
Web Mash-ups and Patchwork Prototyping: User-driven technological

innovation with Web 2.0 and Open Source Software

Ingbert R. Floyd, M. Cameron Jones, Dinesh Rathi, Michael B. Twidale

University of Illinois at Urbana-Champaign

Graduate School of Library and Information Science

{ifloyd2,mjones2,drathi,twidale}@uiuc.edu

Abstract

The recent emergence of web mash-ups and open

source software is driving the development of new

practices in software and systems development. In this

paper we explore novel practices of user-driven

innovation through an examination of several case

studies which illustrate how users and developers are

exploiting the proliferation of open APIs and open

source systems. Developers can rapidly create proofs

of concept that are robust enough for actual use by

combining preexisting software components. The

underlying programming processes involved make use

of tried-and-true software development techniques,

and may not appear innovative at first. However, the

application of these practices and techniques to

problem solving by non-programmers shows a high

degree of creative innovation, giving rise to new ways

of thinking about technology design and production.

1. Introduction

Web 2.0 and open-source software are but two of

the recent trends in software development

characterized both by new technologies and by new

mindsets on how to do application development.

These trends are capturing the imagination of

practitioners and academics alike, stimulating

creativity, innovation, and a flurry of attempts to

anticipate how the landscape will stabilize e.g., [21],

[24]. The focus, however, is often on technology or on

the new business models that are emerging.

It is easy to forget that most people are interested in

technology primarily for how it can help them in their

everyday life activities. One of the authors recently

taught an Introduction to Web Technologies class

geared for non-programmers, where the final project

involved creating a prototype of a web mash-up.

Invariably, the students described their projects in

terms of an immediate, pressing problem in their

everyday life which they were creating a web mash-up

to solve: for example, they are new to campus and

want to know where to eat, so they built a web mash-

up to map restaurants using Google Maps. These

everyday life activities can involve aspects or

combinations of work, personal life, school, etc. It is

interesting is how similar patterns of technological

innovation, appropriation, and use are emerging in

practice by people involved in seemingly very

different types of activities: design environments,

community building, and classroom learning.

In this paper we take a step back and look at two

kinds of user-driven, emergent practices: web mash-

ups and a design technique we call patchwork

prototyping. Our purpose is to understand how the

affordances of recent trends are enabling these two

practices, why they suddenly are so prominent, and

how they capture the creativity, needs and desires of

the users who are driving the approaches. We intend

our analysis to provide insights which can be

integrated and merged with other rapid, collaborative

and participatory mechanisms to support innovative

explorations of design spaces, requirements capture,

and methods for rapid prototyping and evaluation.

2. Web mash-ups

The original vision of the web was of a system for

academics to share information and data in the form of

documents [1]. The parallel development of concepts

like the semantic web [2], web services, Web 2.0 [19],

and the architecture of participation, has resulted in a

multitude of new services, web sites, technologies, and

protocols. Similar to earlier practices of software

reuse, these approaches involve sharing and

distribution. However, sharing need not be just of

documents but also of services, knowledge, resources,

and objects. Distribution has also broadened, not just

providing access to humans, but also to applications.

Web mash-ups, websites which combine data and

services from across the web, are an emerging trend.

The concept of mash-ups originated in the DJ music

culture, where the recent development of inexpensive,

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE

professional-grade, music composition and mixing

software allowed musicians to create high-quality

remixes and to easily sample and recombine digital

music [10]. A music mash-up is a remix of music from

multiple sources. Similarly, a web mash-up combines

data and services from more than one source.

Weiss identifies an intriguing characteristic of web

2.0 applications that is shared by web mash-ups: that

they are “… at the same time incredibly innovative

and yet—not” [25]. That is, from a computer science

perspective, the underlying technology and practices

are not really innovative; software developers have

been sharing, reusing, and combining applications and

code for decades, using code libraries, components

and APIs to speed up development, e.g. [11]. What is

innovative is how mash-ups are being widely used for

the rapid realization of creative ideas which would be

too time consuming, or expensive.

