp ) ;
return 0 ;

}



Anthony J. Mahar Appendix D. Source Listing 170

D.2.4 time conv.c

#include <s t d i o . h>
#include <s t d l i b . h>
#include <sys / time . h>
#define DBG 0

int main ( int argc , char ∗ argv [ ] )
{

unsigned long s i z e ;
unsigned long s t r i d e ;
unsigned long i t e r ;
double i t ime ;
double walktime ;
double l a t ency ;

struct t imeva l t e s t s t a r t , t e s t s t op , wa lk s ta r t , walk stop ;

i f ( argc != 4) {
p r i n t f ( ” I n c o r r e c t usage : %s <s t r i d e > <s i z e > < i t e r a t i o n s >\n” , argv [ 0 ] ) ;
e x i t (1 ) ;

}

s t r i d e = a t o i ( argv [ 1 ] ) ;
s i z e = a t o i ( argv [ 2 ] ) ;
i t e r = a t o i ( argv [ 3 ] ) ;
f r ead (& t e s t s t a r t , s izeof ( struct t imeva l ) , 1 , s td in ) ;
f r ead (& t e s t s t op , s izeof ( struct t imeva l ) , 1 , s td in ) ;
f r ead (&wa lk s ta r t , s izeof ( struct t imeva l ) , 1 , s td in ) ;
f r ead (&walk stop , s izeof ( struct t imeva l ) , 1 , s td in ) ;

// Get s top time in usecs
walktime = (double ) ( (double ) walk stop . t v s e c ∗ 1000000 .0) + (double ) walk stop .
tv u s e c ;
// Sub t rac t s t a r t time in usecs
walktime −= ((double ) ( (double ) wa l k s t a r t . t v s e c ∗ 1000000 .0) + (double ) wa l k s t a r t .
t v u s e c ) ;
// Convert from us to ns
walktime ∗= (double ) 1 000 . 0 ;

// Get number o f i n s t r u c t i on execu t ions (1 cy c l e / i n s t r u c t i on )
i t ime = (double ) ( ( s i z e / s t r i d e − 2 + 2∗2 + 3) ∗ i t e r ) ∗ (double ) i t e r ;
// Mul t i p l y # in s t r u c t i o n s by per iod fo r each i n s t r u c t i on
i t ime /= (double ) 300000000 .0 ;

l a t ency = ( walktime − i t ime ) / ( ( s i z e / s t r i d e + 1) ∗ i t e r ) ;

p r i n t f ( ”%lu , %.5 f , %lu , ” , s t r i d e , s i z e / (1024 . ∗ 1024 . ) , i t e r ) ;
p r i n t f ( ”%.3 f , ” , walktime ) ;
p r i n t f ( ”%.3 f , ” , i t ime ) ;
p r i n t f ( ”%.3 f ” , l a t ency ) ;

p r i n t f ( ”\n” ) ;
return 0 ;

}



Anthony J. Mahar Appendix D. Source Listing 171

D.2.5 makescripts.c

// ./ makescr ip ts 256 8388608
#include <s t d i o . h>
#include <s t d l i b . h>

#define LOWER 4096

unsigned int
s tep (unsigned int k )
{

i f ( k < 1024) {
k = k ∗ 2 ;

} else i f ( k < 4∗1024) {
k += 1024 ;

} else {
unsigned int s ;

for ( s = 32 ∗ 1024 ; s <= k ; s ∗= 2)
;

k += s / 16 ;
}
return ( k ) ;

}

int main ( int argc , char ∗ argv [ ] )
{

FILE ∗ fpmake , ∗ fprun , ∗ fprunenc , ∗ fpenc ;
unsigned long range ;
unsigned long s t r i d e ;
unsigned long maxsize ;
unsigned long i t e r ;

i f ( argc != 3) {
p r i n t f ( ”Usage : %s , <s t r i d e > <s i z e >\n” , argv [ 0 ] ) ;
e x i t (1 ) ;

}

s t r i d e=a t o i ( argv [ 1 ] ) ;
maxsize=a t o i ( argv [ 2 ] ) ;

// i t e r=a to i ( argv [ 3 ] ) ;

fpmake = fopen ( ”make” , ”w” ) ;
i f ( fpmake == NULL) {

p r i n t f ( ”Unable to open ’make ’\n” ) ;
e x i t (1 ) ;

}
fprun = fopen ( ”run” , ”w” ) ;
i f ( fprun == NULL) {

p r i n t f ( ”Unable to open ’ run ’\n” ) ;
e x i t (1 ) ;

}
fprunenc = fopen ( ” runenc” , ”w” ) ;
i f ( fprunenc == NULL) {

p r i n t f ( ”Unable to open ’ runenc ’\n” ) ;
e x i t (1 ) ;

}
fpenc = fopen ( ” enc” , ”w” ) ;
i f ( fpenc == NULL) {

p r i n t f ( ”Unable to open ’ enc ’\n” ) ;
e x i t (1 ) ;

