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Abstract— This paper demonstrates how two different sets of
powerful domain specific language features can be specified and
deployed as composable language extensions. These extensions in-
corporate analyses and transformations that simplify the process
of writing efficient and robust computational geometry programs
and can be automatically added to a host language and used
simultaneously. This is not possible in domain-specific language
and library-based implementations of these features.

One extension relies on characteristics of geometric algorithms
to implement efficient exact-precision integers; the other employs
a technique that symbolically perturbs geometric coordinates to
safely and automatically handle degeneracies in the input data.
These language extensions are implemented in an extensible lan-
guage framework based on higher-order attribute grammars and
forwarding. Attribute evaluation on the new language extension
constructs is used to implement the static analysis and code
transformations that enable the generation of efficient code.

I. I NTRODUCTION

Domain specific languages (DSLs) [1] can simplify pro-
gramming because they have features tailored to the specific
problem domain of the task at hand. The features typically
include (i) language constructs such as new data types and
high-level operations on values of those types,(ii) domain-
specific optimizations that ensure that efficient code can be
generated, and(iii) domain specific analyses that guide these
optimizations and check for their correct use. These constructs
allow one to specify the problem solution at the (higher)
level of abstraction of the problem instead of encoding the
solution at the lower level of abstraction of a general purpose
programming language. This allows one to more quickly
specify a solution and also helps one avoid errors. Because the
solution is specified in terms specific to the domain, domain
specific optimizations and program analyses can be employed.

However, DSLs suffer from some practical problems that
inhibit their widespread use [1]. First, while rich in domain
specific features these languages typically lack many of the
features found in modern full-featured languages such as
Java (classes, packages, foreign-function interfaces) orML
(higher-order functions and modules). The useful data types,
analyses and transformations of a DSL are often trapped in a
small general purpose imperative or functional programming
language that adds little to the problem solving process.
Second, it is not uncommon for a particular problem to have
aspects from different domains. These domains are typically
supported by different domain specific languages and it is

often difficult to make use of multiple DSLs. Even when
they can be used together the level of granularity at which
constructs from the different languages can be composed is
too coarse – each program source file contains constructs from
only one language. The issue also arises for single-domain
problems. In the case study presented in this paper we see
that in computational geometry one often wants to make use of
static analyses and transformations from separate DSLs and/or
libraries in the same program and even in the same expression.
The basic problem is that both general purpose and domain-
specific languages often lack the right collection of features
for the problem at hand. Language developers decide what
features are available in the language - once fixed, languages
are not easily adapted to particular problems.

Libraries provide another way to add domain-specific func-
tionality to a language; here classes, methods, functions,and
procedures represent abstractions in the domain. Their primary
advantage is that one can use different libraries addressing
different domains in the same program. But with libraries one
cannot add new syntax, semantic analysis or optimizations.
The exception is templates in C++; despite limitations they
can sometimes be used to generate efficient code.

Both libraries and DSLs provide developers with abstrac-
tions 5 for their programs that match the domain of their
problems. Elements of the solutions design are often directly
represented by the domain-specific abstractions of the DSL
or library. Programs with such abstractions often easier to
adapt when changes must be made since the design elements
were not lost in the original program because they had to be
translated to lower-level programming language constructs.

The primary problem with domain specific languages is the
abstractions provided by different DSLs cannot be used in the
same program. Although abstractions provided by librariescan
be, libraries cannot provide the new syntactic constructs and
many of the analyses and optimizations that are possible in
DSLs. Extensible languages and compilers offer a potential
solution to these problems in that they offer a means to let
the programmer decide what features to include in a language
so that the feature set closely matches the problem at hand.
Programmers can chose the appropriate general purpose and
domain-specific features. In the approach we are exploring,
an extensible “host” language can be extended, under the
guidance of the programmer, with the unique combination lan-



guage extensions that support different domains that definethe
domain specific language features she desires. This extended
language raises the level of abstraction to that of the problem
at hand. When the host language is a full-featured language
like Java or ML, the programmer also has access to the
modern general-purpose features she expects. This language
acts as a host for the desired domain specific features. The
extended language thus has both the general purpose and
domain specific features desired by the programmer.

The case study presented here investigates two language
extensions applicable to problems in the domain of computa-
tional geometry. The first extension implements a technique
called symbolic perturbation that removes degeneracies from
the input data making it considerably easier to write robust
geometric programs. The best implementation of these tech-
niques are implemented in the CGAL computational geometry
library [2]. The second extension implements exact precision
integers - due to a characteristic of geometric algorithms
certain optimizations can be made that are not applicable in
general purpose applications. The optimizations here come
from a DSL called LN [3]. Both make writing efficient
and robust programs considerably easier. But one cannot
write a program that combines the perturbation techniques of
CGAL with the efficient exact-precision integers of LN. Thus,
programmers for geometric applications have a very limited
set of combinations of perturbation techniques and numeric
representations to choose from. Most commonly a library like
CGAL provides a limited set of pre-coded choices.

Our primary goal in implementing computational geometry
abstractions as language extensions is to validate that an ex-
tensible compiler framework can support the types of analysis
and transformational techniques found in DSLs in such a way
that different extensions, written by different language features
designers, can be combined by the programmer to create a
custom language with the desired set of language features.

For extensible compiler frameworks to have wide appeal,
they must provide a fully developed host language and a
rich set of language features implemented as extensions. The
work presented here reports our results of developing two
sophisticated language extensions and showing that they can
be used together in the same program (in this case, in the same
geometric expression). That said, the host language used here
is a very simple language as our focus is on validating that
language extensions can used together in the same program.

In Section II we provide a brief introduction to the problems
encountered in writing geometric programs, some solutionsto
these problems. Section III describes our extensible compiler
framework based on attribute grammars and defines a simple
imperative host language. Section IV provides the specifica-
tions of the CG language extensions and explains how they can
be used together. This provides an example of how different
language extensions that provide the new syntax, analyses,
and optimizations found in DSLs can be used together; thus
overcoming the aforementioned problems with DSL-based and
library-based implementations of domain-specific abstractions.
Section V concludes and discusses related and future work.

