

Web Application Scanners: Definitions and Functions

Elizabeth Fong and Vadim Okun
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899-8970
{efong,vadim.okun}@nist.gov

Abstract

There are many commercial software security
assurance tools that claim to detect and prevent
vulnerabilities in application software. However, a
closer look at the tools often leaves one wondering
which tools find what vulnerabilities. This paper
identifies a taxonomy of software security assurance
tools and defines one type of tool: web application
scanner, i.e., an automated program that examines
web applications for security vulnerabilities. We
describe the types of functions that are generally found
in a web application scanner and how to test it.

Keywords: Software assurance; software security;
software security assurance tool; web application;
vulnerability.

Disclaimer: Any commercial product mentioned is
for information only; it does not imply
recommendation or endorsement by NIST nor does it
imply that the products mentioned are necessarily the
best available for the purpose.

1. Introduction and motivation

New security vulnerabilities are discovered every
day in commonly used applications. In the recent
years, web applications have become primary targets
of attacks. The National Vulnerability Database (NVD)
[14] maintained by the National Institute of Standards
and Technology (NIST) has over 18,500 vulnerabilities
(as of August 18, 2006). These include 2,757 buffer
overflow, 2,147 cross-site scripting (XSS), and 1,600
SQL injection vulnerabilities. XSS and SQL injection
vulnerabilities occur mostly in web-based applications.

Figure 1 shows the percentages of the total
vulnerabilities reported in the NVD represented by
cross-site scripting and SQL injection vulnerabilities.
The NVD contains no reports for XSS and SQL

injection vulnerabilities prior to year 2000. The share
of these vulnerabilities is large and rapidly growing.
On the other hand, the share of the buffer overflows, a
widely studied security weakness, has not increased in
the last several years.

0

5

10

15

20

25

2000 2001 2002 2003 2004 2005 2006

%
 o

f t
ot

al
 v

ul
ne

ra
bi

lit
ie

s

SQL injection Cross-site scripting (XSS)

Figure 1. SQL injection and cross-site scripting as
percent of total vulnerabilities (as of August 18,
2006)

Web application security is difficult because these
applications are, by definition, exposed to the general
public, including malicious users. Additionally, input
to web applications comes from within HTTP requests.
Correctly processing this input is difficult. The
incorrect or missing input validation causes most
vulnerabilities in web applications.

Network firewalls, network vulnerability scanners,
and the use of Secure Socket Layer (SSL) do not make
a web site secure [7]. The Gartner Group estimates that
over 70% of attacks against a company's web site or
web application come at the application layer, not the
network or system layer [22].

Web application scanners help reduce the number
of vulnerabilities in web applications. Briefly, web
application scanners crawl through a web application’s
pages and search the application for vulnerabilities by
simulating attacks on it.

While web application scanners can find many
vulnerabilities, they alone cannot provide evidence that
an application is secure. Web application scanners are
applied late in the software development life cycle.
Security must be designed and built in. Different types
of tools and best practices must be applied throughout
the development life cycle [11].

Currently, there is no agreement about what a web
application scanner is. To enable objective comparison
of different tools, the required functionality of web
application scanner must be clearly identified.

We define “web application scanner” and present
some vulnerabilities that this tool class should detect.
This work is a part of the NIST SAMATE project.

1.1. The SAMATE project

The Software Assurance Metrics and Tool
Evaluation (SAMATE) [23] project intends to provide
a measure of confidence in the software tools used for
software assurance. Part of the SAMATE project is
the identification and measurement of software
security assurance tools, including web application
scanners.

When we have chosen a particular class of tools to
work on, we begin by writing a specification. The
specification typically consists of an informal list of
features, and then more formally worded requirements
for features, both mandatory and optional. For each
tool class, we recruit a focus group to review and
advise on specifications. We also develop a test plan
and test sets to check that the tool is indeed capable of
satisfying a set of mandatory requirements.

Currently, we are developing a specification and
test plan for source code analyzers. We also plan to
develop a specification for web application scanners.

1.2. Definitions

Often, different terms are used to refer to the same
concept in security literature. Different authors may
use the same term to refer to different concepts. For
clarity we give our definitions.

Software assurance [13] is the planned and
systematic set of activities that ensures that software
processes and products conform to requirements,
standards and procedures in order to help achieve:

- Trustworthiness – no exploitable vulnerabilities
exist either of malicious or unintended origin, and

- Predictable execution – justifiable confidence that
software, when executed, functions as intended.

