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Abstract
 

When large amount of statistical information about 
power system component failure rate is available, 
statistical parametric models can be developed for 
predictive maintenance. Often times, only partial 
information is available: installation date and 
amount, as well as failure and replacement rates. By 
combining sufficiently large number of yearly 
populations of the components, estimation of model 
parameters may be possible. The parametric models 
may then be used for forecasting of the system’s short 
term future failure and for formulation of replacement 
strategies. We employ the Weibull distribution and 
show how we estimate its parameters from past 
failure data. Using Monte Carlo simulations, it is 
possible to assess confidence ranges of the forecasted 
component performance data. 

 
 

1. Introduction 
 
The problems of assessing the useful lifetime of 
equipment has been a focus of intense interest of 
electric utilities, especially in the circumstances when 
industry-wide restructuring and competition are 
tightening the operation and maintenance (O&M) 
budgets and managers are facing a dilemma of where 
to allocate the (often very limited) resources for the 
best possible use [3], [4]. An accurate model of power 
apparatus lifetime should contain a large number of 
factors, which are not practical for monitoring – a 
partial list should contain the initial quality and 
uniformity of the materials the equipment is made of 
(primarily the insulation), the history of exposure to 
moisture, impulse stress, mechanical stress, and many 
other factors. As those are neither available in typical 
situations (databases often do not even associate 
failures with the age), nor is their impact well 
documented and understood, the model that captures 
the essential behavior is, by necessity and for practical 
reasons, chosen to contain the most salient features 
known to be the strong determinants of lifetime. It is 
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lso assumed to be consistent with the Weibull 
istribution [2], [5], as it offers a degree of flexibility 
at other commonly used distributions do not. 

 a large amount of statistical information about 
omponent failure rate performance is available 

hich it is usually not), then accurate statistical 
odels can be designed around them and used for 

redictive maintenance strategy development [4], [5], 
]. Often times, only partial information is available: 
e assume here that a database of past failures 

ontains only the following information: year of 
stallation and number of components, amount of 

omponents replaced in any given year, and the total 
umber of failures in any year. It is not assumed to be 
nown the age of failed components, as such statistics 
re rarely known in the utilities. By combining a large 
umber of yearly installations of the components 
hich must be of the same type for consistency of 

tatistics), estimation of Weibull parameters [8] may 
e accomplished, from which forecasting into the 
hort term future performance may be possible. 

. Problem Statement 

uppose that p(t) is the probability density function  
DF) of the time to failure t of a single component. 

he probability of that component failing before time 
is given by 

0
( ) ( ) .

t

P t p u du= ∫  (1) 

 we have a system of N such components connected 
 series, the probability that the system will fail is 

0 ( ) 1 (1 ( ))NP t P t= − −    (2) 
here P0(t) is cumulative distribution function (CDF) 
f the time to failure, and the corresponding PDF is 

1

0 ( ) (1 ( )) ( ).Np t N P t p t−= −  (3) 
or example, if p(t) = e-t, t≥0, and p(t) = 0, t < 0; and 
t N = 2, then 

2

0 ( ) 2(1 1 ) 2 0.,t t tp t e e e t− − −= − + = ≥  
 (4) 
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For this distribution, the expected time to failure of a 
single component is E(T) = 1 and for the system with 
two components, E(To) = 1/2 (this is not true in 
general (see below)). 
 
The Weibull distribution [1], [2], [5] is arguably the 
most popular parametric family for modeling 
reliability and survival phenomena. If the times to 
failure T are distributed as Weibull Wei(α,β), with 
parameters α - scale parameter and β - shape 
parameter, the PDF has the form 

( )1( ) , 0
t

p t t e t

β

β β αβα
−

− −= ≥             (5) 
its CDF is 

( )
( ) 1 0,

t

P t e t

β

α
−

= − >   (6) 
and the PDF of time to failure of the overall system is   

( )1 /

0 ( ) , 0.t Np t N t e t
ββ β αβα − − −= ≥        (7) 

Depending on the values of its parameters, the 
Weibull distribution can model a range of different 
reliability behaviors. For example, the value of the 
shape parameter β dictates the behavior of failure rate 
function. If β>1 (β<1), the failure rate is increasing 
(decreasing) with time, while for β=1 the Weibull 
distribution coincides with the exponential 
distribution and, as it is well known, the failure rate is 
constant in time in such a case. 
 