Through the use of publicly available APIs

(Application Programming Interfaces), mash-up

developers are able to access data, services, resources,

and interface components, which they incorporate into

their new application. There are three aspects of web

2.0 APIs which facilitate innovation with mash-ups:

1. They provide access to highly developed, robust

technologies which only a large organization of

expert programmers could create;

2. They provide access to massive amounts of content

which no individual could gather on their own or

afford to keep and maintain;

3. They lower the barriers to developing creative

novel applications with powerful technologies.

Amazon.com was one of the first commercial sites

to release a free, public API for accessing their

content. Coupled with the API documentation were

code libraries and examples written in several

programming languages. Many applications were

written to interface with the Amazon database (e.g.,

Delicious Library) but not explicitly called “web

mash-ups”. It wasn’t until after the release of the

Google Maps system and the development of

housingmaps.com site in summer 2005, that the term

mash-ups was used to characterize websites.

The website programmableweb.com lists 221

different APIs which can be mashed-up. The available

APIs span a wide range of applications, including:

search engines, mapping applications, instant

messaging, weather data, blogs, RSS aggregators,

image and video sharing, social networking, personal

and/or team information management systems, social

bookmarking, wikis, and auction sites. Over 900

mash-ups have been registered at

programmableweb.com at an average rate of three new

mash-ups registered every day. Not all mash-ups

which have been created are registered at

programmableweb.com. Some estimate that as many

as 1,000 new applications are developed every six

months based on the Google Maps API alone [8].

The rapid explosion of mash-up development

activities must have some cause. We have noticed that

web mash-ups are often created by individuals or

small groups motivated by a particular problem who

are inspired to use the new Web 2.0 technologies and

mindsets [19] to create a solution. The principle that

“every good work of software starts by scratching a

developer’s personal itch” [21] originally used to

describe the success of the open-source software

(OSS) process also seems appropriate in

characterizing mash-up development, except that the

technologies of mash-ups are accessible to both skilled

and non-skilled programmers, and the process is faster

than in typical OSS development.

One of the earliest web mash-ups was

housingmaps.com (Figure 1), created when its

developer, Paul Rademacher, was looking for a new

house. In examining the daily updated real-estate

listings on Craigslist he was confused by which houses

he had already seen. One day, he found himself

looking at a house he had just visited the previous day

[20], and decided he needed to do something about it.

Organizing the listings geographically integrated the

data around a common interface, which helped him

remember where he had already looked.

Given that such an application is only useful to a

person while they are actively searching for a house,

developing it as a single user without utilizing web-

based APIs would have taken too long and been too

complicated to be of any practical value. He probably

would have found a house before a working system

could be finished. However, the mash-up approach

drastically reduced the development costs, making the

task of developing such an application feasible.

This development is analogous to the changes

Figure 1. Housingmaps.com shows real-estate

listings from Craigslist in Google Maps

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2

which arose out of the introduction of spreadsheets in

early PCs in the 1980s. Before the advent of the

spreadsheet, numerical computing required the

expertise of both programmers and mathematicians.

Applications were custom built to address particular

problems and took months to implement, and often did

not satisfy all of the requirements [8]. Spreadsheets

revolutionized numeric computing in organizations by

providing a reusable framework for rapidly testing and

developing numeric applications. Users were able to

create and share a wide range of (but not all)

mathematical applications such as payrolls, budgets,

and numerical models, quickly and easily [17].

It is true that creating mash-ups does require

detailed knowledge of how particular APIs are

structured and a solid foundation in web technologies

and protocols. Currently, this may restrict

development to experienced programmers. However,

the key to lowering the barrier to mash-up

development probably lies in the development of

toolkits, wizards, and other systems which can black-

box much of the esoteric details of the

implementation, or provide an end-user interface to

facilitate creating mash-up code. This can already be

seen in sites like mapbuilder.net and wayfaring.com

which provide simple to use web interfaces for

creating Google Maps mash-ups. While the

development of such programming aids will broaden

the accessibility of mash-up programming, they will

necessarily be unable to provide users with full-access

to the complete flexibility of a programming language,

much as spreadsheets can only support a subset of all

mathematical applications.

3. Patchwork prototyping

We use the term patchwork prototypes to describe

applications developed using a different design

process than web mash-ups. Patchwork prototypes

use combinations of web services, mash-ups, locally

developed code and open source software. Both web

mash-ups and patchwork prototyping emphasize the

central importance of direct user involvement,

mitigating lengthy development periods between idea

conception and realization.