In general, a software security assurance (SSA)

tool is an automated piece of software that detects or
prevents security weaknesses and vulnerabilities.

Weaknesses in requirements, design,
implementation, or operation may have either direct or
indirect impact on security. In what follows, we use the
terms “weakness” and “security weakness”
interchangeably.

A weakness may result in a vulnerability, that is, a
possibility of harming the system. A weakness may be
the lack of program instructions, for example, lack of a
check for buffer size. Since a weakness may or may
not result in a vulnerability, we use the term
"weakness" instead of "flaw" or "defect". Often,
vulnerability is caused by a combination of
weaknesses.

A false positive is a situation where a tool reports
correct behavior as vulnerability.

To accurately determine how well a tool checks
for weaknesses, one must begin with a taxonomy of
weaknesses. Several security weakness classification
schemes have been proposed [1,2,10,21,28,8]. The
latest attempt at unifying the schemes is the Common
Weakness Enumeration (CWE) [4].

1.3. A taxonomy of SSA tool classes

As the first step in identification of SSA tools, we
need a taxonomy, or classification, of SSA tools and
techniques in order to prioritize our effort.

We started by asking what classes of tools are
currently used to identify potential vulnerabilities in
software. We then asked what capabilities a tool
should have to be placed into a particular class of tools.
A taxonomy, proposed in [24], is organized around
four facets: software development life cycle phase
(from requirements to operation), automation level
(from manual to fully automated), approach (preclude,
detect, mitigate, react), and viewpoint (external vs.
internal). The classification of SSA tools is based on
[3,5,9].

2. What is a web application?

The Web Application Security Consortium
(WASC) [31] defines a web application as “a software
application, executed by a web server, which responds
to dynamic web page requests over HTTP.”

A web application is comprised of a collection of
scripts, which reside on a web server and interact with
databases or other sources of dynamic content. Using
the infrastructure of the Internet, web applications
allow service providers and clients to share and
manipulate information in a platform-independent
manner. For a good introduction to web application
from the penetration tester’s perspective, see [12].

The technologies used to build web applications
include PHP, Active Server Pages (ASP), Perl,
Common Gateway Interface (CGI), Java Server Pages
(JSP), JavaScript, VBScript, etc. Some of the broad
categories of web application technologies are
communication protocols, formats, server-side and
client-side scripting languages, browser plug-ins, and
web server API.

A web application has a distributed n-tiered
architecture. Typically, there is a client (web browser),
a web server, an application server (or several
application servers), and a persistence (database)
server. Figure 2 presents a simplified view of a web
application. There may be a firewall between web
client and web server.

Figure 2. Environment for Web Application

2.1. Sources of vulnerabilities in web
applications

Web applications typically interact with the user

via FORM (buttons, text boxes, etc.) elements and
GET or POST variables. The incorrect processing of
data elements within the HTTP requests causes most
critical vulnerabilities in the web applications. While
SSL ensures secure data transfer, it does not prevent
these vulnerabilities because it transmits HTTP
requests without scrutiny.

Web applications are a gateway to databases that
hold critical application data and assets. Some of the
main threats to the database server tier include SQL
injection, unauthorized server access and password
cracking. Most SQL injection vulnerabilities result
from poor input validation.

Most web applications store sensitive information
in databases or on a file system. Developers often
make mistakes in the use of cryptographic techniques
to protect this information.
 Since HTTP is a stateless protocol, web
applications use separate mechanisms to maintain

session state. A session is a series of interactions
between user and web application during a single visit
to the web site. Typically, session management is done
through the use of a pseudo-unique string called
Session ID, which gets transmitted to the web server
with every request. Most web scripting languages
support sessions via GET variables and/or cookies. If
an attacker can guess or steal a session ID, he can
manipulate another user’s session.
 We provide a list of vulnerabilities in Section 4.1.

3. What is a web application scanner?

A web application scanner is an automated
program that examines web applications for security
vulnerabilities. In addition to searching for web
application specific vulnerabilities, the tools also look
for software coding errors, such as illegal input strings
and buffer overflows.

Web application scanner explores an application
by crawling through its web pages and performs
penetration testing - an active analysis of a web
application by simulating attacks on it. This involves
generation of malicious inputs and subsequent
evaluation of application’s response. Web application
scanner performs different types of attack. A generally
useful attack, called fuzzing, is submitting random
inputs of various sizes to the application.