It is interesting to observe that p0(t) can be rewritten 
as 

( )/1

0 ( ) , 0mt

mp t t e t
βαβ ββα −− −= ≥      (8) 

where 

1 /m N β

α
α =       (9) 

which means that 0 ( )p t is also a Weibull density. The 
expected value of T (the time to failure of a single 
component) is 

1
( ) 1E T α

β
= Γ + 

  
   (10) 

and the expected value of the time to failure of a 
system consisting of N identical units is 

0 1/

1
( ) 1 .E T

N β

α
β

= Γ + 
  

   (11) 

When α = β = 1 (which is the case of the exponential 
distribution) we get 

0

( )
( ) .E T

E T
N

=     (12) 
Otherwise, obviously, this relationship will not hold. 
For example if α = 1 and β = 2, the relationship is 

0

( )
( ) .E T

E T
N

=     (13) 

Given PDF and CDF, the failure rate is defined by 
( )

( ) 0
1 ( )

,p t
f t t

P t
= ≥

−
   (14) 

and for the Weibull distribution it is 
1( ) , 0.f t t tβ ββα − −= ≥                   (15) 

For the overall failure rate we have 

0

0

0

( )
( )

1 ( )
0,p t

f t
P t

t=
−

≥   (16) 

which in fact is of the same form as that of f(t) except 
that instead of α we use αm, i.e, 

1

0 ( ) , 0.mf t t tβ ββα − −= ≥   (17) 
In terms of the original α and N, we have 

1

0 ( ) , 0.f t N t tβ ββα − −= ≥  (18) 
We therefore begin with the assumption that the 
expected number of failures that occur in a population 
of X components of the same type at time t years after 
the installation is given by  

( ) ( ) , .b

f t X a t gN t g= ⋅ ⋅ − >          (19) 

where a is a scaling constant, b is a constant which is 
related to time dependency, and g is a quiet period 
(without failures) following the initial deployment of 
the component. If a component is installed in year i 
following the first installation and consists of Xi units, 
then the expected number of failures at t years after 
the initial population installation will be: 

( ) ( )b

f t X a t g iN = ⋅ ⋅ − −  for .t g i> +  (20) 
 

Under the assumptions used in the above derivation 
(Weibull distribution), the failure rate possesses a 
linear relationship with the number of components. 
Finally, if we combine component populations 
installed in years 1, 2,…,i, i+1, …, n, the cumulative 
estimated (in some sense, most likely) number of 
failures of such a population will be [8] 

1 1

( , , , ) ( ) ( )
n n

b

i
i i

if
F a b t g N t X a t g i

= =

= = ⋅ ⋅ − −∑ ∑  

for t g i> +    (21)  
That is a four-parameter function of time. Our 
objective is to identify the three unknown parameters 
(a,b,g) from the knowledge of the observed number of 
failures over a finite (often quite short) period of time, 
by extracting the needed parameters from the 
2



Proceedings of the 39th Hawaii International Conference on System Sciences - 2006
observations by fitting the model to the observations 
in the least squares sense. Let us describe the problem 
in terms of the following quantities: if Xi is the 
number of installed components in year i 
( {1,2,..., }i n∈ ), the population installed in year i will 
experience h(Xi,t) failures in year t, 

( , ) ( 1) ( 1)i ih X t X a t g i u t g i= ⋅ ⋅ − − − ⋅ − − −  
(22) 

where u is a step function of time 

( ) 0, 0
.

1, 0
if t

u t
if t

<=  ≥
  (23) 

The function u(t) facilitates implementation of the 
“zero failures before time g” rule.  The total number 
of failures in year t will be equal to the sum of failures 
of all populations (assuming, for a moment, that the 
time exponent b = 1): 

( , ) ( , )
1

( 1) ( 1).
1

n

n
X

H X t h X tii

a t g i u t g iii

Σ = =∑
=

⋅ ⋅ − − − ⋅ − − −∑
=

 (24) 

 
Arranged in a table, the number of failures per year 
per population would be as in Table 1. 
 