The concept of patchwork prototyping originated

from the observations of Jones et al. on how

developers in a series of projects were using OSS and

other software to which they had source-code access

[12]. It is optimized for ill-defined situations where

neither the developers nor the users have a clear idea

of what they need the software to do, but rather have

an idealized vision of the kinds of things computing

technology might enable users to accomplish.

Patchwork prototyping is also compatible with

community-based initiatives where developers create

an environment which is flexible enough for

community members to continue to contribute to the

development process without the developers’ aid [13].

The key to the method is that it is user-driven. The

development proceeds and design decisions are made

based on the users’ collaborative experience of

integrating the software into their every-day activities,

not based on abstract design principles or predictions

of what the users might need.

3.1. Description of patchwork prototyping

Patchwork prototyping has three key components:

• Rapid iteration of high-fidelity prototypes;

• Incorporation of the prototypes by the end users

into their daily work activities;

• Extensive collection of feedback facilitated by an

insider to the user community.

When integrated, these components create a successful

design because developers gain access to and respond

to the needs of users while those needs are co-

evolving, both due to the effects of the introduction of

the software, and due to the ever-changing work or

community environment.

Patchwork prototyping is a participatory design

technique, as it is a type of cooperative prototyping

[4], [15]; however, it blends the design and

implementation phases of the development process,

because the prototype is incorporated almost

immediately into users’ everyday activities, and

because production-scale modules can gradually be

introduced as they have been created to replace the

OSS applications that were used as prototypes to

develop the requirements.

Patchwork prototyping requires a design team

consisting of both developers and representatives of

every kind of user. The method entails the following

five stages, and an entire iteration normally takes no

longer than a week:

1. Make an educated guess about what the target

system might look like;

2. Select tools which support some aspect of the

desired functionality;

3. Integrate the tools into a rough composite;

4. Deploy the prototype, solicit feedback from users;

5. Reflect on the experience of prototype building and

on the user feedback, and repeat - quickly.

For the most part, these steps are relatively straight-

forward. We provide a summary of the method below,

but for a more in depth discussion see [12].

Making the first educated guess about what the

target system might look like is the hardest step,

because it requires the design team to synthesize their

collective knowledge and understanding of the

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3

problem into a coherent design. In early iterations of

the process it is often helpful to use paper prototypes

and scenarios but their function is primarily to serve as

communication devices and brainstorming aids. The

high equivocality of the situation almost guarantees

that whatever design is produced will be insufficient.

This is not a failure. It is an expected part of the

process, and the design will be improved on

subsequent iterations. The important thing is to have a

starting point which can be made concrete, and not to

spend more than a couple of weeks hashing out ideas,

unless the problem space is still being explored. The

key is not to become bogged down in controversies

about how the software ‘ought’ to look, but rather to

put together a prototype and test it out with users in

their everyday environments and let the users figure

out what works, what does not, and what is missing.

The rapid iteration and high-fidelity nature of the

prototypes is vital to patchwork prototyping. High-

fidelity is necessary because many users have

difficulty imagining what software described by other

methods such as paper prototypes, scenarios, or

feature descriptions will actually do, and how they

might incorporate it into their daily activities [15]. In

such discussions users might get excited and mention

several possibilities, but those possibilities often turn

out not to be feasible for a number of reasons

unforeseen by either the users or the developers

(sometimes for reasons that are impossible to foresee).

Rapid iteration is vital for both social reasons and

design improvement. Socially, rapid iteration is

important because users are embedded in their own,

hectic environment. In a work environment users’

focus is on getting their job done, meeting deadlines,

dealing with office politics, etc., not on designing

software to support these activities. Thus, users will

quickly become frustrated with long turn-around

times, and become dependent on and adapted to

particular implementations which are less than ideal.

When a particular prototype has been in use for an

extended period of time, users no longer feel that they

are trying out a prototype and start thinking about the

system as a final product. Additionally, fast response

times make users feel like an integral part of the

process, where what they contribute is immediately

used to improve the software. Maintaining such

feelings is vital in order to keep obtaining high-quality

feedback from users, and to prevent indifference from

setting in about the design process.