II. COMPUTATIONAL GEOMETRY

In this paper we demonstrate the utility of extensible lan-
guages and domain specific language extensions in the domain
of computational geometry (CG). We show how they can make
it significantly easier to implement robust geometric programs.
This will also show the fine-level of granularity at which dif-
ferent language extensions can interact. Below we present two
language extensions; each addresses a fundamental problemin
developing robust implementations of geometric algorithms.
These are based on existing domain specific languages [3] and
libraries [2] [4] that cannot be used together, even though the
problems they address both occur in many algorithms. Thus,
a programmer can only use one because there is no common
framework on which these separately developed solutions can
be based. Extensible host languages provide such a framework,
making the use of both extensions possible.

There are two fundamental difficulties in developing robust
implementations of geometric algorithms that these extensions
help to solve. First, the text-book algorithms typically assume
that exact-precision real numbers and operations are available.
Simply using machine-supported floating point numbers in-
stead can introduce round-off errors that adversely affectthe
behavior of the algorithm, but using general purpose exact
precision numbers can be too slow. Similarly, the correct
operation of textbook algorithms may require the application
of a technique called symbolic perturbation [4] that masks
degeneracies in the data. For example, the randomized incre-
mental trapezoidal decomposition algorithm (see [5, Chapter
6]) depends on the assumption that each trapezoid has at most
four adjacent trapezoids, a condition that can be guaranteed
by symbolic perturbation. Without symbolic perturbation,each
trapezoid may have an arbitrary number of adjacent trapezoids.
Masking degeneracies simplifies the algorithm and its data
structures as well as its proof of its correctness. We present
language extensions to address each of these two problems.

Many CG algorithms are combinatorial algorithms that do
not create any new geometric entities but instead perform
some query over the input geometric entities. A convex-hull
algorithm for example tells which points belong to the convex
hull of a given set of input points. It is common practice
in CG to base such algorithms on ageometric primitives.
These are expressions that return a qualitative, not quantitative,
result about some relationship between geometric objects.For
example, thein-circle primitive tests if a given point lies
inside, outside, or exactly on, a given circle. Theleft-right-
side primitive tests whether a given point is to the left, the
right, or directly on a vertical line. Primitives are typically
implemented by computing the sign of an expression as either
1, -1, or 0 indicating if the expression is, respectively, greater
than, less than, or equal to zero. These values correspond tothe
three possible results of the primitives described above. It is
only in these primitives where geometric entities are compared
or examined. Thus the problems of limited-precision and data
degeneracies can be addressed in the primitives and the rest
of the algorithm remains the same.



The two sets of domain specific features that we implement
as language extensions have previous implementations that
are incompatible. LN [3] implements efficient exact-precision
integers as a DSL that statically analyzes geometric primitives
in order to generate efficient C++ implementations. The gen-
erated code is then called by the main algorithm. CGAL [2] is
a C++ template library that provides hand-coded implemen-
tations of standard geometric primitives for several symbolic
perturbation schemes. These are implemented as C++ tem-
plates that can be instantiated with the programmer’s numeric
type of choice, including exact-precision types. However,the
limitations of C++ template meta-programming prevent the
application of the important analyses and optimizations ofLN.
Even though both LN and CGAL are based on C++ their
respective efficient implementations cannot be used together.

Extensible languages offer a solution to this problem. Each
symbolic perturbation scheme and exact-precision numerical
implementation can be implemented as a modular, composable
language extension that encapsulates the transformationsand
analyses that are used to generate the implementation from a
programmer provided primitive expression. Below we describe
in more detail an efficient exact-precision integer implemen-
tation and a symbolic perturbation scheme. In Section IV,
we will illustrate how the transformations sketched below are
implemented as language extensions.

A. Degeneracies in input data

As mentioned above, geometric algorithms can be signif-
icantly simplified if the input data are free of degeneracies.
A common degeneracy occurs when geometric entities have
the samex-coordinate. This may cause the left-right-side
primitive to indicate that a point lies exactly on a verticalline.
When this primitive is implemented by computing the sign
of an expression, thesign operator returns 0. Simply stated,
when we take thesign of an expression we do not want it
to return 0 as this indicates the presence of a degeneracy.
Consistently treating equality (0) as the same as greater than
(1) or less than (-1) does not solve the problem and can lead
to non-termination or incorrect results in some algorithms[6].
The domain experts in computational geometry have devised
a technique calledsymbolic perturbation[7][4][6] that is
used to perturb the coordinates by symbolically adding an
infinitesimally smallperturbation valueto coordinates so that
these degenerate cases do not occur or occur extremely rarely,
and then can be detected.

In the randomized linear perturbationscheme [4] imple-
mented as a language extension here, when a programmer
writes, for example,r = sign(z − x ∗ y), we want this to be
transparently changed, through the language extension defined
transformations, into the code in Figure 1. In this scheme, the
perturbation value for a coordinatex is Ex ∗s e whereEx is a
random value specific tox ande is a symbolic infinitesimally
small constant value. We subscript symbolic operations with
s to indicate that these operations are symbolic and are not
computed. When the sign of an expression is computed, the
sign of the original coordinates is computed first; if it is 0,the

{ r = sign(z − x ∗ y);
if (r == 0) then {

r = sign(Ez − (x ∗ Ey + y ∗ Ex));
if (r == 0) then {

r = sign(0 − Ex ∗ Ey);
if (r == 0) then

halt (”perturbation error”); } } }

Fig. 1. The implementation of perturbation ofr = sign(z − x ∗ y).

sign of the perturbation values are computed. To achieve this,
r = sign(z − x ∗ y) initially transforms to

r = signs( (z+sEz∗se)−s(x+sEx∗se)∗s(y+sEy∗se) ) (1)