HTTP Back-
end
Server

Web
Client

 Web
 App

Penetration testing is a black-box testing approach.
The limitation of this approach is its inability to
examine source code, thus it is unlikely to detect such
vulnerabilities as back doors. However, it is well suited
for detecting input validation problems. Additionally,
client-side code (JavaScript, etc.) is available to the
penetration tester and can provide important
information about the inner workings of a Web
application.

Some instances of commercial web application
scanners are listed below. This list is obtained from
references [5,25,6] and web sites.

- AppScan [29]
- WebKing [20]
- WebInspect [26]
- NTOspider [16]

3.1. Other web application security tool types

We contrast web application scanner with some
other approaches and point out their differences.

A web application firewall, sometimes called
wrapper, is a tool that examines HTTP requests and
responses for application specific vulnerabilities. It is
used primarily during system operation phase, whereas

web application scanners are used primarily during
testing phase. Also, web application scanner performs
active detection by simulating attacks, whereas web
application firewall mitigates vulnerabilities.
Although web application firewall can be used to
detect vulnerabilities by examining saved attack
information, the detection is passive. That is, nothing is
detected until and unless an attack triggers a response
indicating a vulnerability.

Source code analysis is a white-box testing
approach that scans the application source code for
security weaknesses. Source code scanners are
primarily used during the implementation phase of the
software development life cycle. Some source code
scanners can detect web application specific
vulnerabilities.

Using a framework is another approach.
Frameworks assist coders and security analysts in the
process of testing their Web applications, either by
providing an interface that exposes the internals of the
HTTP traffic, or by helping create automated tests for
custom Web applications.

No single approach is sufficient to make web
applications secure: different types of tools must be
used at different stages of the development life cycle,
starting with the early phases. Below are some
instances of web security tools which are not web
application scanners.

- NC2000 [15] is an application gateway. It is a

physical box that is placed in front of a web server
and examines the traffic to/from the web
application.

- Nessus [27] is an open source scanner that
supports a plugin architecture allowing users to
develop security checks with the NASL (Nessus
Attack Scripting Language).

- WebScarab [19] is a framework for analyzing
applications that communicate using the HTTP
and HTTPS protocols. It observes the
conversations (requests and responses) and allows
the operator to review them. It provides a number
of plugins, mainly aimed at security functionality.
Plugins perform one of two tasks: generate
requests or analyze conversations.

3.2. Other types of information security tools

SANS Institute [25] classifies the information
security tools into the following five categories:

1. Blocking attacks: Network based (includes secure

web filtering)
2. Blocking attacks: Host based

3. Eliminating security vulnerabilities (includes
penetration testing and application security
testing)

4. Safely supporting authorized users
5. Tools to minimize business losses and maximize

effectiveness

Web application scanners are in category 3. The
class of web application scanners consists of tools that
detect potential vulnerabilities in the web applications
only, and not on the network. In addition to web
application scanners, the overall security defense
should include tools for web services, database
scanners, network firewalls, anti-virus gateways,
routers, intrusion detection/protection systems, and
other tools.

4. Functional requirements for web
application scanner

To develop a specification for web application
scanners, we must clearly define a set of functions that
a tool must successfully perform. A web application
scanner must:

- Identify a selected set of software security

vulnerabilities in a web application.
- Generate a text report indicating an action (or a

sequence of actions) that leads to vulnerability.
- Generate an acceptably low ratio of false positives.

4.1. Some web application vulnerabilities

In this section, we identify a list of vulnerabilities
that a web application scanner should detect. This list
will form the basis for a formally worded requirement
for mandatory features for a web application scanner.
An extensive classification of web security threats can
be found in [30]. The Open Web Application Security
Project (OWASP) publishes the list of the most critical
web application vulnerabilities [17]. These and other
efforts are being incorporated into CWE [4].
 Input validation weaknesses cause most web
application vulnerabilities. Other types of weaknesses
include use of poor authentication mechanisms, logic
weaknesses, unintentional disclosure of content and
environment information, and low-level coding
weaknesses (such as buffer overflows). Often,
vulnerability is caused by a combination of
weaknesses. Some common vulnerabilities and attacks
are:

- Cross-site scripting (XSS) vulnerabilities. The

vulnerability occurs when an attacker submits

malicious data to a web application. Examples of
such data are client-side scripts and hyperlinks to
an attacker’s site. If the application gathers the
data without proper validation and dynamically
displays it within its generated web pages, it will
display the malicious data in a legitimate user’s
browser. As a result, the attacker can manipulate
or steal the credentials of the legitimate user,
impersonate the user, or execute malicious scripts
on the user’s machine.