Table 1. Cable population and the expected number of 
failures each year. 
 

#/yr 1 … g g+1 … g+n+k 
x1 0  0 x1a … x1(n+k)a 
x2   0 0 … x2(n+k-1)a 
x3   0 0 … x3(n+k-2)a 
x4   0 0 … x4(n+k-3)a 
⋅ 
. 
. 

  . 
. 
. 

. 

. 

. 

…  

xn   0 0 … xn(k+1)a 
       
Sum   Fg Fg+1 … Fg+n+k 

 
 
Total number of failures will therefore be: 

Fg+1=x1a 

Fg+2=(2x1+x2)a 

Fg+3=(3x1+2x2+x1)a 

Fg+4=(4x1+3x2 +2x3+x4)a 

  

Fg+n=[nx1+(n-1)x2+(n-2)x3+...+xn]a 
Fg+n+1=[(n+1)x1+nx2+(n-1)x3+···+3xn-1+2xn]a 

Fg+n+2=[(n+2)x1+(n+1)x2+nx3+···+4xn-1+3xn]a 

 

Fg+n+k=[(n+k)x1+(n+k-1)x2+(n+k-2)x3+···(k+2)xn-

1+(k+1)xn]a 

For the sake of simplicity, we can start counting years 
from g+1 (the first year when a non-zero number of 
failures is expected to occur) so that (after the change 
of time reference) year number g+1 becomes year 1, 
year g+2 becomes year 2, etc.  Let us now assume 
that the actual observed numbers of failures in years 
1, 2, etc., are f1, f2, etc. respectively. The difference 
between estimated and observed numbers of failures 
in year i is 

.i i iF f∆ = −                    (25) 
We form now the sum of squares of differences ∆i for 
all years 1 through n: 

2 2

1 1

( ) .
n n

i i i
i i

F f
= =

∆ = ∆ = −∑ ∑   (26) 

The only unknown in the above expression is the 
parameter a, which represents the population-
dependent constant we would like to determine.  We 
calculate the value of a that minimizes ∆. This 
minimum is reached when ( ) / 0a a∂∆ ∂ = , 

 

1

1 1

( )( ) 2 ( ( ) )

( ) ( )( ) 0.

n
i

i i
i

n n
i i

i i
i i

F aa F a f
a a

F a F af F a
a a

=

= =

∂∂∆ = ⋅ − ⋅
∂ ∂

∂ ∂⇒ ⋅ − ⋅ =
∂ ∂

∑

∑ ∑
 (27) 

 
Solution to  

( ) ( )
1 1

( ) 0
n n

i i
i i

i i

F a F aa f F
a a a= =

∂ ∂∂∆ = ⋅ − ⋅ =
∂ ∂ ∂∑ ∑  (28)  

will yield the optimal value of a, which will be 
denoted â , i.e., 

( ) ( )
1 1

ˆ ˆˆ( ) 0.
n n

i i
i i

i i

F a F aa f F
a a a= =

∂ ∂∂∆ = ⋅ − ⋅ =
∂ ∂ ∂∑ ∑  (29) 

In the equations so far, we have assumed nothing 
about removing portions of components from service.  
In order to develop the algorithm for determining the 
elements of matrix jR  (removed components), we 
shall assume that the following is known: Xi , i = 
1,2,...,n are numbers of installed miles from year 1 
until year n. Let the vector [ ]1 2

T

n n kR r r r r +=    
3
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represent the quantities of cable removed from service 
in the years 1, 2, 3, …, n, …, n+k respectively. In 
order to present the algorithm, we shall assume that 
the following is known: Xi , i = 1,2,...,n – number of 
installed components from year 1 until year n; Xj , j = 
n+1,n+2,...,n+k  - number of installed components 
from year n+1 until year n+k; Ri , i = 1,2,...,n - 
number of removed components from year 1 until 
year n. 