Rapid iteration also improves the quality of the

design. It allows for the exploration of more features

and alternatives. This can uncover overlooked aspects

of the system which might be of use. This can also

reinforce the importance or necessity of particular

features or requirements. Furthermore, iteration

provides users with a constant flow of new design

possibilities, which gives them the capability to

criticize particular instances of the prototype. In

addition, the design team can improve their

understanding of the broader sociotechnical system

[14], [23], because they have seen many design ideas

fail, and come to an understanding of why each of

them failed from the users’ feedback. Ultimately, it is

impossible to reach complete understanding of the

system given its evolving nature. However, by

iterating the prototyping process, the design space may

narrow, identifying a set of key requirements. At this

point the design is not complete, but work on a

flexible production-scale system can begin, and further

exploration of the design space can be continued

within that system.

The rapid iteration of high-fidelity prototypes has

long been the holy grail in prototyping research.

Concepts like horizontal vs. vertical prototypes, and

high-fidelity vs. low-fidelity prototypes [9], [18] were

developed specifically to understand and take

advantage of the trade-offs involved in picking one

prototyping technique over another. It is only with the

development of Web 2.0 APIs, techniques and

mindsets, and with the rapid proliferation of high

quality OSS software that we are truly close to

realizing this vision.

Patchwork prototyping takes full advantage of

these new technologies. The basic form for such a

prototype is a modular patchwork of various OSS

applications and Web APIs. These can easily be

switched in and out, turned on or off, or reconfigured

in how they are wrapped into the interface. The

minimal effort required to add features allows

programmers to treat them as disposable, because little

effort was needed to implement them, so little effort is

wasted when they are switched off or discarded. This

facilitates the requirements gathering process, because

iterations of the prototype can be rapidly created, with

high functionality, at low cost. Deciding between

shallow and deep integration, however, can be a

matter of considering the tradeoffs between having

data flow between modules vs. increasing the facility

of exchanging one application for another. The key is

to have a prototype where there are many features and

options which can be easily turned on, off, and back

on again as users require or wish to explore, thus

allowing users to explore via action, trial, and error,

rather than by trying to conceptualize precisely how

the system will work ahead of time.

Access to the source code of component

applications and the freedom to modify it is not an

essential prerequisite to development by integration.

Over many years public APIs to closed proprietary

source code have facilitated the development of

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4

thousands of innovative applications in various

software platforms. Nevertheless, source code access

can be very useful. Without it, developers are limited

in how well they can patch different modules together,

in which features they can enable or disable, in how

quickly they can enable or disable them, in how they

create a visual integration with the rest of the system,

and in their ability to understand the underlying

complexity of the code which they are integrating –

and will likely have to rewrite themselves for the

production scale version. By using and delving into

the open-source code, developers can get a feel for

how complicated it will be to implement a particular

feature robustly, and can make better estimates for the

costs to implement a particular feature.

During deployment of the prototype, users integrate

the software into their work practices for an extended

period of time and collaboratively explore what they

can do with it. The feedback of user experiences

allows requirements gathering which is not purely

need-based, but also opportunity- and creativity-based.

By seeing a high-fidelity prototype of the entire

system, users can develop new ideas of how to utilize

features, and conceptualize new ways of

accomplishing their work. In addition, users will

become aware of gaps in functionality which need to

be filled, and can explain them in a manner that is

more concrete and accessible to the developers.

When reflecting on the collected feedback,

however, the design team (including representatives of

all stakeholders) must realize that the prototype does

not simply elicit technical requirements; it elicits

requirements for the collaborative sociotechnical

system as a whole. The existence of the prototype

creates a technological infrastructure which influences

the negotiation of the social practices being developed

by the users via the activities the infrastructure affords

and constrains [16]. The design team must be aware of

how features of the prototype are affecting the

development of social practice, and must consider how

to redesign the system so that desired social practices

are supported and encouraged by the structure of the

system (in addition to any social means of

encouraging or requiring the practices). The design

team must also be sensitive to the needs of users not

on the design team, in order to avoid creating

deleterious power imbalances which will doom the

effort to create an acceptable collaborative system (the

disempowered will not be interested in collaborating).