- Injection vulnerabilities. This includes data

injection, command injection, resource injection,
and SQL injection. SQL Injection occurs when a
web application does not properly filter user input
and places it directly into a SQL statement. This
can allow disclosure and/or modification of data in
the database. Another possible object of injection
is executable scripts, which can be coerced into
doing things that their authors did not anticipate.

- Cookie poisoning is a technique mainly for

achieving impersonation and breach of privacy
through manipulation of session cookies, which
maintain the identity of the client. By forging
these cookies, an attacker can impersonate a valid
client, and thus gain information and perform
actions on behalf of the victim.

- Unvalidated input. XSS, SQL Injection, and

cookie poisoning vulnerabilities are some of the
specific instances of this problem. In addition, it
includes tainted data and forms, improper use of
hidden fields, use of unvalidated data in array
index, in function call, in a format string, in loop
condition, in memory allocation and array
allocation.

- Authentication, authorization and access control

vulnerabilities could allow malicious user to gain
control of the application or backend servers. This
includes weak password management, use of poor
encryption methods, use of privilege elevation, use
of insecure macro for dangerous functions, use of
unintended copy, authentication errors, and
cryptographic errors.

- Incorrect error handling and reporting may reveal

information thus opening doors for malicious users
to guess sensitive information. This includes catch
NullPointerException, empty catch block, overly-
broad catch block and overly-broad “throws”
declaration.

Some other vulnerabilities are:

- Denial of service
- Path manipulation
- Broken session management
- Synchronization timing problems

More work is needed to refine the list of
vulnerabilities that the web application scanners must
support.

5. Issues in testing web application
scanners

In addition to a functional specification, we need a
test plan and a suite (or several suites) of test cases to
check that a web application scanner satisfies the
specification.

A test plan details how a tool is tested, how to
interpret test results, and how to summarize or report
tests. Currently, tools produce reports in a variety of
formats. A common reporting format would make it
easier to automate comparison of different tools.

We measure conformance of a tool to the
specification by running it against a variety of test
cases. In choosing test cases, it is important to
understand the ways in which an attacker exploits
vulnerabilities.

In normal operation, a user submits a request to
the web application and gets a response back. An
attacker submits an unexpected request to an
application in hopes of exploiting an existing
vulnerability. The goal of an attacker is to violate
application’s security policy. The attacker recognizes
the existence of vulnerability either by examining
application’s response or indirectly, by noticing
changes in application’s behavior (this may include
probing different parts of the application). Web
application scanner works by simulating attacker’s
action.

To test web application scanners, we need web
applications with vulnerabilities. For each vulnerability
class, there must be at least one test application that
exhibits it. Small test cases with a single vulnerability
can be used to precisely test tools’ ability to detect
specific vulnerabilities. Large applications with a
variety of vulnerabilities, such as WebGoat [18], will
test scalability of a tool for real life applications. It is
also important to test tools’ ability to detect
vulnerabilities in web applications built using different
web technologies.

A basic test suite may contain only applications
with easily exploitable vulnerabilities. For instance, if
an application does no input validation at all, there are
many ways to exploit the vulnerability and most tools

can find it. However, to thoroughly test a scanner, we
need programs with subtle vulnerabilities.

Different types of SQL injection represent another
example. An attacker typically sends a request to cause
the application to generate a SQL query that can induce
unexpected behavior. Then the attacker examines the
error message returned to the web client. A typical
mitigation approach is to prevent the application from
displaying any database error messages. The
vulnerability, though harder to detect, still exists – it is
called “blind SQL injection”.
 In order to check for false positives, we need test
cases that are free of vulnerabilities but have some
features that cause difficulty for web application
scanners. Generation of such test cases is an interesting
research problem that requires understanding the way
the tools work.

While developing test suites, we collect much
larger numbers of candidate test cases. This collection,
the SAMATE Reference Dataset (SRD) [23], is freely
accessible on-line. We intend the database to support
empirical research of software assurance. It contains
over 1,600 test cases for source code analysis tools (as
of August 18, 2006). We intend to add many test cases
for web application scanners. We welcome
participation from researchers and companies.

6. Summary

We defined web application scanners and presented
some vulnerabilities that this class of tools should
detect. We plan to develop a specification for web
application scanners. The specification will give a
precise definition of functions that the tools in this
class must perform. We will develop suites of test
cases to measure conformance of tools to the
specification. This will enable more objective
comparison of web application scanners and stimulate
their improvement.