Our objective is to find the numbers Rj , j = n+1, 
n+2,…, n+k that represent quantities of components 
to be removed in the period from year n+1 until year 
n+k. If we combine equipment populations installed 
in years 1, 2, …, i, i+1, …, n, the number of yearly 
failures of such a population will be (assuming that b 
is different from 1, and adjusting the matrix elements 
accordingly): 

1 1

2 2

1 1

1 0 0
2 1 0 0

.
( 1) ( 2) 1 0

( 1) 2 1

b

b b

b b b
n n

b b b b
n n

F X
F X

a
F Xn n
F Xn n

− −

= ⋅ ⋅
− −

−

  
 

       
 
 

 

(30) 

As has been said, we would ideally like to know 
which yearly populations have been affected by a 
removal in any given year, but such knowledge is for 
the moment assumed not to be available.  For lack of 
better information, we assume that any removal of 
components from service occurs on the oldest vintage 
still available and in service.   

Let us define the matrix X  in the following way: 

[ ]ij n nX X ×=    (31) 

where Xij represents the amount of components, 
installed in year #i and remaining in service in year #j. 
Also, assume that the vector Fj , j = n+1,n+2,...,n+k 
represents the estimated number of failures in years 
n+1, n+2, n+3, …, n+k,  respectively.  

1

2

1

1 0 0
2 1 0 0

( 1) ( 2) 1 0
( 1) 2 1

b

b b

b b b
n

b b b b
n

F
F

a X
F n n
F n n

−

= ⋅ ⋅
− −

−

  
 

      
 
 

 

     (32) 

As we know the elements of X up to the time when all 
installations and replacements are known, the solution 
of the equations yields the parameter set {a,b}. With 
knowledge of the parameters, a set of equations can 
be solved for any desired time horizon {n+1, …, n+k} 
in order to determine: i) the estimated number of 
failures when a replacement schedule is planned for 
and known in that period; or ii) the estimated 
necessary replacement schedule, which should 
maintain the estimated number of failures at the 
desired (planned) rate within the time horizon of 
interest. In practical terms, the time horizon should be 
as short as reasonably possible in order to avoid the 
accumulation of uncertainty that would invalidate the 
results. 
 
3. Improved Formulation 
 
Let there be M populations installed in years mi , 

where 1, 2, , ,m M=  and 1 2 .Mi i i≤ ≤ ≤  

Without loss of generality, we assume that 1 0.i =  In 

addition, let the m-th population be of size mN . We 
also assume that the failure of a single component 
installed in year mi  is modeled by a parametric  PDF, 

which is denoted by ( | ),mp t θ  where θ  are the 
parameters to be estimated. If we know the PDF, we 
can compute the probability of failing of a particular 
component in the k -th year (where mk i> ) by  

,

1

( | ) .
k

m k

k

mP p t dtθ
−

= ∫   (33) 

Let there be reports for the number of failures of 
components in years 1, 2, , ,j J=   given by nm,j 
(number of failures from population m in the jth year). 
We denote all the available failure data by 

1,1 1,2{ ,aN n n= , 1, 2,1 2, ,, , , , , , }J J M Jn n n n   . In 
general, we assume that we know the mathematical 
forms of ( | )mp t θ  (note that these PDFs share the 
same vector of parameters θ , which is not known).  
Since we assumed that we know very little about θ, 
we model its prior as a constant. 
 
There are two problems that we are interested in: 
 

1. Given the functional forms ( | )mp t θ  and 
past failure data, find the posterior PDF of θ, 

( | )ap Nθ .    

2. Using the obtained ( | )ap Nθ , predict future 
failures in the system. 

 

4
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Our approach is Bayesian, so we first find the 
posterior of θ, ( | )ap Nθ , in year J, and proceed by 
using it for prediction of failures of a given 
component in year 1J +  according to 

1

, 1 ( | ) ( | )
J

m J

J

m aP f t p N d dtθ θ θ
+

+

Θ

= ∫ ∫               (34) 

where ( | )mf t θ  is the failure rate of the cables 
conditioned on θ,  

0

( | )
( | )

1 ( | )
t

m
m

m

p t
f t

p d

θ
θ

τ θ τ
=

− ∫
               (35) 

and θ is the space of the unknown parameters. 
 