By allowing users to interact with the prototypes for

extended periods, collecting feedback on their

experiences, and paying attention to the social

consequences of the cyberinfrastructure, a richer

understanding of the sociotechnical system as a whole

can emerge. Reflection is a process of attending to the

consequences of the design on the broader

sociotechnical system, and integrating these into a

holistic understanding of how the system is evolving.

4. Case studies

In this section we present four case studies which

illustrate various aspects of creating mash-ups or

patchwork prototypes. The examples are meant to give

a flavor of the two methods, and to illustrate some of

their relative advantages.

4.1. Wasabe: an example mash-up

The authors developed a web mash-up called

Wasabe
1
 (an acronym for the Wikipedia-Amazon

Search And Browse Environment) as a prototype

hybrid library catalog system that allows users to

search within a single interface both the detailed

bibliographic information typically found in library

catalogs as well as more general information about the

topic of interest, typically found in encyclopedias

(Figure 2). Wasabe is a mash-up that demonstrates all

three key features of most mash-ups: the use of the

computational power of web services, access to large

amounts of real content, and the speed with which

mash-ups can be created with a minimum of effort.

The first version of this system used the Amazon E-

Commerce API and the Google SOAP Search API to

execute a user-initiated search of both Amazon’s book

database and Wikipedia’s articles (this functionality is

now present in the A9 search engine which allows for

side-by-side searching of multiple sources; the first

Wasabe prototype was created before the A9 release).

The authors were able to build the first Wasabe

prototype in less than 10 minutes, writing only 100

lines of PHP code.

Two subsequent revisions have been made to

Wasabe to connect the search results to our

university’s library catalog system. The second

1 http://www3.isrl.uiuc.edu/~mjones2/wasabe/index.html

Figure 2. Wasabe mash-up prototyping a
hybrid library catalog search.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5

version added 30 more lines of PHP code. These extra

lines expanded the functionality in two ways: first,

they recursively searched the Amazon database, using

Amazon’s recommendations to find related items and

their ISBN’s; second, the ISBN’s were appended to a

library web catalog search URL, used to query the

catalog and determine whether the book was available.

Searching the library’s catalog on the server side

proved to be too slow, so a third version was written

using AJAX (Asynchronous JavaScript And XML)

techniques to perform the same operation and load the

data on the client side. This version has a combined

total of 125 lines of JavaScript and PHP code.

While the final version had three times more code

than the first, the total amount is still very small

considering the functionality it provides. It is also

worth noting that very little of the code in any version

is significantly more complex than simple looping

operations to count things up or print things out.

Despite being created by an experienced programmer,

the speed at which Wasabe was created and the

simplicity of the underlying code were amazing.

The access to large amounts of real content was

also vital to Wasabe’s success as a proof of concept.

The nature of the research question being asked in the

Wasabe development necessitated a large catalog of

books, a database of user browsing and purchasing

habits, and an extensive encyclopedia of information.

Arguably, such a prototype could only exist as a mash-

up. Attempts to prototype the system using a small

sampling of data or a mocked-up database of records,

would be unlikely to have yielded many insights into

its utility as it would have constrained the user

experience to performing artificial tasks. By

harvesting real data, the authors were able to

demonstrate the utility of including both bibliographic

and contextual information within the same interface.

4.2. Teaching, simplifying and democratizing

mash-ups

As mentioned above, mash-up development

currently requires a diverse knowledge and skill set.

We suspect that most of the confusing details of mash-

up creation are not inherent to the concept and can be

simplified through a mixture of social (teaching and

explaining) and technical (better design environments

and toolkits) means. Through such means the barriers

to creating web mash-ups can be lowered even farther.

As a preliminary investigation of this, one of the

authors recently taught an undergraduate course on

Web Technologies as part of a Minor in Information

Technology Studies. Students were sophomores,

juniors, and seniors from a range of majors including

graphic design, psychology, political science, finance,

comparative literature, media studies, and rhetoric;

most students had no prior programming experience.

As part of a 15-week semester covering a range of

other topics, the students’ final team projects were to

build a prototype web mash-up of their choosing using

their newly-gained knowledge of HTML, XML, CSS,

JavaScript and other related technologies. All of the

groups took a very need-oriented approach to the

project and developed ideas which satisfied perceived

needs in the students’ lives.