Next this expression is transformed so that thesign compu-
tations in Figure 1 can be made. We convert the coordinate-
valued expression (the expression under thesigns operator)
to a polynomial overe in which the coefficients are com-
putable (non-symbolic) expressions by essentially applying
the distributive laws(a + b) ∗ c ⇒ (a ∗ c) + (b ∗ c) and
a∗(b+c) ⇒ (a∗b)+(a∗c) as rewrite rules and then collecting
like-powere coefficients. Expression (1) thus becomes

r = signs( (z − x ∗ y) ∗s e0 (2)

+s (Ez − (x ∗ Ey + y ∗ Ex)) ∗s e1

+s (0 − Ex ∗ Ey) ∗s e2 )

Finally, becausee is infinitesimally small, we can convert
signs to an expression that implements the symbolicsigns

operation by computing the non-symbolic sign of the coeffi-
cients of the polynomial in increasing order of the associated
powers ofe. This final expression is shown in Figure 1. The
original expression is rewritten without symbolic operations
so that the evaluation is possible and the perturbation values
are not computed unless they are needed. This optimization
is crucial for good performance of symbolic perturbation.
Note that this perturbation scheme does not guarantee that
all degeneracies are removed and thus halts with an error
message in these rare cases. Other perturbation schemes, like
Simulation of Simplicity [7], can make this guarantee and can
also be implemented as language extensions.

B. Efficient exact-precision integers

It is a common practice in CG to use exact-precision inte-
gers to represent the original floating point representations of
the input data. Representations of the exact-precision integers
specified here include the original double-word floating point
representation and the array-based exact-precision representa-
tion. This is possible since we assume a fixed lower bound
on the precision of the floating point values that allow an
accurate conversion from doubles to exact integers. Exact
precision types are used in the geometric primitives where
the bit length of precise integers needed to store intermediate
results will often exceed that supported by the hardware.
Because exact-precision types are used only in expressionsand
not stored in variables whose value may be changed inside



{ double fp; exact ep; r = 0;
fp = zd − xd ∗ yd;
if ( fp < 〈maxErr〉 ∧ fp > −〈maxErr〉 ) then {

// compute exact precision version
ep = ... ze ... ye ... xe ... ;
if (ep < 0) then r = −1;
if (ep > 0) then r = 1; }

else{
if (fp < 0) then r = −1;
if (fp > 0) then r = 1; } }

Fig. 2. The implementation of exact-precision integerr = sign(z −x ∗ y).

loops or branching statements, a number of static analyses
are possible. The number of bits that will be required to
store the exact-precision value can be statically determined as
can an upper bound on the maximum error that would arise
if the primitive expression was implemented using hardware
supported floating point numbers.

In our language extension implementation of the LN [3]
analyses and transformations the exampler = sign(z −
x ∗ y) is transformed into the code in Figure 2. In LN and
our extension, the expression is computed using the original
floating point representations. This shown in line 2 of the
figure where the floating point values are represented variables
subscripted byd. LN and the extension compute, at compile
time, the maximum error value (〈maxErr〉) of the floating point
expression. If the magnitude of the resulting value is larger that
the error value, then the sign of this value can be returned
as the sign of the expression. If it is not, the expression is
computed using exact precision integers. Since the maximum
bit length required for exact-precision integer evaluation is
known at compile time much of the bookkeeping overhead
of calling subroutines and the use of loops to handle arbitrary
bit lengths is not needed. All the loops can be unrolled and
the subroutines in-lined to generate a fast implementation
of the exact precision expression. In our implementation, in
Section IV, exact precision integers are introduced as a new
type and transformations over expressions of that type.

C. Using both exact integers and symbolic perturbation:

An advantage of our approach to extensible languages is
that these extensions and their associated transformations can
be used together so that one can write geometric primitives
whose intermediate results are exact-precision integers that
will by symbolically perturbed in the case of any degeneracies,
thus addressing both fundamental problems mentioned above.
The final implementation of such a primitive will look like
the expression in Figure 1 in which eachsign expression is
replaced by an expression similar to the one in Figure 2. This
demonstrates the fine-grained level of interaction of language
extensions that allows programmers to take advantage of do-
main specific features specified by different feature designers.

III. E XTENSIBLE COMPILER FRAMEWORK

Attribute grammars [8] provide the foundation of our exten-
sible compiler framework. Language constructs are specified
by productions and their explicit semantics and translations
can be defined by attribute definitions. Two extensions to
AGs are used in defining extensible languages:higher-order
attributes [9] that allow abstract syntax trees (ASTs) to be
attribute values andforwarding [10], a technique for providing
default values for attributes that is similar to macro expansion.

In our framework for building extensible compilers, the
host language is defined by an AG. Language extensions are
specified as AG fragments that contain productions defining
new language constructs and attribute definitions for these
productions and possibly those in the host language. The
activity of creating an extended language specification entails
combining all the productions and attribute definitions in the
host language and language extension specifications. This
combined specification defines the extended language. This
task is performed by the framework tools and maintains the
the distinction between the feature designer, who implements
a language construct, and the programmer, who builds an
extended language by selecting a host language and a set of
appropriate language extensions.

A. The Simple host language

Figures 3, 4, and 5 show some of the AG for the abstract
syntax of a very simple imperative host language called
Simple. This AG is written in (an abbreviated version of the
syntax of) Silver, an AG specification language. The concrete
syntax of Simple and the extensions described below is not
shown; the current implementation relies on traditional scanner
and parser generators like lex and yacc.

