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Abstract— This paper demonstrates how two different sets of often difficult to make use of multiple DSLs. Even when
powerful domain specific language features can be specified andthey can be used together the level of granularity at which
deployed as composable language extensions. These extensions iRonstructs from the different languages can be composed is

corporate analyses and transformations that simplify the proces t h fil tai tructs f
of writing efficient and robust computational geometry programs 00 coarse — each program source fie contains constru ro

and can be automatically added to a host language and usedOnly one language. The issue also arises for single-domain
simultaneously. This is not possible in domain-specific language problems. In the case study presented in this paper we see

and library-based implementations of these features. _ that in computational geometry one often wants to make use of
One extension relies on characteristics of geometric algorithms static analyses and transformations from separate DSUsrand

to implement efficient exact-precision integers; the other employs libraries in th d in th .
a technique that symbolically perturbs geometric coordinates to Ibraries In the same program and even In theé same expression

safely and automatically handle degeneracies in the input data. The basic problem is that both general purpose and domain-
These language extensions are implemented in an extensible lan-specific languages often lack the right collection of feasur

guage framework based on higher-order attribute grammars and for the problem at hand. Language developers decide what
forwarding. .Attrlbute evgluatlon on the new Ianguagg extension ¢~o+res are available in the language - once fixed, language
constructs is used to implement the static analysis and code . .
transformations that enable the generation of efficient code. are_nOt ?aSIIy a‘?'apted to particular problems.. n
Libraries provide another way to add domain-specific func-
|. INTRODUCTION tionality to a language; here classes, methods, functiand,
Domain specific languages (DSLs) [1] can simplify proprocedures represent abstractions in the domain. Theiapyi
gramming because they have features tailored to the speddiitvantage is that one can use different libraries addigssin
problem domain of the task at hand. The features typicaltiffferent domains in the same program. But with librariege on
include (i) language constructs such as new data types atmhnot add new syntax, semantic analysis or optimizations.
high-level operations on values of those typ@g) domain- The exception is templates in C++; despite limitations they
specific optimizations that ensure that efficient code can ban sometimes be used to generate efficient code.
generated, anii:) domain specific analyses that guide these Both libraries and DSLs provide developers with abstrac-
optimizations and check for their correct use. These coastr tions 5 for their programs that match the domain of their
allow one to specify the problem solution at the (higheproblems. Elements of the solutions design are often direct
level of abstraction of the problem instead of encoding thepresented by the domain-specific abstractions of the DSL
solution at the lower level of abstraction of a general pagpoor library. Programs with such abstractions often easier to
programming language. This allows one to more quicklgdapt when changes must be made since the design elements
specify a solution and also helps one avoid errors. Becdugse Were not lost in the original program because they had to be
solution is specified in terms specific to the domain, domairanslated to lower-level programming language construct
specific optimizations and program analyses can be employedThe primary problem with domain specific languages is the
However, DSLs suffer from some practical problems thabstractions provided by different DSLs cannot be useden th
inhibit their widespread use [1]. First, while rich in domai same program. Although abstractions provided by libraréas
specific features these languages typically lack many of the, libraries cannot provide the new syntactic construnts a
features found in modern full-featured languages such mmany of the analyses and optimizations that are possible in
Java (classes, packages, foreign-function interfacedMllor DSLs. Extensible languages and compilers offer a potential
(higher-order functions and modules). The useful datagypeolution to these problems in that they offer a means to let
analyses and transformations of a DSL are often trapped inh& programmer decide what features to include in a language
small general purpose imperative or functional prograngmirso that the feature set closely matches the problem at hand.
language that adds little to the problem solving procesBrogrammers can chose the appropriate general purpose and
Second, it is not uncommon for a particular problem to hawimain-specific features. In the approach we are exploring,
aspects from different domains. These domains are typicadlin extensible “host” language can be extended, under the
supported by different domain specific languages and it gelidance of the programmer, with the unique combination lan



guage extensions that support different domains that défae [I. COMPUTATIONAL GEOMETRY

domain specific language features she desires. This extende

language raises the level of abstraction to that of the probl  In this paper we demonstrate the utility of extensible lan-
at hand. When the host language is a full-featured languzgj¢ages and domain specific language extensions in the domain
like Java or ML, the programmer also has access to tRécomputational geometry (CG). We show how they can make
modern general-purpose features she expects. This laaguhgignificantly easier to implement robust geometric peogs.

acts as a host for the desired domain specific features. THds will also show the fine-level of granularity at which -dif
extended language thus has both the general purpose Hgntlanguage extensions can interact. Below we present t
domain specific features desired by the programmer. language extensions; each addresses a fundamental prioblem

The case study presented here investigates two langudgeeloping robust implementations of geometric algorghm
extensions applicable to problems in the domain of computhbese are based on existing domain specific languages [3] and
tional geometry. The first extension implements a techniglieraries [2] [4] that cannot be used together, even thotigh t
called symbolic perturbation that removes degeneraci@s fr Problems they address both occur in many algorithms. Thus,
the input data making it considerably easier to write robudtProgrammer can only use one because there is no common
geometric programs. The best implementation of these tedf@mework on which these separately developed solutions ca
niques are implemented in the CGAL computational geometpf based. Extensible host languages provide such a frakewor
library [2]. The second extension implements exact prenisimaking the use of both extensions possible.
integers - due to a characteristic of geometric algorithms There are two fundamental difficulties in developing robust
certain optimizations can be made that are not applicableimplementations of geometric algorithms that these eitess
general purpose applications. The optimizations here comelp to solve. First, the text-book algorithms typicallpase
from a DSL called LN [3]. Both make writing efficient that exact-precision real numbers and operations areadiail
and robust programs considerably easier. But one can&dmply using machine-supported floating point numbers in-
write a program that combines the perturbation technigiessiead can introduce round-off errors that adversely affeet
CGAL with the efficient exact-precision integers of LN. Thusbehavior of the algorithm, but using general purpose exact
programmers for geometric applications have a very limitgefecision numbers can be too slow. Similarly, the correct
set of combinations of perturbation techniques and numegperation of textbook algorithms may require the applarati
representations to choose from. Most commonly a library likof a technique called symbolic perturbation [4] that masks
CGAL provides a limited set of pre-coded choices. degeneracies in the data. For example, the randomized incre