One team decided to tackle a common problem

with course registration [7]. As new undergraduates

unfamiliar with all of the buildings on a large campus,

they had each experienced the pains of having

scheduled consecutive classes at opposite ends of

campus, leaving them an impossible distance to cross

in the ten minutes between classes. The team decided

to create a web mash-up which would combine course

time and location information with a map-based

interface, so that students could see how far apart the

buildings were and plan their schedule accordingly.

The prototype combined Google Maps with a

sampling of courses harvested from the university

timetables. In the campus route planner mash-up,

when students select a course, it is added to their daily

route, showing them the distance they would have to

travel and giving them an overall picture of how much

walking they would have to do each day (Figure 3).

Most of the students in the class had no prior

programming experience, and the only experience the

class provided them with was a brief introduction to

JavaScript. Yet by the end of the course they were able

to create functional prototypes. Their primary method

for creating prototypes was to copy code from existing

mash-ups and modify and incorporate it into their own

work. This suggests that an explosion of web mash-

ups made by non-technophiles similar to the explosive

growth of the web by non-technophiles copying

HTML pages is a distinct possibility in the near future.

Figure 3. Campus route planner mash-up built
by students to help plan a class schedule.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6

4.3. Patchwork prototyping in a cyber-

collaboratory

We were involved in a project building a

cyberinfrastructure for environmental engineers. In

this project, the developers built a prototype

cybercollaboratory using as the foundation an open-

source portal called Liferay. One of the key features of

this project was how rapidly the prototypes were

created (new iterations were often ready in less than a

week), and, as a result, how un-invested the

developers were in any particular version of the

prototype. The following example illustrates how

through user feedback a particular function within the

prototype was changed over time.

At an early stage, based on feedback from the

stakeholders, a need was identified for users to

collaboratively edit documents in the system. To

provide this functionality the developers simply

enabled a wiki portlet available for Liferay. However,

users found the wiki too difficult to use, partly because

of confusion with the wiki-markup syntax, and partly

because they had no immediate tasks which clearly

lent themselves to the use of the tool. Later, some

members of the design team wanted to demonstrate

the usefulness of scenarios and personas in facilitating

requirements gathering. Based on their prior

experience of success with this approach they

suggested using a wiki. In response to this request and

the prior difficulties in using the bundled wiki, the

developers installed MediaWiki on the server, and

added a link from the CyberCollaboratory's menu next

to the existing wiki tool pointing to the MediaWiki

installation. No time was spent trying to integrate the

Liferay and MediaWiki systems; each application had

separate interfaces and user accounts. They were only

connected by a simple hyperlink and thus in users’

conceptions. A benefit of using MediaWiki was that it

allowed people to use the system without logging in,

thereby mitigating the need to integrate authentication

mechanisms. Users found the MediaWiki system

significantly easier to learn and use, and became eager

adopters, using it exclusively over the built-in Liferay

wiki. The wiki was later embedded in the Liferay

system using an HTML IFRAME, and the

authentication mechanisms of the two systems were

eventually integrated.

As users began incorporating the prototype into

their daily activities, it quickly became clear that

different users in different social contexts needed

different means of interacting with the tool. Some

people in administrative roles needed the collaborative

editing functionality integrated with the rest of their

real-life administrative activities, because that was

their primary use of the tool. Others were mostly using

the tool for exploring the nature of what should be

built next, for example by generating and refining

scenarios. They wanted the tool kept visually distinct

from the other functions of the system because they

saw it as a separate module of the system, devoted

entirely to a particular task. This difference in needs

and use raises two issues. Firstly there is the common

problem of uncovering the different uses and users

that the software needs to accommodate, which leads

to various incremental design tradeoffs. But

additionally, there is an interesting consequence of

being able to develop prototypes that are robust

enough for some everyday use. This led to real life use

needs interacting with more conventional

experimenting with a proof of concept. Without

paying attention to how social roles and workflows

were evolving, the designers would have been unable

to properly incorporate the tool into the system.