Figure 3 first defines 5 nonterminals for the root of the AST
(Root), statements (Stm), declarations (Dcl), expressions
(Exp), and type expressions (Typ). Terminal symbols and
their defining regular expressions for identifiers and integer
literals are also shown. Next, a synthesized attributepp is
defined to be of type string (String) and to decorate (@)
all the nonterminals. Values for these attributes are defined
by attribute definition equations that are associated with each
production in the abstract syntax grammar; attribute values are
computed lazily, that is, on demand. An inherited environment
attribute env is a list of pairs of strings andTyp trees
that is used by identifier reference productions to look up
the type of identifiers. The attributedefs is used to collect
declarations fromDcls. Their definitions are as expected
and not shown. A collection ofhost attributes (hostRoot,
hostStm, hostDcl, hostExp, andhostTyp) are defined
(though not all shown) to be of the indicated type and are
used in translating programs written in an extended language
to programs written only in the host language. These attributes
are defined on the the type-appropriate productions using
the same pattern that is given for productionsassign and
block. Some of the remaining statement and declaration
productions are shown but their attribute definitions are elided
as they can be inferred from the other examples. Simple



expressions and types are discussed in the following sections
on forwarding (Section III-B) and production-valued attributes
(Section III-C).

grammar simple ;
nonterm Root, Stm, Dcl, Exp, Typ ;
term Id /[a-zA-Z] ([0-9] | [a-zA-Z] )* / ;
term IntLit / [0-9]+ / ;

syn attr pp :: String @ Root, Stm,
Dcl, Exp, Typ;

syn attr defs :: [(String,Typ)] @ Dcl ;
inh attr env :: [(String,Typ)] @ Stm,Exp;

syn attr hostStm :: Stm @ Stm ;
syn attr hostExp :: Exp @ Exp ;
syn attr hostTyp :: Typ @ Typ ;
...
prod root r::Root ::= s::Stm
prod block b::Stm ::= d::Dcl s::Stm
{ b.pp = "{" ++ d.pp ++ s.pp ++ "}" ;
b.hostSmt = block(d.hostDcl, s.hostStm); }

prod assign a::Stm ::= l::Exp r::Exp
{ a.pp = l.pp ++ " = " ++ r.pp ++ ";" ;
a.hostStm = assign(l.hostExp,r.hostExp); }

prod ift s::Stm ::= c::Exp t::Stmt
prod ifte s::Stm ::= c::Exp t::Stmt e:Stmt
prod while w::Stm ::= c::Exp b::Stmt
prod halt h::Stm ::= e::Exp

prod dcl d::Dcl ::= v::Id t::Type
{ d.defs = [ (v.lex, t) ] ; }

prod dclSeq dd::Dcl ::= d1::Dcl d2::Dcl {...}
prod stmSeq ss::Stm ::= s1::Stm s2::Stm {...}

Fig. 3. Partial AG specification of simple imperative host language.

B. Forwarding in attribute grammars

Forwarding [10] is an extension to AGs that allows lan-
guages to be specified in a highly modular manner. Feature
designers will not know all of the attributes that will occur
in the final specification of the extended language created
by the programmer since programmer chosen extensions may
introduce new attributes on host language productions. But,
since language extensions need to work closely together new
constructs introduced as productions in one extension must
provide definitions for attributes introduced in a different ex-
tension. Thus, a construct specified as an AG production must
be able toimplicitly specify its value for these attributes. (It
explicitly specifies the semantics that are of particular concern
to it using traditional attribute definitions.) Forwardingallows
the feature designer to implicitly define the semantics for a
new language construct by specifying a means to construct
a semantically equivalentconstruct. If the new construct is
queried for an attribute that it does not explicitly define it
“forwards” that query to the semantically equivalent construct
it specifies. In AG terms, a production defines a distinguished
attributed AST, indicated by theforwards to syntax, that

provides default values for synthesized attributes that are not
explicitly defined.

Some examples in Figure 4 will help to clarify. This figure
specifies Simple expressions and defines, in the order given,
conjunction, negation, disjunction, subtraction, multiplication,
identifier reference and integer literal expressions. The pro-
duction or makes use of de Morgan’s laws to build the
semantically equivalent expression composed of uses ofnot
andand productions, that isa ∨ b forwards to¬(¬a ∧ ¬b).
When an AST node created byor is queried for itspp
attribute, which it explicitly defines, the defined value is
returned. If it is queried for the value itstype attribute, that
query is forwarded to theforwards to construct and its
value is returned.

Because the forwards-to tree will require inherited at-
tributes, these are automatically copied from the forwarding-
node (in this example the one created byor) unless they are
explicitly defined. Note that in some cases the forwards-to
node may also forward the query; we will eventually find
a value for the attribute since language extensions forward
(directly or indirectly) to constructs in the host language.
Consider another attribute that is not shown in these speci-
fications;ctrans, an attribute which specifies a constructs
straightforward translation to C++. Defining this attribute on
and andnot but not onor results in the C++ translation of
or being just the C++ translation of the equivalent and/not
construct it forwards to. Forwarding is similar to macro
expansion in that both reuse the semantics of existing language
constructs, but unlike macros, forwarding productions also
define semantics, as attributes, that can generate proper error
messages, something traditional macro systems cannot do.

syn attr type :: Type @ Exp ;

prod and e::Exp ::= l::Exp r::Exp {...}
prod not e::Exp ::= n::Exp {...}
prod or e::Exp ::= l::Exp r::Exp
{ e.pp = l.pp ++ "||" ++ r.pp ;
forwards to not(and(not(l),not(r))) ; }

prod sub e::Exp ::= l::Exp r::Exp
{ e.pp = ...; e.type = l.type ;
forwards to l.type.subProd (l,r); }

prod mul e::Exp ::= l::Exp r::Exp
{ e.pp = ...; e.type = l.type ;
forwards to l.type.mulProd (l,r); }

prod idRef e::Expr ::= id::Id
{ e.pp = ...; e.type = lookup(id.lex, e.env);
forwards to e.type.idRefProd (id) ; }

prod intLit e::Expr ::= i::IntLit {...}

Fig. 4. AG specification of Simple expressions.