}



Anthony J. Mahar Appendix D. Source Listing 172

f p r i n t f ( fprun , ” echo \” Str ide , S ize , I t e r a t i o n s , Walk Time , I n s t r u c t i o n Time , Walk
Latency \” > l o g %lu . csv \n” , s t r i d e ) ;
f p r i n t f ( fprun , ”chmod 777 . / l o g %lu . csv \n” , s t r i d e ) ;
f p r i n t f ( fprunenc , ” echo \” Str ide , S ize , I t e r a t i o n s , Walk Time , I n s t r u c t i o n Time ,
Walk Latency \” > l o g %lu enc . csv \n” , s t r i d e ) ;
f p r i n t f ( fprunenc , ”chmod 777 . / l o g %lu enc . csv \n” , s t r i d e ) ;
for ( range = LOWER; range <= maxsize ; range = step ( range ) ) {

i f ( range < s t r i d e ) continue ;

i t e r = (6553600∗ s t r i d e ) / range ;
f p r i n t f ( fpmake , ”cp s r c /walk . s newwalk %lu . s \n” , range ) ;
f p r i n t f ( fpmake , ” . / append newwalk %lu . s %lu %lu \n” , range , s t r i d e , range ) ;
f p r i n t f ( fpmake , ”ppc 405−as newwalk %lu . s −o walk %lu . o −v −−defsym STRIDE=%
lu \n” , range , range , s t r i d e ) ;
f p r i n t f ( fpmake , ”ppc 405−ld walk %lu . o −o walk %lu −v\n” , range , range ) ;

f p r i n t f ( fprun , ” . / walk %lu %lu %lu >& /dev/ nu l l \n” , range , range , i t e r ) ;
f p r i n t f ( fprun , ” . / walk %lu %lu %lu | . / t ime conv %lu %lu %lu >> l o g %lu . csv
\n” , range , range , i t e r , s t r i d e , range , i t e r , s t r i d e ) ;

f p r i n t f ( fprunenc , ” . / walk %lu . s e l f %lu %lu >& /dev/ nu l l \n” , range , range ,
i t e r ) ;
f p r i n t f ( fprunenc , ” . / walk %lu . s e l f %lu %lu | . / t ime conv %lu %lu %lu >> l o g
%lu enc . csv \n” , range , range , i t e r , s t r i d e , range , i t e r , s t r i d e ) ;

f p r i n t f ( fpenc , ” . . / s e l f c r e a t e t ony new walk %lu header 1 2 3 4 5 >& /dev/ nu l l
\n” , range ) ;

f p r i n t f ( fpenc , ”mv josh walk %lu . s e l f \n” , range ) ;
f p r i n t f ( fpenc , ”chmod 755 walk %lu . s e l f \n” , range ) ;

}

f c l o s e ( fpmake ) ;
f c l o s e ( fprun ) ;
f c l o s e ( fpenc ) ;

return 0 ;
}


	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Implementation Platform
	1.4 Thesis Organization

	2 Background
	2.1 Secure Computing
	2.2 Software Threats
	2.3 Virginia Tech Secure Software Architecture
	2.3.1 Paged Protection
	2.3.2 Primary Components
	2.3.3 Lifetime of a Secure Application
	2.3.4 Protections

	2.4 Related Memory Modification Units
	2.4.1 IBM CodePack
	2.4.2 XOM

	2.5 Benchmarking

	3 Design
	3.1 Encryption Management Unit Requirements
	3.1.1 Scope
	3.1.2 Functional Integration
	3.1.3 Operational Concept
	3.1.4 Functional Requirements

	3.2 Encryption Management Unit Specification
	3.2.1 Functional Constraints
	3.2.2 Primary Functional Units
	3.2.3 Asynchronous Protocols
	3.2.4 Interface Protocols

	3.3 Implementation
	3.3.1 Bus Modifier / Bridge Unit
	3.3.2 Table Unit
	3.3.3 Control Units
	3.3.4 OPB Control Interface Unit


	4 Modeling
	4.1 Latency Modeling
	4.2 Modeling Slow Down

	5 Benchmarking
	5.1 Methodology
	5.2 iBench Design
	5.3 iBench Validation

	6 Results
	6.1 Latency
	6.2 Slow Down

	7 Future Directions
	7.1 EMU Design Directions
	7.2 EMU Performance Directions
	7.3 iBench Directions

	8 Conclusion
	Bibliography
	A Page Table Control Registers
	A.1 Page Base Address Register
	A.2 Key Index Register
	A.3 Page Index Register
	A.4 Ancillary Data 0 Register
	A.5 Ancillary Data 1 Register
	A.6 Ancillary Data 2 Register
	A.7 Ancillary Data 3 Register

	B Key Table Control Registers
	B.1 Key Index Register
	B.2 Key Word 0 Register
	B.3 Key Word 1 Register
	B.4 Key Word 2 Register
	B.5 Key Word 3 Register

	C Benchmark Results
	C.1 LMBench
	C.2 iBench
	C.2.1 Complete Latency Measurement
	C.2.2 EMU Memory Fetch Latency
	C.2.3 EMU Execution Time


	D Source Listings
	D.1 Encryption Management Unit HDL
	D.1.1 Bridge.vhd
	D.1.2 Bridge_CPU_Interface.vhd
	D.1.3 Bridge_Memory_Interface.vhd
	D.1.4 Bridge_BlockModeDecrypt.vhd
	D.1.5 Bridge_CounterModeDecrypt.vhd
	D.1.6 Tables.vhd
	D.1.7 PageTableControl.vhd
	D.1.8 KeyTableControl.vhd
	D.1.9 OPB_ControlInterface.vhd

	D.2 iBench Assembly
	D.2.1 Compile and Execution
	D.2.2 walk.s
	D.2.3 append.c
	D.2.4 time_conv.c
	D.2.5 makescripts.c