Our primary goal in implementing computational geometrinental trapezoidal decomposition algorithm (see [5, Gérapt
abstractions as language extensions is to validate thak-an @) depends on the assumption that each trapezoid has at most
tensible compiler framework can support the types of aimly$our adjacent trapezoids, a condition that can be guardntee
and transformational technigques found in DSLs in such a why symbolic perturbation. Without symbolic perturbatieach
that different extensions, written by different languagatfires trapezoid may have an arbitrary number of adjacent tragezoi
designers, can be combined by the programmer to creatdlasking degeneracies simplifies the algorithm and its data
custom language with the desired set of language featuresstructures as well as its proof of its correctness. We ptesen

For extensible compiler frameworks to have wide apped#nguage extensions to address each of these two problems.
they must provide a fully developed host language and aMany CG algorithms are combinatorial algorithms that do
rich set of language features implemented as extensiores. Tiot create any new geometric entities but instead perform
work presented here reports our results of developing tvome query over the input geometric entities. A convex-hull
sophisticated language extensions and showing that they edgorithm for example tells which points belong to the conve
be used together in the same program (in this case, in the sdml of a given set of input points. It is common practice
geometric expression). That said, the host language used he CG to base such algorithms on geometric primitives
is a very simple language as our focus is on validating th@ihese are expressions that return a qualitative, not gativ,
language extensions can used together in the same prograesult about some relationship between geometric objEots.

In Section Il we provide a brief introduction to the problemgxample, thein-circle primitive tests if a given point lies
encountered in writing geometric programs, some solutionsinside, outside, or exactly on, a given circle. Tledt-right-
these problems. Section Ill describes our extensible dempiside primitive tests whether a given point is to the left, the
framework based on attribute grammars and defines a simptght, or directly on a vertical line. Primitives are typilga
imperative host language. Section IV provides the speeifiagmplemented by computing the sign of an expression as either
tions of the CG language extensions and explains how they dan1, or 0 indicating if the expression is, respectivel\eajer
be used together. This provides an example of how differeihian, less than, or equal to zero. These values correspdhd to
language extensions that provide the new syntax, analyssee possible results of the primitives described abavis |
and optimizations found in DSLs can be used together; thasly in these primitives where geometric entities are camegha
overcoming the aforementioned problems with DSL-based aodexamined. Thus the problems of limited-precision ané dat
library-based implementations of domain-specific abftas. degeneracies can be addressed in the primitives and the rest
Section V concludes and discusses related and future worlaf the algorithm remains the same.



The two sets of domain specific features that we implement{ r= sign(z — & xy);
as language extensions have previous implementations that If (r ==0) then {

are incompatible. LN [3] implements efficient exact-prémis r = sign(B. — (z * By +y * Ex));
integers as a DSL that statically analyzes geometric piriest if (r - 0) then {

in order to generate efficient C++ implementations. The gen- r= sign(0 — Ey * Ey);

erated code is then called by the main algorithm. CGAL [2] is if (r==0) then

a C++ template library that provides hand-coded implemen- halt ("perturbation error”); } } }

tations of standard geometric primitives for several syiicbo

perturbation schemes. These are implemented as C++ tenf?9- 1. The implementation of perturbation of= sign(z — z + ).
plates that can be instantiated with the programmer’s nigmer

Iti);r?iet)afc)iggzogeéi]flLt]:xglaet)éa(r:;;:gfég?a%ﬁi.gHsg\?Zﬁ? thséign qf the perturbqtiqn values are computed. To achiew thi
application of the important analyses and optimizationshf r= sign(z — z +y) initially transforms to

Even though both LN and CGAL are based on C++ theirr = signg( (z+sE.%s€)—s(z+sEp*se)*s(y+sEy*kse) ) (1)
respective efficient implementations cannot be used tegeth . L .

Extensible languages offer a solution to this problem. Ea _Xt th|_s expression 1S transformed so that Hgn compu-
symbolic perturbation scheme and exact-precision nuleriéations in F'gur? 1 can be madt_a. we convgrt the coordinate-
implementation can be implemented as a modular, composa ed expression (the_exprgssmn under ‘.ﬂ.!ms operator)
language extension that encapsulates the transformadiahs 1o a polynomial overe in which the coefficients are com-

analyses that are used to generate the implementation frorﬂuéable (non-symbolic) expressions by essentially applyi

programmer provided primitive expression. Below we déscri € distributive laws(a +b) ¢ = (a * ¢) + (b * c) and
in more detail an efficient exact-precision integer impleme“*(bJrC) = (axb) +(axc) as rewrite rules and then collecting

tation and a symbolic perturbation scheme. In Section I\I}Ife-powere coefficients. Expression (1) thus becomes

we will illustrate how the transformations sketched beloe a r = signg( (z—z*y)*, e (2)
implemented as language extensions. by (B — (a2 By +y*Ey)) s e
S z Yy $ x S