C. Production-valued attributes

The productionssub, mul, andidRef in Figure 4 use for-
warding and production-valued attributes. Production-valued



attributes [10] contain productions build new trees. In the
case ofsub, the expressionl.type.subProd evaluates
to a production that defines subtraction for the type of the
expressionl. For example, if the type ofl is integer, then its
attributetype will be the treeintT() defined by the pro-
ductionintT in Figure 5. SinceintT defines itssubProd
attribute to besubInt, (the subtraction production specific
to the integer type), thensubInt is used to build the tree
to which this instance ofsub will forward to. In another
instance where the type ofl is a different type, then that
type will define the type-specific production to use. This is
how operator overloadingis implemented in Simple. We will
use this in the language extensions when we introduce new
types for exact-precision integers and symbolic perturbation
to overload subtraction and other operations. We also overload
theidRef production so that identifier references forward to
type-specific productions as well. This will be used in the
perturbation extension to implement the transformation ofx

to x +s Ex ∗s e for the exampler = sign(z − x ∗ y) from
Section II-A.

Note that in this simple host language there is no type co-
ercion. Also, there are no type names, so the type information
on Typ trees does not depend on it environment. Thus, there
is no harm in copying them to new locations in the AST as
the value oftype attributes.

syn attr subProd :: Prod (Exp ::= Exp Exp) ;
syn attr mulProd :: Prod (Exp ::= Exp Exp) ;
syn attr idRefProd :: Prod (Exp ::= Id) ;
syn attr zeroTree :: Exp ;

subProd, mulProd, idRefProd, zeroTree @ Type;

prod intT t::Type ::=
{ t.subProd = subInt ; t.mulProd = mulInt ;
t.idRefProd = idRefInt ;
t.zeroTree = intLit(term(IntLit,"0")) ; }

prod floatT t::Type ::= { ... }
prod arrayT t::Type ::= ct::Type
{ t.compType = ct ; }
prod subInt e::Exp ::= l::Exp r::Exp
{ e.pp = ... ; e.type = intT(); }
prod mulInt e::Exp ::= l::Exp r::Exp
{ e.pp = ... ; e.type = intT(); }

Fig. 5. AG specification of Simple types and type-specific productions.

We have implemented this simple host language using
Silver, an attribute grammar specification language we have
built for specifying extensible languages. The Silver compiler
translates Silver specifications to Haskell which is used as
the implementation language. The Haskell implementation
performs the attribute evaluation. The grammar specifications
above comprise thesimple grammar module. It will be
imported by language extensions that extend Simple in the
following sections. Silver is freely available on the internet at
www.melt.cs.umn.edu.

IV. COMPUTATIONAL GEOMETRY LANGUAGE EXTENSIONS

To add exact-precision integers as a language extension we
specify a new typeexactT and new operations (productions)
on values of this type. To add symbolic perturbation we specify
a new type constructor (production)rlpT that perturbs a
specified (numeric) type and operations over these types.
In doing so we use the host-language operator overloading
feature and higher-order attributes to build trees representing
the transformed expressions. The host language, its abstract
syntax, and its operator overloading facility provide the com-
mon framework on which both language extensions can be
based. This allows the features specified in both language
extensions to be used together. The programmer can then
define variables, such asx, y, and z in the example, to have
the type rlpT(exactT()). These are also easy for the
programmer to use since they simply need to change the type
of their variables to trigger the necessary transformations.

To understand the AG specification of the perturbed and
symbolic types and the exact integers and their associated
transformations we will trace the compilation process of our
example expressionsign(z − x ∗ y). This will parallel the
explanation and expressions given in Section II. Because the
evaluation of attributes is demand-driven, the transformation
from r = sign(z − x ∗ y); to its implementation in the host
language can be more easily understood by starting at the
root node of the statement’s abstract syntax tree. We will see
how the perturbed-type construct forwards to a symbolic-type
construct that forwards to an expression over exact integer
types. These exact integer type expressions then forward to
their implementations which are written entirely using con-
structs from the host language. This process is described in
the remainder of this section.

grammar cg ; import simple ;

prod sign s::Stm ::= lhs::Exp e::Exp
{ s.pp = lhs.pp ++ "= sign(" ++ e.pp ++ ");" ;
forwards to e.type.signProd(lhs,e); }

syn attr signProd::Prod(Exp::=Exp Exp) @ Type ;
aspect prod intT t::Type::=
{ t.signProd=signInt; }
prod signInt s::Stm ::= lhs::Exp e::Exp
{ forwards to ...seq of if-then stmts ... }

Fig. 6. The genericsign production andsignProd attribute.

An extension for computational geometry, on which the
extensions for randomized linear perturbation and exact-
precision integers will be built, is shown in Figure 6. This
extension introduces thesign statement that assigns the sign
of its second expression to its first, for exampler = sign(z−
x ∗ y);. Based on the type of the second expression (which in
this case is based on the types of the variablesx, y, andz), the
sign production forwards to a type specific sign production.
If the expression has the typeexactT() then sign will
forward tosign e - the exact precision integer specific sign
production shown in Figure 9. If the type isrlpT(intT())



or rlpT(exactT()) thensign forwards to the perturbed
sign productionsign p shown in Figure 7. Theaspect
production adds the definition of thesignProd attribute to
the others defined on the productionintT.

A. Symbolic perturbation as a language extension

To indicate that the randomized linear perturbation is to be
applied to the expression used insign we require that the
variables in the expression have perturbed types. Thus, in our
exampler = sign(z − x ∗ y) the variablesx, y, and z are
declared to have typerlpT(X) whereX could be the integer
or exact-precision integer type. Thus thetype attribute on the
nodes in the AST for thesign(z − x ∗ y) will be rlpT(X),
for someX. This allows the hostsign production to forward
to the perturbed-type specific sign productionsign p.