The Liferay portal offered developers the

opportunity to explore other features as well via

tighter integration with the extensible Liferay

framework. The developers built prototypes of

research tools for monitoring developments on the

web using the Heritrix web crawler and Lucene search

engine; incorporated a prototype of a GIS system

using the open-API Google Maps system; and built an

awareness monitor using RSS feeds. They also used

numerous existing portlets already written for Liferay.

Not all of the imported applications were publicly

available OSS; some were in-house applications

developed by other projects, for which developers had

complete access to the source code. These were used

to build a data-mining application and a knowledge

management tool.

Common through all of these experiences was the

relative ease with which the developers were able to

rapidly explore different options and variations. The

prototype changed over time reflecting the developers’

evolving understanding of users’ needs.

4.4. Patchwork prototyping in community

inquiry labs

Community Inquiry Labs (iLabs) are part of a

project investigating the design and development of

web-based tools to support inquiry-based learning and

teaching. The iLabs system allows groups of users to

create a collaborative space, customized in the

number, type, presentation and description of various

core tools to support information creation and sharing,

communication and collaborative interaction. In this

example we focus on the ease of integrating OSS into

an existing prototype.

In the earliest version of iLabs, users expressed an

interest in having a bulletin board tool. The developers

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7

selected the phpBB system and manually installed

copies of phpBB for each community that wanted a

bulletin board; the bulletin board was simply

hyperlinked from the community's iLab.

In the next iteration of the prototype, the phpBB

system was modified to be more integrated with the

rest of the prototype. The integration of phpBB took a

developer an afternoon and required modification of

one file in the phpBB system, adding about 25 lines of

new code (much of it copied from other functions in

the phpBB code) and modifying two other lines

elsewhere in the same file. A function was added to

the iLabs source (about 30 lines of code) containing

the SQL statements needed to create a phpBB forum

and associate it with an iLab, and a hyperlink was

added to the interface to execute this function.

The minimal coding effort had a big payoff: it

integrated the full functionality of the phpBB system

with iLabs. Users could now install a bulletin board

themselves, without involving the developers, by

clicking a link on the interface. Furthermore, bulletin

board authentication and account management was

integrated with the rest of the prototype, eliminating

the need for users to log in twice.

5. Discussion

There are two perspectives from which one can

describe the similarities between web mash-ups and

patchwork prototypes. One is technical, involving the

common property of drawing upon a disparate variety

of computational resources including APIs, OSS, and

web services in general. The ease with which all of

these components can be combined and the relative

power of the resultant combination are significant

when compared with the amount of time and effort it

would take to code a similar result in more

conventional ways, even with extensive use of

software libraries and other traditional forms of code-

sharing. The sharing involved in using APIs and OSS

software goes beyond the sharing of algorithms typical

in code libraries. It is a sharing of development

experience, as the massive amount of effort put into

creating web services and OSS has already discovered

and overcome a whole series of bad design ideas the

hard way, which is something the mash-up or

patchwork prototype developer would need to re-

experience using traditional methods. As such, these

approaches seem to get to the heart of the promise and

potential of software reuse, advocated in software

engineering research for many years but rarely

attaining the levels of adoption and efficiency

predicted for it.

The other perspective is social, involving the user-

driven nature of both processes. There is a long history

of technology users being side-lined in development.

The problem became so acute, that entire academic

fields such as Human-Computer Interaction (HCI),

Social Informatics (SI), and Science and Technology

Studies (STS) have developed in order to understand

and rectify this problem. However, even the most

democratic and inclusive methods for including users

in the design process, such as participatory design

(PD), have only a mixed history of success.

The failures of PD are often attributed to an

incorrect application of the method [3], [5]. It is

interesting to note that many of the projects which

have used traditional PD techniques have been

initiated by management with the goal of increasing

workplace efficiency, software companies trying to

develop new software, or anybody else besides the

people who will actually be using the technology.

While this fits with the overall PD agenda of

empowering workers and ensuring that new software

they are compelled to use does not adversely affect

their working conditions or job security, it is still a far

cry from technological innovation driven by user

needs and desires [15].

Both web mash-ups and patchwork prototyping are

phenomena which have been observed first, and then

formally described, rather than invented deliberately

and implemented according to a model of how things

work, or how things might work better. As a result,

they are reflective of the models users have for using

technology in their lives: i.e., a problem driven model.