A. Degeneracies in input data +s (0= E,*Ey)*5¢* )

As mentioned above, geometric algorithms can be signifinally, becausee is infinitesimally small, we can convert
icantly simplified if the input data are free of degeneracieg;y,, to an expression that implements the symbalign,
A common degeneracy occurs when geometric entities h%’ﬁ’eration by computing the non-symbolic sign of the coeffi-
the samez-coordinate. This may cause the left-right-sidgjents of the polynomial in increasing order of the assediat
primitive to indicate that a pOint lies eXaCtly on a vertitiak. powers Ofe. Thls fina' expression is Shown in Figure 1. The
When this primitive is implemented by computing the sig@riginal expression is rewritten without symbolic opevat
of an expression, theign operator returns 0. Simply statedsg that the evaluation is possible and the perturbationegalu
when we take thesign of an expression we do not want itare not computed unless they are needed. This optimization
to return O as this indicates the presence of a degeneragycrucial for good performance of symbolic perturbation.
Consistently treating equality (0) as the same as greaser th\ote that this perturbation scheme does not guarantee that
(1) or less than (-1) does not solve the problem and can legfl degeneracies are removed and thus halts with an error
to non-termination or incorrect results in some algorittjfls message in these rare cases. Other perturbation schekees, li
The domain experts in computational geometry have devisgginulation of Simplicity [7], can make this guarantee and ca

a technique calledsymbolic perturbation[7][4][6] that is a|so be implemented as language extensions.
used to perturb the coordinates by symbolically adding an

infinitesimally smallperturbation valueto coordinates so that B- Efficient exact-precision integers
these degenerate cases do not occur or occur extremely, rarellt is a common practice in CG to use exact-precision inte-
and then can be detected. gers to represent the original floating point representatiof

In the randomized linear perturbatioscheme [4] imple- the input data. Representations of the exact-precisi@yans
mented as a language extension here, when a programsycified here include the original double-word floatingnpoi
writes, for exampler = sign(z — z * y), we want this to be representation and the array-based exact-precisionsem®
transparently changedhrough the language extension definetion. This is possible since we assume a fixed lower bound
transformations, into the code in Figure 1. In this scheine, ton the precision of the floating point values that allow an
perturbation value for a coordinateis I, ;e whereF, is a accurate conversion from doubles to exact integers. Exact
random value specific to ande is a symbolic infinitesimally precision types are used in the geometric primitives where
small constant value. We subscript symbolic operations withe bit length of precise integers needed to store interatedi
s to indicate that these operations are symbolic and are mesults will often exceed that supported by the hardware.
computed. When the sign of an expression is computed, tBecause exact-precision types are used only in expressiwhs
sign of the original coordinates is computed first; if it it not stored in variables whose value may be changed inside



{ double fp; exact ep; 1 =0; I1l. EXTENSIBLE COMPILER FRAMEWORK

= — * R
ij;p ( f;d < éjam%dr’w A fp> —(mazErr) ) then { ; ﬁétr;t;l;;e igI]rar]Pmars [8]kprlt_)vide the found?tio? of our ez;tgp—
/Il compute exact precision version prier framework. Language Constructs are specitie
D= 2o Yo o o by productl(_)ns and thel_r epr|C|t_s_e_mant|cs and tranglrstlo
if (ep < O) then r — —1: ’ can be defmec_i by gtmbute def!nltlons. Two.extensmns to
if (ep > 0) then r — 1; ’} AG; are used in defining extensible languagagher-order
else ’ attr!butes [9] that allow apstract syntax t'rees (ASTs)I tp be
if (fp<0)thenr——1; attribute values anﬂ)r\_/vardlng[lo_], a_teghnlque for prov_|d|ng
it (fp> 0) then r — 1; ’ ! default values for attributes t.ha_\t is S|m|Iar.to macro expam.

’ In our framework for building extensible compilers, the
host language is defined by an AG. Language extensions are
specified as AG fragments that contain productions defining
new language constructs and attribute definitions for these
productions and possibly those in the host language. The
loops or branching statements, a number of static analy$gSivity of creating an extended language specificatioaiksnt
are possible. The number of bits that will be required t8ombining all the productions and attribute definitions e t
store the exact-precision value can be statically det@dthas pgt language and language extension specifications. This
can an upper bound on the maximum error that would ariggmbined specification defines the extended language. This
if the primitive expression was implemented using hardwaggsk is performed by the framework tools and maintains the

Fig. 2. The implementation of exact-precision integet sign(z — z *y).

supported floating point numbers. the distinction between the feature designer, who impleésen
In our language extension implementation of the LN [3 language construct, and the programmer, who builds an
analyses and transformations the example= sign(z — extended language by selecting a host language and a set of

x * y) is transformed into the code in Figure 2. In LN ancippropriate language extensions.
our extension, the expression is computed using the otigina .
floating point representations. This shown in line 2 of the" The Simple host language
figure where the floating point values are represented dasab Figures 3, 4, and 5 show some of the AG for the abstract
subscripted byl. LN and the extension compute, at compil&yntax of a very simple imperative host language called
time, the maximum error valuérfaxEm) of the floating point Simple. This AG is written in (an abbreviated version of the
expression. If the magnitude of the resulting value is latigat  Syntax of) Silver, an AG specification language. The comcret
the error value, then the sign of this value can be returnéiintax of Simple and the extensions described below is not
as the sign of the expression. If it is not, the expression $§0wn; the currentimplementation relies on traditionahser
computed using exact precision integers. Since the maxim@d parser generators like lex and yacc.