The productions in Figure 7 use the synthesized attribute
symTree to compute the representation of the expression us-
ing symbolic operators and expanding the perturbed variables
to the symbolic representations. Thesign p production for-
wards to the symbolic sign productionsign s with the sym-
bolic expression. For the exampler = sign(z−x∗y) this cor-
responds to (1) in Section II-A. The only difference is that in
thesymTree expression variables, e.g.x, are not represented
as symbolic expressions, e.g.x +s Ex ∗s e, but instead repre-
sented using the convenience productionidRefTrans s as
shown in the productionidRef p. The treee.symTree in
sign p is constructed using the symbolic productionsadd s,
sub s, mul s, andidRefTrans s shown in Figure 8.

grammar RLperturb ; import simple ;

prod rlpT t::Type ::= pt::Type
{ t.subProd = sub_p; t.signProd = sign_p;
t.mulProd = mul_p; t.compType = pt; }

syn attr symTree :: Expr @ Expr ;
prod sign_p s::Stm ::= lhs::Exp e::Exp
{ s.pp = lhs.pp ++ "= sign(" ++ e.pp ++ ");" ;
forwards to sign_s (lhs, e.symTree) ; }

prod sub_p e::Exp ::= l::Exp r::Exp
{ e.pp = ...; e.type = l.type ;
e.symTree = sub_s(l.symTree,r.symTree) ; }

prod mul_p e::Exp ::= l::Exp r::Exp
{ e.pp = ...; e.type = l.type ;
e.symTree = mul_s(l.symTree,r.symTree) ; }

prod idRef_p e::Exp ::= i::Id
{ e.pp = i.lex; e.type =lookup(i.lex, e.env) ;
e.symTree = idRefTrans_s(i,e.type.compType);}

Fig. 7. The randomized linear perturbation type and operatorproductions.

From the symbolic expression, we could apply the distribu-
tive laws (a + b) ∗ c ⇒ (a ∗ c) + (b ∗ c) and a ∗ (b + c) ⇒
(a∗b)+(a∗c) to collect the like-powere coefficients. Instead
of applying these rules directly, each node in the symbolic tree
is decorated by two attributes that keep track of the coefficients
of the polynomial overe. The first iscoefs and is a list of

Exp trees. The second,ncoefs is highest power ofe with
a non-zero coefficient. Both attributes are defined in Figure8.
Starting at 0, theith element ofcoefs is the coefficient of
ei. Thus, for our exampler = sign(z − x ∗ y), on sign s
we wante.coefs to be the list

[z − x ∗ y,Ez − (x ∗ Ey + y ∗ Ex), (0 − Ex ∗ Ey)] (3)

and e.ncoeffs to be 2. This list then represents the
transformed symbolic expression shown in equation (2) in
Section II-A. From this list, it is straightforward for the
productionsign s to create the construct that it forwards
to - for the example this is the construct shown in Figure 1.
In its forwards-to clause, the block and initial assignmentare
created. Note that the zero values used in the conditions of the
if-thens must have the same type as the type being perturbed
by therlpT production. If that type isintT(), then the in-
teger zero constant must be provided to themkRest function.
If that type isexactT, then the exact-precision zero must be
provided. This tree is stored in thezeroTree attribute on
the component type attribute (compType) of the expression
e’s type attribute. The straight forward implementation of
mkRest (not shown) creates the nested if-then statement in
Figure 1. Note that we also overload the equality operator==
in the same manner as is done forsign, sub, and others.

syn attr coefs :: [Exp] @ Exp ;
syn attr ncoefs :: Integer @ Exp ;

prod symT t::Type ::= pt::Type
{ t.compType = pt; }

prod sign_s s::Stm ::= lhs::Exp e::Exp
{ s.pp = ...;
forwards to block( emptyDcl(),stmCons(

assign(lhs, head(e.coefs)), rest));
local rest :: Stm ;
rest = mkRest( tail(e.coefs), e.ncoefs,

lhs, e.type.compType.zeroTree ); }

prod sub_s e::Exp ::= l::Exp r::Exp
{ e.pp = ...; e.type = l.type ;
e.ncoefs = max (l.ncoefs, r.ncoefs) ;
e.coefs = subF(l.type.compType.subProd,

l.coefs,r.coefs ); }

prod mul_s e::Exp ::= l::Exp r::Exp
{ e.pp = ...; e.type = l.type ;
e.ncoefs = l.ncoefs + r.ncoefs ;
e.coefs = mulF ( l.type.compType.addProd,
l.type.compType.mulProd, l.coefs, r.coefs);}

prod idRefTrans_s
e::Exp ::= i::Id ct::TypeExpr
{ e.pp = ...; e.type = symT (ct);
e.ncoefs = 1;
e.coefs = [ (ct.idRefProd)(i),
(ct.idRefProd)(term(Id,"E_"++i.lex)) ];}

Fig. 8. The symbolic type and operator productions.

The definition of coefs and ncoefs by the produc-
tions sub s, mul s, and idRefTrans s is straight for-



ward and such things are common in higher-order AGs. In
idRefTrans s where we map, for example,x to x+ctEx∗ct

e (wherect is the component type of the perturbation type),
we setncoefs to 1 and define the listcoefs using the
identifier reference productionidRefProd and the terminal
creation functionterm. By passing the component type to
idRefTrans s as the parameterct it is used to define the
type attribute and used further in the productionssub s
andmul s to get the type-specific subtraction, addition, and
multiplication productions from the component type. Thus,
the type specific productions are used to specify the construct
that sign s forwards to and are used in the expressions in
coefs shown in (3) above. This is allows different types, such
as integers or exact-precision integers to be the component
type of perturbation type. The productions that specify these
types need only define the appropriate attributes (subProd,
mulProd, etc). We do not provide definitions of the helper
functionssubF andmulF that computecoefs; the imple-
mentation is simple and more verbose than interesting.

1) Composing Simple and RLperturb:Given the above
specification of the grammarRLperturb we can compose it
with the generic sign productions in grammarcg and grammar
simple to create the new extended languagesimpleRLP.
This is done by the simple Silver specification given below:

grammar simpleRLP ;
import simple including syntax ;
import cg including syntax ;
import RLperturb including syntax ;

This grammar specification imports the definitions (produc-
tions, attribute, etc.) defined in the named grammars along
with their concrete syntax specifications (which were not
shown). Silver combines these grammar to create the grammar
specifying the new extended language.