First, suppose that we use the failures from population 
1m = only. Then, for the probability of failures 

1,1 1,2 1,, , ,Jn n n  we can write 

1 ,1 ,1
1,1 1,2 1, 1, 1,

1
1, 1,

1

!
( , , )

! !

jr

J
nn

J r jJ
j

r j
j

N
P n n n P P

n n =

=

= ∏
∏

       (36) 

where  

1, 1 1,
1

J

r j
j

n N n
=

= − ∑  

1,

1

1( | )
j

j

j

p t dP θ θ
−

= ∫                    (37) 

1, 1,
1

11 ( | ) .
J

r j J
j

p t dtP P θ
∞

=

= − =∑ ∫  

Note that the probabilities 1, jP carry information about 
θ, which we do not denote explicitly. Analogous 
expressions hold for the other populations. Since all 
the failures are considered independent, we can write 
for the joint probability mass function of the failures 

,,

1,1 1,2 1, 2,1 ,

, ,
1 1

, ,
1

( , , , , , )

!
.

! !

m jm r

J M J

M J
nnm

m r m jJ
m j

m r m j
j

P n n n n n

N

n n
P P

= =

=

=

∏ ∏
∏

  

        (38) 

Since our prior of θ is a constant, we write for the 
posterior 
 

1,1 1,2 1, 2 ,1 ,( | ) ( , , , , , ).M M Jap N P n n n n nθ ∞    
(39) 

From here on, we assume that the ( | )mp t θ  is defined 
by the Weibull distribution, i.e., 

w
 

 
a
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s
 
T
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1( | ) , , 0( )
t im

m mp t t i e

β

β β αθ βα α β
−

−
− −

  
 = − >     

(40) 
here ( , ).θ α β=  It is readily shown that in this case 

11

, ( | )
j i j ij m m

m j

j

mp t dt e eP
β β

α αθ
− + −+ − −         = = −∫      (41) 

,

J im

m r eP
β

α

−
−   = (42) 

nd we deduce that 

,
1

1

,
1

1
log ( | )

log .

M

m r
m

j i j im mM J

m j
m j im

m
a

J i
p N const n

n e e

β β

β

α α

θ
α=

− − −
− −

= >

         

+ −
= −

+ −

 
  

 
   

∑

∑ ∑
    (43) 

ith all these expressions, it is now relatively 
traightforward to compute the distribution of the 
osterior and the computation of the probabilities of 
ilure. One method that could be applied is based on 
onte Carlo computations.   

. Illustration of the Proposed Method 

 synthesized data set is shown in Table 2. It contains 
formation on numbers of installed and replaced 

omponents, as well as the number of observed 
ilures over a period of 33 years. The data set was 
odified from an experimental data set for power 

ystem distribution cables. 

able 2. Modified data set used for verification of the 
lgorithm. 

Year Components 
installed 

Components 
removed Total Failures 

1 22 10 0
2 44 15 2 
3 63 16 0 
4 82 10 1 
5 104 9 10 
6 193 18 6 
7 215 16 9 
8 329 28 9 
9 370 61 13 
10 417 60 10 
11 453 43 17 
12 510 29 25 
5
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13 437 17 28 
14 395 19 32 
15 61 4 48 
16 17 3 30 
17 16 1 43 
18 0 0 45 
19 0 0 57 
20 0 0 53 
21 0 0 68 
22 0 0 75 
23 0 0 67 
24 0 0 81 
25 0 0 88 
26 0 0 100 
27 0 0 84 
28 0 0 127 
29 0 0 154 
30 0 0 139 
31 0 0 137 
32 0 0 156 
33 0 0 151 

 
The compliance of the data set with Weibull 
distribution is evidenced from Figure 1, which 
indicates a reasonably good fit. 
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Figure 1. Weibull probability plot of failure data. 

 
Table 3. Comparison between actual and estimated 
failures using the least squares parameter identification. 
 

Year Actual 
Failures 

Estimated 
Failures 

Error 
(Act.-Est.) 