bit length required for exact-precision integer evaluatie Figure 3 first defines 5 nonterminals for the root of the AST
known at compile time much of the bookkeeping overhedfoot ), statements §t i), declarations [l ), expressions

of calling subroutines and the use of loops to handle aritra(EXp), and type expressionsTyp). Terminal symbols and

bit lengths is not needed. All the loops can be unrolled arieir defining regular expressions for identifiers and iateg
the subroutines in-lined to generate a fast implementatififerals are also shown. Next, a synthesized attriqupeis

of the exact precision expression. In our implementation, flefined to be of type stringS{ri ng) and to decorate@
Section IV, exact precision integers are introduced as a ﬂé“l the nonterminals. Values for these attributes are define

type and transformations over expressions of that type_ by attribute definition equations that are associated waithe
production in the abstract syntax grammar; attribute \sahre

computed lazily, that is, on demand. An inherited environtne
C. Using both exact integers and symbolic perturbation: ~attribute env is a list of pairs of strings andyp trees

that is used by identifier reference productions to look up

An advantage of our approach to extensible languagesttie type of identifiers. The attributgef s is used to collect

that these extensions and their associated transformsateom declarations fromDcl s. Their definitions are as expected
be used together so that one can write geometric primitivaed not shown. A collection dfiost attributes flost Root ,
whose intermediate results are exact-precision intedeat thost St m host Dcl , host Exp, andhost Typ) are defined
will by symbolically perturbed in the case of any degenaraci (though not all shown) to be of the indicated type and are
thus addressing both fundamental problems mentioned abavged in translating programs written in an extended languag
The final implementation of such a primitive will look liketo programs written only in the host language. These ati&iu
the expression in Figure 1 in which eaefyn expression is are defined on the the type-appropriate productions using
replaced by an expression similar to the one in Figure 2. Thiee same pattern that is given for productiassi gn and
demonstrates the fine-grained level of interaction of laggu bl ock. Some of the remaining statement and declaration
extensions that allows programmers to take advantage of @oeductions are shown but their attribute definitions aideel
main specific features specified by different feature desgn as they can be inferred from the other examples. Simple



expressions and types are discussed in the following sectiprovides default values for synthesized attributes thatret
on forwarding (Section 111-B) and production-valued ditries explicitly defined.

(Section IlI-C). Some examples in Figure 4 will help to clarify. This figure
specifies Simple expressions and defines, in the order given,
grammar sinple ; conjunction, negation, disjunction, subtraction, muitigtion,
nonterm Root, Stm Dcl, Bxp, Typ ; _ identifier reference and integer literal expressions. The p
termld /[a-zA-Z] ([0-9] | [a-zA-Z] )x | ; . ) .
termintLit / [0-9]+ / : duction or makes use of de Morgan's laws to build the
semantically equivalent expression composed of usewbf
syn attr pp :: String @Root, Stm and and productions, that i V b forwards to—(—a A —b).
- Del, Exp, Typ; When an AST node created byr is queried for itspp
syn attr defs .. [(String, Typ)] @bDcl 5 - attribute, which it explicitly defines, the defined value is
inh attr env :: [(String, Typ)] @ Stm Exp; . . . .
returned. If it is queried for the value itsype attribute, that
syn attr hostStm:: Stm @Stm ; query is forwarded to thé or war ds t o construct and its
syn attr hostExp :: Exp @Exp ; value is returned.
syn attr hostTyp :: Typ @Typ ; Because the forwards-to tree will require inherited at-
io'r'od r oot rRoot c = s -Stm tribute§, thgse are automatically copied from the forwagdi
prod block b::Stm::= d::Dcl s::Stm node (in this example the one createdday) unless they are
{ b.pp = "{" ++ d.pp ++ s.pp ++ "}" ; explicitly defined. Note that in some cases the forwards-to
b. host Smt = bl ock(d. hostDcl, s.hostStm; } node may also forward the query; we will eventually find
?fgd assl IQ” a3+3+5|t' m:. =+'+3 ;EXIO :+ Exp a value for the attribute since language extensions forward
o Egst st mpg assi gn(1 . host EQB  hostExp): ) (directly or indirectly) to constructs in the host language
Consider another attribute that is not shown in these speci-
prod ift s::Stm::= c::Exp t::Stmt fications;ct r ans, an attribute which specifies a constructs
prod ifte s::Stm::=ci:Exp t::Stnt e:Stn straightforward translation to C++. Defining this attribuin
prod while w:Stm::=c::Exp b::Stnt and andnot but not onor results in the C++ translation of
prod halt — h::Stm::= e::Exp or being just the C++ translation of the equivalent and/not
prod dcl d::Dcl ::=v:i:ld t::Type construct it forwards to. Forwarding is similar to macro
{ d.defs = [ (v.lex, t) ] ; } expansion in that both reuse the semantics of existing Eggu
constructs, but unlike macros, forwarding productions als
prod dcl Seq dd::Del ::=dl::Del d2::Dcl {...} define semantics, as attributes, that can generate promer er

prod stnSeq ss::Stm::=sl::Stms2::Stm{...}

messages, something traditional macro systems cannot do.
Fig. 3. Partial AG specification of simple imperative host laage. syn attr type :: Type @Exp ;

prod and e Exp :: i Exp oriiExp {...}

=1:
L . rod not e::Exp ::= niiEx ..
B. Forwarding in attribute grammars Srod or o - Exg =1 ExB E : Eip
Forwarding [10] is an extension to AGs that allows lan{ € PP = |.pp + I+ rpp

guages to be specified in a highly modular manner. Featurd °" #@rds to not(and(not(l) not (1)) : }

designers will not know all of the attributes that will occuly; oq sub e::Exp ::= I::Exp r:: Exp

in the final specification of the extended language createde. pp = ...; e.type = |.type ;

by the programmer since programmer chosen extensions may or war ds to I. type.subProd (1,r); }
introduce new attributes on host language productions, But

since language extensions need to work closely together W ml e !EXpe: iy 'e: :_E;(pt r :eE?(p
constructs introduced as productions in one extension musTf Or\,\ard's' to |, iyggl mul Pr ng(| )
provide definitions for attributes introduced in a differex-

tension. Thus, a construct specified as an AG production mpsbd i dRef e::Expr ::=id::l1d
be able toimplicitly specify its value for these attributes. (Itl ]? PP _d <5 e.type 3 ' ?OkuFd’(' Fja| ex, e.env);
explicitly specifies the semantics that are of particular concern’ ©" #@rds to e.type.idRefProd (id) ; }

to it using traditional attribute definitions.) Forwardialows o4 jntLit e::Expr ::= i::IntLit {...}
the feature designer to implicitly define the semantics for a

new language construct by specifying a means to construct
a semantically equivalentonstruct. If the new construct is
queried for an attribute that it does not explicitly define it ) )
“forwards” that query to the semantically equivalent comst C- Production-valued attributes

it specifies. In AG terms, a production defines a distingudshe The productionsub, nul , andi dRef in Figure 4 use for-
attributed AST, indicated by theor war ds t o syntax, that warding and production-valued attributes. Productiolued