For programs written in this extended language the AG
specification must provide a translation to a target language, be
it Java byte-codes or C++. To do this, attributes that specify the
translation of the host language are written for the productions
in simple that define one of thehost attributes (hostStm,
hostExp, etc). For C++, the string valued attributectrans
may be defined. Thus, programs written in the extended
language must in essence be first translated to the host
language and from there the translation to byte-codes or C++
is performed using traditional AG techniques. Forwarding is
the means for realizing this translation. Wherer is the root of
the AST of the program, the value ofr.hostRoot.ctans
is the translation of the original treer first to its host language
tree representationr.hostRoot and then to C++. On a
tree node created bysign with a perturbed-type expression,
the hostStm attribute is computed forsign by forwarding
to sign p which computes the symbolic sign tree rooted
by productionsign s which then forwards to theblock
production which defines itshostStm attribute as shown in
Figure 3. The block may contain extension constructs and
their host language translation is defined similarly. according
to what host language construct they forward to.

B. Exact precision integers

To implement exact precision integers in our framework
we follow the pattern established above for symbolic per-
turbation types but due to space limitations fewer actual
specification can be shown. A grammarexact defines a new
type productionexactT that has no parameters and defines
the type-specific production attributessubProd, mulProd,
signProd to be those shown in Figure 9. This allows
for operator overloading of−, ∗, and sign as was done
in RLperturb. The sign e production is responsible for
building the the expression in Figure 2 and forwarding to
that tree. This tree is specified in the definition ofsign e
in Figure 9 where it uses the attributesfpTree, maxErr,
andeTree of the child expressione.

prod sign_e s::Stm ::= lhs::Exp e::Exp
{ forwards to block ( ... e.fpTree ...

... e.maxErr ... e.eTree ... ) ; }

prod sub_e e::Exp ::= l::Exp r::Exp
{ e.maxBits = 1 + max(l.maxBits,r.maxBits);
e.maxErr = if e.maxBits <= 53 then 0 else
l.maxErr + r.maxErr + exp(2,e.maxBits-53);

e.fpTree = sub_d(l.fpTree,r.fpTree); }

prod mul_e e::Exp ::= l::Exp r::Exp
{ e.maxBits = l.maxBits + r.maxBits;
e.maxErr = if e.maxBits <= 53 then 0

else l.maxErr * r.maxBits +
r.maxErr * l.maxBits +
exp(2,e.maxBits-53) ;

e.fpTree = mul_d(l.fpTree,r.fpTree); }

Fig. 9. Exact precision integer productions.

We can statically analyze expressions undersign e to
compute the maximum error,maxErr, that is possible if
the expression was computed using floating-point types. We
can also compute the maximum number of bits,maxBits,
that are needed to precisely store any intermediate values in
such an expression. In our framework, this static analysis is
implemented by the feature designer by specifying attribute
definitions on the overloading productions. Some of these are
shown in Figure 9. The error value,〈maxErr〉 in the condition
in Figure 2, determines if the exact precision expression needs
to be evaluated. These are the same definitions used in LN [3]
implemented in the attribute grammar framework.1

In LN, exact precision numbers are represented as an
unevaluated sum of hardware supported numbers. Thus, an
exact precision integer valuea is represented asa0 + a1 +
. . . + am whereai = a′

i × 2ri and a′
i is an integral andr is

the predefined radix, the number of bits that used to store
each a′

i.
2 The size of this sum,m, is statically computed

153 is used because there are 53 bits of precision in double precision floating
point numbers, the chosen hardware supported numeric type.

2Terms in this sum may, after a number operations, have more thanr bits
and thus must benormalizedwhen the number of bits approaches the number
of available bits, 53 in LN’s implementation. The required normalization
operations are inserted at statically-computed points in the expression.



as the attributecNum (not shown). We implement this sum
as an array of statically known size. For two such numbers,
a = a0+. . .+am andb = b0+. . .+bn, wheren ≥ m, the sum
c = a + b is defined asc0 = a0 + b0, c1 = a1 + b1, . . . cm =
am + bm, cm+1 = bm+1, . . . cn = bn. The multiplication
c = a ∗ b is similarly defined asck =

∑
0≤j≤m aj ∗ bk−j .

In the implementation, eachxi is an array access with a
constant index expression. In our framework, we implement
this sum and product by defining a code fragment, using
host language constructs, that implements the sequence of
assignments indicated by the above expressions. It is just a
series of assignment statements that are generated by unrolling
the loops suggested by the above definitions of addition and
multiplication. These code fragments are stored in the higher-
order attributeeTree and is defined on all the exact-type
productions. It is used in Figure 9 in the expression that
sign e forwards to as the code that efficiently implements
the exact precision integers using host language constructs.

We also need to compute the floating point implementation
of the expression; we define a higher-order attributefpTree
that is used to build the tree of this expression. Onmul e,
for example, this is defined using the double sized floating
point multiplication productionmul d. We’ve left out many
of the details since they are simply an implementation of the
analyses and transformation given in [3] and they do not add to
the understanding of how they can be implemented in language
extensions. The key point is that they can be specified by the
feature designer by writing attribute definitions.

To extend Simple with exact precision integers, one needs
only write a Silver specification like the one given above
for simpleRLP. To create a specification of an extended
language that uses both extensions, one needs only add the
extra statement “import exact include syntax;” to
the simpleRLP Silver specification. This composition of
language features is carried out by the Silver attribute gram-
mar tools. When Simple is extended with bothexact and
RLperturb one can use symbolic perturbation and exact
precision numbers together by creating values of the type
rlpT(exactT()). This is possible through the use of oper-
ator overloading, forwarding, and the fact that the transforma-
tions performed byRLperturb always query the component
type for the type specific arithmetic operations (productions) to
use in its transformations. (This last point is seen in Figure 8 in
the use of thesubProd, subProd, andmulProd attributes
of the component type attributecompType.)