1 0 0.024 -0.024 
2 2 0.083 1.917 
3 0 0.211 -0.211 
4 1 0.453 0.547 
5 10 0.831 9.169 
6 6 1.396 4.604 
7 9 2.257 6.743 
8 9 3.476 5.524 
9 13 4.900 8.101 
10 10 6.921 3.079 
11 17 9.754 7.246 
12 25 13.489 11.511 
13 28 18.076 9.924 
14 32 23.318 8.682 
15 48 29.114 18.886 
16 30 35.148 -5.148 
17 43 41.403 1.597 
18 45 47.824 -2.824 
19 57 54.371 2.629 
20 53 61.031 -8.031 
21 68 67.793 0.207 
22 75 74.649 0.351 
23 67 81.591 -14.591 
24 81 88.613 -7.613 
25 88 95.710 -7.710 
26 100 102.880 -2.880 
27 84 110.110 -26.110 
28 127 117.410 9.590 
29 154 124.770 29.230 
30 139 132.190 6.810 
31 137 139.660 -2.660 
32 156 147.190 8.810 
33 151 154.760 -3.760 

 
The results from Table 2 are compiled into Figure 2, 
where the actual numbers of yearly component 
failures (indicated by labels ‘+’) are superimposed to 
the solid line, showing the estimated numbers of 
component failures obtained using the proposed 
algorithm. The upper dashed line represents the 
estimation of the numbers of yearly failures which 
would have been experienced by the component 
population had the partial yearly replacements not 
been applied as per Table 1. The net reduction of 
estimated failures is the result of younger component 
population (all replacements are assumed to substitute 
the oldest components in service at the time of 
replacements). Table 3 shows the comparison 
between estimated and observed number of failures 
(goodness of fit obtained by determining parameters 
of the Weibull distribution for the components). 
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Figure 2. Estimated number of component failures 
assuming no replacements (upper curve) and replacements 
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(lower curve) superimposed over the actual numbers of 
component failures (shown as points labeled ‘+’).  
 
It is desirable to extend our procedure using 
probabilistic simulation. That would create the 
opportunity to analyze the probability distributions of 
failures rather than their estimated values). We shall 
employ Monte Carlo technique. The basic procedure 
for obtaining s predictions from a simulated dataset, n 
years long, is as follows: 

 

1. Determine the Weibull parameters from the 
primary dataset (chronological failure data) using 
the procedure already developed.  

2. Use the identified parameters to determine the 
points on the optimized fit curve (estimated 
numbers of failures) for all years up to year n. 

3. Generate failure distributions, according to the 
Weibull distribution identified for the entire data 
set and the estimated number of failures for each 
year; each random sample of synthesized failures 
should contain s random samples. 

4. Construct s datasets by selecting randomly one 
sample from each of the n yearly failure 
distributions. 

5. Estimate the number of failures and/or 
replacements using the procedure developed 
earlier for each of the new s datasets.  

 
Use the results of s simulations (estimated failures) to 
calculate the distribution of estimated failures, as well 
as the impact of assumed component replacement 
rates on distribution of estimated failure rates, or 
distribution of estimated replacement rates necessary 
to result in a desired failure rate in the future. Figures 
3 and 4 illustrate the confidence ranges (50% and 
95%) obtained by running a Monte Carlo simulation 
on the same data set (described in Table 2). 
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Figure 3. 50% confidence interval for estimated failures. 
Symbols ‘+’ represent the actual observation data. The 
original data set is shown in Table 2. 
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Figure 4. 95% confidence interval for estimated failures. 
Symbols ‘+’ represent the actual observation data. The 
original data set is shown in Table 2. 
 
5. Conclusions 
 
The algorithm presented in this paper relies solely on 
basic chronological failure data to forecast the number 
of failures. As a consequence of the available data, 
some assumptions were made to make the analysis 
possible. These assumptions are: 

 

• The components have a lifetime consistent with a 
three-parameter Weibull distribution.  

 
• The actual component that failed is unknown so it 

is assumed that the oldest components are always 
replaced first.  

 
The algorithm can be used to forecast how actions in 
the present will impact the overall failure trend. 
Monte Carlo simulation [6] was employed to extract 
the confidence range of the estimated failures (or 
replacement rates needed to maintain a desired failure 
performance). By performing sufficiently large 
number of simulations (of the order of thousands), the 
algorithm yields a distribution for each of the 
parameters of interest and from these confidence 
intervals may be extracted. 

The proposed algorithm may be extended to include 
data obtained through condition monitoring to 
increase the accuracy of results. It may also be 
modified to take advantage of more complete 
historical data thereby eliminating one of the 
necessary assumptions. 
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