Fig. 4. AG specification of Simple expressions.



attributes [10] contain productions build new trees. In thB/. COMPUTATIONAL GEOMETRY LANGUAGE EXTENSIONS

case ofsub, the expressiori . t ype. subProd evaluates 1o add exact-precision integers as a language extension we
to a production that defines subtraction for the type of thﬁ,ecify a new typexact T and new operations (productions)
expressiorl . For example, if the type df is integer, then its on values of this type. To add symbolic perturbation we speci
attributet ype will be the treei nt T() defined by the pro- 3 new type constructor (productiom) pT that perturbs a
ductioni nt T in Figure 5. Since nt T defines itssubPr od specified (numeric) type and operations over these types.
attribute to besubl nt, (the subtraction production specific|, doing so we use the host-language operator overloading
to the integer type), thesubl nt is used to build the tree featyre and higher-order attributes to build trees reprasg

to which this instance osub will forward to. In another the transformed expressions. The host language, its abstra
instance where the type df is a different type, then that syntax, and its operator overloading facility provide tiene

type will define the type-specific production to use. This igyon framework on which both language extensions can be
how operator overloadings implemented in Simple. We will hased. This allows the features specified in both language
use this in the language extensions when we introduce ngWensions to be used together. The programmer can then
types for exact-precision integers and symbolic pertivhat gefine variables, such asy, and z in the example, to have

to overload subtraction and other operations. We also aaérl e typer | pT(exact T()). These are also easy for the
thei dRef production so that identifier references forward t%rogrammer to use since they simply need to change the type
type-specific productions as well. This will be used in thgf their variables to trigger the necessary transformation
perturbation extension to implement the transformatiocof Tg understand the AG specification of the perturbed and
to z +; Ey *, e for the exampler = sign(z — x * y) from  symholic types and the exact integers and their associated
Section II-A. transformations we will trace the compilation process of ou

Note that in this simple host language there is no type cexample expressiorign(z — = * y). This will parallel the
ercion. Also, there are no type names, so the type informatiéxplanation and expressions given in Section Il. Because th
on Typ trees does not depend on it environment. Thus, thegwaluation of attributes is demand-driven, the transfdiona
is no harm in copying them to new locations in the AST a$§om r = sign(z — x * y); to its implementation in the host
the value oft ype attributes. language can be more easily understood by starting at the

root node of the statement’s abstract syntax tree. We wal se
how the perturbed-type construct forwards to a symbolety

syn attr subProd :: Prod (Exp ::= Exp Exp) construct that forwards to an expression over exact integer
syn attr nmulProd :: Prod (Exp ::= Exp Exp) ; t Th tint ¢ . then f dt
syn attr idRefProd :: Prod (Exp ::= Id) ; ypes. These exact integer type expressions then forward to
syn attr zeroTree :: EXp ; their implementations which are written entirely using con
structs from the host language. This process is described in
subProd, nul Prod, idRefProd, zeroTree @ Type; the remainder of this section.
prod intT t::Type ::= granmmar cg ; inmport sinple ;
{ t.subProd = sublnt ; t.mulProd = nullnt .
t.idRef Prod = idReflInt ; prod sign s::Stm::= Ih;::Exp e:: Exp
t.zeroTree = intLit(term(IntLit,"0")) ; } { s.pp = Ihs.pp ++ "= sign(" ++ e.pp ++ ");" ;
prod floatT t::Type ::={ ... } forwards to e.type.signProd(lhs,e); }
prod arrayT t::Type ::= ct:: Type
{ t.compType = ct ; } syn attr signProd:: Prod(Exp::=Exp Exp) @ Type ;
prod sublnt e::Exp ::=1::Exp r::Exp aspect prod intT t::Type::=
{ eepp =...; e.type = intT(); } { t.signProd=signint; }
prod mulInt e::Exp ::=1::Exp r::Exp prod signint s::Stm::=Ilhs::Exp e::Exp
{ eepp = ... ; e.type = intT(); } { forwards to ...seq of if-then stnts ... }
Fig. 5. AG specification of Simple types and type-specific prtins. Fig. 6. The generisi gn production andsi gnPr od attribute.