7. Acknowledgments

We thank Jeffrey Meister, Paul E. Black, and Eric
Dalci for improving our understanding of web
application scanners and many helpful suggestions on
this paper. We also thank the anonymous reviewers for
their insightful comments.

8. References

[1] A. Avizienis, J-C. Laprie, B. Randell, and C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. on Dependable and Secure
Computing, 1(1):11-33, Jan-Mar 2004.

[2] M. Bishop and D. Bailey, “A Critical Analysis of
Vulnerability Taxonomies,” Technical Report 96-11,
Department of Computer Science, University of California at
Davis, Sep. 1996.

[3] Black, Paul E. and Fong, Elizabeth, “Proceedings of
Defining the State of the Art in Software Security Tool
Workshop,” NIST Special Publication 500-264, September
2005.

[4] Common Weakness Enumeration (CWE), MITRE,
http://cve.mitre.org/cwe/

[5] DISA, Application Security Tool Assessment Survey,
V3.0, July 29, 2004. (To be published as STIG)

[6] Arian J. Evans, “Software Security Quality: Testing
Taxonomy and Testing Tools Classification,” Presentation
viewgraph for OWASP APPSec DC, October 2005.

[7] Jeremiah Grossman, The Five Myths of Web Application
Security, WhiteHat Security, Inc, 2005.

[8] Michael Howard, David LeBlanc, and John Viega, 19
Deadly Sins of Software Security. McGraw-Hill Osborne
Media, July 2005.

[9] Andrew J. Kornecki and Janusz Zalewski, The
Qualification of Software Development Tools From the DO-
178B Certification Perspective, CrossTalk, pages 19-23,
April 2006

[10] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S.
Choi, “A Taxonomy of Computer Program Security Flaws,”
Information Technology Division, Naval Research
Laboratory, Washington, D. C., September 1994.

[11] G. McGraw, Software Security: Building Security In,
Addison-Wesley Software Security Series, 2006.

[12] Jody Melbourne and David Jorm, Penetration Testing
for Web Applications, in SecurityFocus, 2003.

[13] NASA Software Assurance Guidebook and Standard,
http://satc.gsfc.nasa.gov/assure/assurepage.html

[14] National Vulnerability Database (NVD),
http://nvd.nist.gov/

[15] Netcontinuum, NC2000,
http://netcontinuum.com/products/

[16] NT Objectives, NTOSpider,
http://www.ntobjectives.com/products/ntospider.php

[17] OWASP, “The Ten Most Critical Web Application
Security Vulnerabilities,”
http://www.owasp.org/index.php/OWASP_Top_Ten_Project

[18] OWASP, WebGoat Project,
http://www.owasp.org/software/webgoat.html.

[19] OWASP, WebScarab
http://www.owasp.org/software/webscarab/

[20] Parasoft, WebKing, http://www.parasoft.com/webking.

[21] F. Piessens. “A taxonomy (with examples) of software
vulnerabilities in Internet software,” Report CW 346,
Katholieke University Leuven, 2002.

[22] Prescatore, John, Gartner, quoted in Computerworld,
Feb. 25, 2005,
http://www.computerworld.com/printthis/2005/0,4814,99981
,00.html

[23] SAMATE project, http://samate.nist.gov/

[24] SAMATE Tool Taxonomy,
http://samate.nist.gov/index.php/Tool_Taxonomy

[25] SANS Institute, http://www.sans.org/whatworks

[26] SPI Dynamics, WebInspect,
http://www.spidynamics.com/products/webinspect/

[27] Tenable Network Security, Nessus,
http://www.nessus.org/about/

[28] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven
Pernicious Kingdoms: A Taxonomy of Software Security
Errors,” Proc. NIST Workshop on Software Security
Assurance Tools, Techniques, and Metrics (SSATTM), US
National Institute of Standards and Technology, 2005.

[29] Watchfire, AppScan,
http://www.watchfire.com/products/appscan/

[30] Web Application Security Consortium, “Threat
Classification,” http://www.webappsec.org/projects/threat/

[31] Web Application Security Consortium Glossary,
http://www.webappsec.org/projects/glossary/

	Web Application Scanners: Definitions and Functions
	1. Introduction and motivation
	1.2. Definitions
	1.3. A taxonomy of SSA tool classes

	3. What is a web application scanner?
	6. Summary