This implementation of exact precision numbers as an
extension to Simple does not restrict the programmer from
creating exact-precision type variables and assigning updated
values to such variables inside of loops. Doing so would
invalidate the analysis done in Figure 9 to computemaxErr
andmaxBits. In a more complete implementation of the host
language and the extension this restriction would need to be
enforced. Given the analysis that can be supported this does
not present an exceedingly difficult challenge.

1) Performance::One of our goals has been to demonstrate
that our framework for extensible compilers makes it easy

to use several geometric language extensions in the same
program. It is also important that the code generated by
our language extensions is efficient. Here we briefly report
some performance measurements that compare our extensible
language framework to existing techniques. However, thereare
no existing tools that allow one to easily write programs that
use thecombinationof computational geometry techniques
that we have demonstrated above.

Instead we have attempted to demonstrate that the C++ code
generated by our extensible compiler framework is faster than
equivalent code constructed using the non-native numerical
types provided with CGAL. This prevents us from making
any comparisons of the performance of perturbed expressions,
since CGAL only provides perturbed primitives for a fixed
precision type. We settled on measuring the speed of execution
for expressions over CGAL’s non-native numerical types,
including the high-performance CORE::Expr type.

We tested our approach by running tests of 1,000,000
executions of the in-circle primitive, implemented as a sign-of-
determinant expression, using our exact integer extensionand
various CGAL types. We have made every effort to ensure that
the CGAL types are not disadvantaged in our test application,
including (i) configuring in-lining and pass-by-referenceto
produce the fastest results for the CGAL types, (ii) doing
all allocation and initialization of input values outside of our
timing loop, (iii) running in batches of 10,000 cases to keep
memory overhead low, and (iv) performing a code review with
colleagues to look for inefficiencies in the test application.
Our generated code consistently ran faster than the CGAL
numeric types. The measured speed-up over MPFloat was
7.81, over Gmpz (GNU MP Integers) was 10.00, over Gmpq
(GNU MP Rationals) was 23.47, and over CORE::Expr was
3.51. We attribute this speedup to (i) the avoidance of any
allocation/construction calls in our code and (ii) the ability of
the optimizer to work effectively on our (simple, repetitive,
and monolithic) generated code.

We conclude that in addition to providing unique com-
patibility with perturbation and other potential extensions,
our implementation of exact arithmetic provides a substantial
performance improvements compared to object-based tech-
niques. We believe the factors that benefit our exact arithmetic
implementation are advantageous to symbolic perturbation.
The performance improvements areonly indicative of what is
possible with the extensions in this domain. While the results
may vary when the extensions are composed with a fully
developed extensible C or Java we expect similar results.

V. CONCLUSION

We have shown how two language extensions can be made
to work closely together in the same host language. These
extensions both perform sophisticated semantic analyses and
program transformations. This illustrates the power of attribute
grammar-based extensible compiler frameworks as effective
generative programming tools.

Feature designers and programmers play distinct roles in
our approach. Programmers are not expected to be knowl-



edgeable about language implementation techniques such as
attribute grammars. They only need to identify the language
extensions that they want to use. The framework tools create
the specification for the extended language from the attribute
grammar specifications of the language extensions and the
host language. Feature designers, however, are expected to
have enough of an understanding of language processing to
be able to implement their language extensions as attribute
grammar fragments. Attribute grammars provide a high-level
declarative language for specifying new language constructs,
static analyses, and code transformations (via forwarding).

A. Related Work

Traditional syntactic, hygienic [11], and programmable [12]
macros systems and embedded domain specific languages [13]
allow new constructs to be added to a language but lack an
effective way to optimize language constructs or statically
report domain specific error messages. Meta-object protocol
systems [14], [15] provide limited opportunities to add new
language constructs but can check for errors and perform ab-
stract syntax based optimizations, as can some modern macro
systems [16], [17]. C++ template meta-programming [18] has
a limited means of specifying optimizations but cannot easily
specify the semantic analysis in the extensions shown here.

The problem of modular language definition and extensibil-
ity has received much attention from the AG community [19],
[20], to mention just a few. Traditional AGs do not make the
distinction between the feature designer, who writes the AG
fragment, and the programmer, who combines extensions in
building an extended language. Thus, the modularity and reuse
of language features specified as AG fragments is achieved
only by writing attribute definitions that “glue” new fragments
into the host language AG. Of particular interest are the
rewritable reference attribute grammars [21] in the JastAddII
system in which an extensible Java 1.4 compiler has been
specified. New (extension) constructs are translated to host
language constructs by destructive rewrites on the syntax tree.
These rewrites are triggered on an AST node when it is
first queried for an attribute value. The value returned is the
attribute value on the rewritten tree. Thus productions that im-
plement a new construct cannot define attributes both explicitly
via attribute definitions and implicitly via translation. Although
forwarding is similar to rewriting, it is non-destructive;the
original tree and the forwards-to tree exist simultaneously.
This allows both the explicit and implicit (via forwarding)
specification of semantics, a capability that we have found
to be crucial in the highly modular language specifications
required for extensible languages and composable language
extensions.

B. Future Work

We are currently exploring several avenues of research to
further develop the ideas and tools described in this paper.
After validating the effectiveness of the CG extensions in the
Simple host language we are currently implementing a full
version of C as an extensible host language using the Silver

AG system. A version of a significant subset of Java has also
being developed in which we have explored an extension that
embeds SQL into Java [22] and performs static syntax and
type-checking of SQL queries. A more foundational aspect of
our current work includes understanding the precise conditions
under which language extensions can be safely composed
and codifying these conditions as a set of analyses over the
AG specifications of language extensions. (Silver currently
performs an number of sanity checks and the well-definedness
analysis [10] to ensure that in an extended language specifi-
cation all needed attributes have exactly one definition.)
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