An extension for computational geometry, on which the
We have implemented this simple host language usiegtensions for randomized linear perturbation and exact-
Silver, an attribute grammar specification language we hapeecision integers will be built, is shown in Figure 6. This
built for specifying extensible languages. The Silver cderp extension introduces th& gn statement that assigns the sign
translates Silver specifications to Haskell which is used afits second expression to its first, for example: sign(z —
the implementation language. The Haskell implementatian«y);. Based on the type of the second expression (which in
performs the attribute evaluation. The grammar speci€oati this case is based on the types of the variablag andz), the
above comprise thesi npl e grammar module. It will be si gn production forwards to a type specific sign production.
imported by language extensions that extend Simple in tHethe expression has the typexact T() thensi gn will
following sections. Silver is freely available on the imtet at forward tosi gn_e - the exact precision integer specific sign
www. el t. cs. um. edu. production shown in Figure 9. If the typelid pT(i nt T())



orrl pT(exact T()) thensi gn forwards to the perturbed Exp trees. The secondicoef s is highest power ot with
sign productionsi gn_p shown in Figure 7. Theaspect a non-zero coefficient. Both attributes are defined in Figure
production adds the definition of ttsd gnPr od attribute to Starting at 0, the*” element ofcoef s is the coefficient of
the others defined on the productibnt T. e'. Thus, for our example = sign(z — x * y), on si gn_s

. : . we wante. coef s to be the list
A. Symbolic perturbation as a language extension

To indicate that the randomized linear perturbation is to be 2 =% * ¥, Bz = (@x By +y* By), (0= Ez + By)] - (3)
applied to the expression used $im gn we require that the and e. ncoeffs to be 2. This list then represents the
variables in the expression have perturbed types. Thugjrin ¢ransformed symbolic expression shown in equation (2) in
exampler = sign(z — x x y) the variablesz, y, and z are Section II-A. From this list, it is straightforward for the
declared to have typel pT( X) whereX could be the integer productionsi gn_s to create the construct that it forwards
or exact-precision integer type. Thus thepe attribute on the to - for the example this is the construct shown in Figure 1.
nodes in the AST for theign(z — z xy) will be rI pT(X), In its forwards-to clause, the block and initial assignmeasret
for someX. This allows the hossi gn production to forward created. Note that the zero values used in the conditiortseof t
to the perturbed-type specific sign product®ingn_p. if-thens must have the same type as the type being perturbed

The productions in Figure 7 use the synthesized attribubg ther | pT production. If that type i$ nt T(), then the in-
synir ee to compute the representation of the expression ugger zero constant must be provided toifidRest function.
ing symbolic operators and expanding the perturbed vasablf that type isexact T, then the exact-precision zero must be
to the symbolic representations. Thegn_p production for- provided. This tree is stored in theer oTr ee attribute on
wards to the symbolic sign productiai gn_s with the sym- the component type attribute ¢mpType) of the expression
bolic expression. For the example= sign(z —xxy) this cor- e’s t ype attribute. The straight forward implementation of
responds to (1) in Section II-A. The only difference is that inkRest (not shown) creates the nested if-then statement in
thesynilr ee expression variables, e.g, are not represented Figure 1. Note that we also overload the equality operator
as symbolic expressions, eg+; F, *; e, but instead repre- in the same manner as is done frgn, sub, and others.
sented using the convenience productiaiRef Tr ans_s as
shown in the production dRef _p. The treee. synir ee in
si gn_p is constructed using the symbolic producti@ui _s,
sub_s, mul _s, andi dRef Tr ans_s shown in Figure 8. prod synT t::Type ::= pt::Type

{ t.conpType = pt; }

syn attr coefs :: [Exp] @Exp ;
syn attr ncoefs :: Integer @Exp ;

grammar RlLperturb ; inport sinple ;
prod sign_s s::Stm::=Ilhs::Exp e::Exp
prod rlpT t::Type ::= pt::Type { s.pp =...;
{ t.subProd = sub_p; t.signProd = sign_p; forwards to bl ock( enptyDcl (), st nCons(
t.mul Prod = nul _p; t.conpType = pt; } assign(l hs, head(e.coefs)), rest));
local rest :: Stm;
syn attr syniree :: Expr @ Expr ; rest = nkRest( tail(e.coefs), e.ncoefs,
prod sign_p s::Stm::=1lhs::Exp e::Exp | hs, e.type.conpType. zeroTree ); }
{ s.pp = lhs.pp ++ "= sign(" ++ e.pp ++ ");" ;
forwards to sign_s (lhs, e.synlree) ; } prod sub_s e::Exp ::=|::Exp r::Exp
{ epp =...; e.type = |.type ;
prod sub_p e::Exp ::=1::Exp r::Exp e.ncoefs = max (I.ncoefs, r.ncoefs) ;
{ eepp = ...; e.type = |.type ; e.coefs = subF(!l.type.compType. subProd,
e.symiree = sub_s(!|.synlree, r.synTree) ; } |.coefs,r.coefs ); }
prod mul _p e::Exp ::=1::Exp r::Exp prod mul _s e::Exp ::=1::Exp r::Exp
{ eepp = ...; e.type = |l.type ; { epp=...; e.type = |.type ;
e.synree = nmul _s(l.synlree, r.synree) ; } e.ncoefs = |.ncoefs + r.ncoefs ;
e.coefs = mulF ( |.type. conpType. addPr od,
prod idRef _p e::Exp ::=1i::1d | .type. conpType. mul Prod, |.coefs, r.coefs);}
{ e.pp = i.lex; e.type =lookup(i.lex, e.env)
e.synifree = idRef Trans_s(i,e.type.conpType);} prod idRefTrans_s
e:'Exp ::=1i::1d ct::TypeExpr
) . ) ) ) { epp=...; e.type = synil (ct);
Fig. 7. The randomized linear perturbation type and opefatoductions. e.ncoefs = 1:
e.coefs = [ (ct.idRefProd)(i),

From the symbolic expression, we could apply the distribu- (ct.i dRef Prod) (tern{ld,"E "++i.lex)) ]:}
tive laws (a + b) x ¢ = (axc) 4+ (b*c) anda * (b+¢) =
(axb)+ (ax*c) to collect the like-powee coefficients. Instead Fig. 8. The symbolic type and operator productions.
of applying these rules directly, each node in the symbodie t
is decorated by two attributes that keep track of the coefitsi ~ The definition of coef s and ncoef s by the produc-
of the polynomial over. The first iscoef s and is a list of tions sub_s, mul _s, and i dRef Tr ans_s is straight for-



ward and such things are common in higher-order AGs. B. Exact precision integers

i dRef Tr ans._s where we map, for example,t0 v+c: Ex*ct o implement exact precision integers in our framework
e (wherect is the component type of the perturbation typelye follow the pattern established above for symbolic per-
we setncoefs to 1 and define the listoefs using the ymation types but due to space limitations fewer actual
identifier reference productiondRef Pr od and the terminal specification can be shown. A grammeaxact defines a new
creation functiont erm By passing the component type tQyne productionexact T that has no parameters and defines
I dRef Trans_s as the parametest it is used to define the e type.specific production attributesibPr od, nul Pr od,
type attribute and used further in the productiossb-s i gnprod to be those shown in Figure 9. This allows
and rrull - to get the pre-speuﬂc subtraction, addition, ang, operator overloading of-, *, and sign as was done
multiplication productions from the component type. Thus, ri perturb. The si gn_e production is responsible for
the type specific productions are used to specify the CaStry jjiging the the expression in Figure 2 and forwarding to
that si gn.s forwards to and are used in the expressions {fat tree. This tree is specified in the definition ifgn_e

coef s shown in (3) above. This is allows different types, sucfy, Figure 9 where it uses the attributépTr ee, maxErr,
as integers or exact-precision integers to be the compongpleTr ee of the child expressioe.

type of perturbation type. The productions that specifys¢he

types need only define the appropriate attribusashfr od, prod sign e s::Stm::= Il hs::Exp e::Exp
mul Pr od, etc). We do not provide definitions of the helpef forwards to block ( ... e.fpTree ...
functionssubF and nul F that computecoef s; the imple- ... e.maxBrr ... e.efree ... )}
mentation is glmple_ and more verbose thg_n interesting. rod sub_e e Exp ::= |::Exp r::Exp

1) Composing Simple and RLperturtGiven the above { e naxBits = 1 + max(l.maxBits,r.maxBits);
specification of the grammaLpert ur b we can compose it e.maxErr = if e.maxBits <= 53 then 0 el se
with the generic sign productions in gramneay and grammar |.maxErr + r.maxErr + exp(2, e. maxBits-53);
si npl e to create the new extended languajerpl eRLP. e.fpTree = sub_d(l.fpTree r.fpTree); }
This is done by the simple Silver specification given below:Iorool Ml _e e :Exp ::= |:1Exp ri:Exp

ranmar si | eRLP : { e.emaxBits = |.maxBits + r.naxBits;

.g t si WF . | udi t . e.maxErr = if e.maxBits <= 53 then 0

!r‘rpor 5'”P e 'n_c udi ng syn.ax ! else | .maxErr = r.maxBits +

i mport cg including syntax ; r.mexErr * |.maxBits +

i mport RLperturb including syntax ; exp(2, e. maxBi ts-53) ;

. L . e.fpTree = mul _d(I|.fpTree,r.fpTree); }
This grammar specification imports the definitions (produc-

tions, attribute, etc.) defined in the named grammars along
with their concrete syntax specifications (which were not

shown). Silver combines these grammar to create the grammafye can statically analyze expressions undémgn e to

specifying the new _exten(_jed I_anguage. compute the maximum erropaxErr, that is possible if
Fo_r_prqgrams written in this ext_ended language the Afgq expression was computed using floating-point types. We
specification must provide a translation to a target langubg ., 4150 compute the maximum number of bitaxBi t s

it Java byte-codes or C++. To do this, attributes that Spebé ¢ are needed to precisely store any intermediate vahues i
translation of the host language are written for the pradust g,y a5 expression. In our framework, this static analysis i
in si npl e that define one of theost attributes (0St Stm iy plemented by the feature designer by specifying atteibut
host Exp, et_c). For C++, the string valu_ed atFrlbuter ans  gefinitions on the overloading productions. Some of these ar
may be defined. Thus, programs written in the extendeflyn in Figure 9. The error valugnaxEr in the condition

language must in essence be first translated to the h@SEiqre 2, determines if the exact precision expressi@use

language and from there the translation to byte-codes or Cistye ayajuated. These are the same definitions used in LN [3]

is performed using traditional AG techniques. Forwardiag implemented in the attribute grammar framewdrk.
the means for realizing this translation. Wherés the root of In LN, exact precision numbers are represented as an
_the AST of th_e program, Fh_e value ‘?f hos_t Root. ctans havajuated sum of hardware supported numbers. Thus, an
is the translation of the original treefirst to its host language exact precision integer value is represented asy + a1 +
tree representatiom. host Root and then to C++. On a + a,, wherea; = a/ x 2" andd/, is an integral and- is

. . . cee m 7 — Wy i
tree node created byi gn with a perturbed-type expressiony,e yredefined radix, the number of bits that used to store
the host St mattribute is computed fosi gn by forwarding eacha/2 The size of this summn, is statically computed
to si gn_p which computes the symbolic sign tree rooted !
by productionsi gn_s which then forwards to thél ock 153 is used because there are 53 bits of precision in douhtésue floating
production which defines itkost St mattribute as shown in point numbers, the chosen hardware supported numeric type.

Figure 3. The block may contain extension constructs and Terms in this sum may, after a number operations, have morertfits
and thus must baormalizedwhen the number of bits approaches the number

their host language translation is defined similarly. adimy of available bits, 53 in LN’s implementation. The required mafization
to what host language construct they forward to. operations are inserted at statically-computed points énetkpression.

Fig. 9. Exact precision integer productions.



as the attributecNum (not shown). We implement this sumto use several geometric language extensions in the same
as an array of statically known size. For two such numbesogram. It is also important that the code generated by
a=ag+...+a,, andb = by+...+b,, wheren > m, the sum our language extensions is efficient. Here we briefly report
c=a+bis defined agy = ag + by, c1 = a1 + b1, ...c,, = some performance measurements that compare our extensible
am + bmy Cm+1 = bm+1, -..cn = b,. The multiplication language framework to existing techniques. However, theze
¢ = axb is similarly defined as;, = Zo<].<m a; * by_;. no existing tools that allow one to easily write programst tha
In the implementation, each; is an array access with ause thecombinationof computational geometry techniques
constant index expression. In our framework, we implemetitat we have demonstrated above.
this sum and product by defining a code fragment, usinginstead we have attempted to demonstrate that the C++ code
host language constructs, that implements the sequencegeferated by our extensible compiler framework is fastan th
assignments indicated by the above expressions. It is jusequivalent code constructed using the non-native numnierica
series of assignment statements that are generated byinmroltypes provided with CGAL. This prevents us from making
the loops suggested by the above definitions of addition aady comparisons of the performance of perturbed expression
multiplication. These code fragments are stored in thedrighsince CGAL only provides perturbed primitives for a fixed
order attributeeTr ee and is defined on all the exact-typeprecision type. We settled on measuring the speed of ex#cuti
productions. It is used in Figure 9 in the expression th&ir expressions over CGAL's non-native numerical types,
si gn_e forwards to as the code that efficiently implementscluding the high-performance CORE::Expr type.
the exact precision integers using host language construct We tested our approach by running tests of 1,000,000
We also need to compute the floating point implementati@xecutions of the in-circle primitive, implemented as ansid-
of the expression; we define a higher-order attridfytdr ee  determinant expression, using our exact integer extereion
that is used to build the tree of this expression. @ _e, various CGAL types. We have made every effort to ensure that
for example, this is defined using the double sized floatirige CGAL types are not disadvantaged in our test application
point multiplication productiornmul _d. We've left out many including (i) configuring in-lining and pass-by-referente
of the details since they are simply an implementation of thoduce the fastest results for the CGAL types, (ii) doing
analyses and transformation given in [3] and they do not addall allocation and initialization of input values outsidé aur
the understanding of how they can be implemented in languagaing loop, (iii) running in batches of 10,000 cases to keep
extensions. The key point is that they can be specified by theemory overhead low, and (iv) performing a code review with
feature designer by writing attribute definitions. colleagues to look for inefficiencies in the test applicatio
To extend Simple with exact precision integers, one nee@air generated code consistently ran faster than the CGAL
only write a Silver specification like the one given abovaumeric types. The measured speed-up over Rt was
for si mpl eRLP. To create a specification of an extended.81, over Gmpz (GNU MP Integers) was 10.00, over Gmpq
language that uses both extensions, one needs only add(RU MP Rationals) was 23.47, and over CORE::Expr was
extra statementi‘nport exact include syntax;”to 3.51. We attribute this speedup to (i) the avoidance of any
the si npl eRLP Silver specification. This composition ofallocation/construction calls in our code and (i) the epibf
language features is carried out by the Silver attributengrathe optimizer to work effectively on our (simple, repetijv
mar tools. When Simple is extended with batkact and and monolithic) generated code.
RLperturb one can use symbolic perturbation and exact We conclude that in addition to providing unique com-
precision numbers together by creating values of the typatibility with perturbation and other potential extemsp
ri pT(exact T()) . This is possible through the use of opereur implementation of exact arithmetic provides a subshnt
ator overloading, forwarding, and the fact that the trame# performance improvements compared to object-based tech-
tions performed byRLper t ur b always query the componentniques. We believe the factors that benefit our exact aritisme
type for the type specific arithmetic operations (produdjdo implementation are advantageous to symbolic perturbation
use in its transformations. (This last point is seen in FBgim  The performance improvements amaly indicative of what is
the use of thesubPr od, subPr od, andnul Pr od attributes possible with the extensions in this domain. While the result
of the component type attributsonpType.) may vary when the extensions are composed with a fully
This implementation of exact precision numbers as afeveloped extensible C or Java we expect similar results.
extension to Simple does not restrict the programmer from
creating exact-precision type variables and assigningtgod
values to such variables inside of loops. Doing so would We have shown how two language extensions can be made
invalidate the analysis done in Figure 9 to compoexEr r  to work closely together in the same host language. These
andnmaxBi t s. In a more complete implementation of the hostxtensions both perform sophisticated semantic analysés a
language and the extension this restriction would need to peogram transformations. This illustrates the power offaitte
enforced. Given the analysis that can be supported this dggammar-based extensible compiler frameworks as efectiv
not present an exceedingly difficult challenge. generative programming tools.
1) Performance::One of our goals has been to demonstrate Feature designers and programmers play distinct roles in
that our framework for extensible compilers makes it eagyur approach. Programmers are not expected to be knowl-

V. CONCLUSION



edgeable about language implementation techniques suchA@ssystem. A version of a significant subset of Java has also
attribute grammars. They only need to identify the languadeing developed in which we have explored an extension that
extensions that they want to use. The framework tools cre@mbeds SQL into Java [22] and performs static syntax and
the specification for the extended language from the at&ibuype-checking of SQL queries. A more foundational aspect of
grammar specifications of the language extensions and the current work includes understanding the precise ciumdit
host language. Feature designers, however, are expectedirtder which language extensions can be safely composed
have enough of an understanding of language processingata codifying these conditions as a set of analyses over the
be able to implement their language extensions as attribdt& specifications of language extensions. (Silver curyentl
grammar fragments. Attribute grammars provide a hightlevperforms an number of sanity checks and the well-definedness
declarative language for specifying new language contstrucanalysis [10] to ensure that in an extended language specifi-
static analyses, and code transformations (via forwajding cation all needed attributes have exactly one definition.)
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