This emergent model seems to call for a reformulation

of the traditional concept of design.

In traditional models, like the waterfall model [22],

the conception is usually linear, and can be captured

by the following oversimplification: Design � Build

� Use. The emergent user-driven approach calls for a

more circular model (Figure 4). In this model, the

starting point is people’s every-day lives. In the course

of living their lives, they encounter problems. These

problems may be with existing technologies that they

happen to be using, or they could be problems which

have little to do with technology, but which people

think that technology could be used to solve. Because Figure 4. The user-driven model.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8

of the ease with which mash-ups can be constructed,

or patchwork prototypes restructured, a quick fix is

built that addresses the immediate problem. This

building phase is then followed by a reflection on how

the new fix plays into the comprehensive design of the

system, and how else the need might be addressed

through a reformulation of the current concept of the

system design. After the system has been adjusted to

take into account the new design, it is reintroduced

into people’s lives, and they continue with their every-

day activities until the next problem occurs. Thus, a

key feature of this model is not just its shape but how

quickly it is possible to cycle around it.

Of course iterative and spiral models have been

advocated for a very long time [6]. The methods

described here are in that tradition, but emphasize the

impact that very rapid prototyping by assembly of pre-

existing components can have on speeding up the

iterative cycle. As a result, each step of the process

needs to be less thorough as more cycles are possible

in the same time, with more opportunities to identify

and correct errors. This in turn means that the

informality and creativity, indeed playfulness of the

design processes can mesh with similar approaches for

requirements capture and evaluation, fitting most

appropriately with the aims and ethos of PD.

The extent to which the design component is

present in web mash-ups may be debatable. Most web

mash-ups of any duration, however, end up going

through several iterations of progressive refinement of

the concept. Thus, while the reflection on the design

might not be as explicit a part of the process as it is in

the patchwork prototyping model, it is clearly present

in the mash-up programmer’s reflection on the

personal use of his or her mash-up, or the comments

received from other users.

5.1 Contribution of recent trends

The recent trends encapsulated by the term Web 2.0

and open participatory movements such as OSS

provide components allowing user-driven approaches

to be more successful. Web mash-ups are

fundamentally dependent on the vast array of APIs

currently available, and the relative simplicity of

integrating the APIs into working code. They are also

dependent on the Web 2.0 service model which

companies such as Amazon and Google have

epitomized. These companies provide the fruit of

considerable development resources vast computing

power and vast amounts of organized content to

innovators, essentially for free, and the creativity and

diversity of ideas of how to combine and recombine

these various services is evident from the number of

mash-ups currently being created.

Similarly, patchwork prototyping would be

impossible without the vast array of high quality OSS

applications that exist today. Without this quality

code, developers would be unable to customize and

glue together applications as quickly and easily, and

would have to forsake the speed that is the essential

point of the technique. Without having several

different high-quality applications to choose from to

prototype any part of the system, it would not be so

easy to switch out a module and replace it with a more

appropriate one as the needs and desires of the users

evolve and are refined. The key is to have high-fidelity

modules, and if the modules used in the prototyping

process are buggy or unreliable, the users will simply

be frustrated by the prototype, and not be able or

motivated to use it to explore the design space. Thus,

while patchwork prototyping may seem like an

obvious solution for eliciting design requirements, it

was impossible to do before the OSS movement

became both strong and prolific.

6. Conclusion

Web mash-ups and patchwork prototyping are two

methods enabling user-driven design that are now

possible with the technologies and mindsets that

accompany recent trends in software development

such as Web 2.0 and OSS. The methods are not

wholly new. They are firmly rooted in both formal

traditions of software reuse and component based

programming, and informal techniques of tinkering

and experimenting with toy applications and proofs of

concept. What is noteworthy is how they manage to

combine (even mash-up) these traditions to enable

larger numbers of people to produce experimental

software that is robust enough to be tested in everyday

situations and hence go through very rapid iterations

of development and authentic situated evaluation.

With web mash-ups, individuals and small groups

are able to create their own technological solutions to

the problems they face in their everyday life, without

the need to be expert programmers. Patchwork

prototyping is a more formal design technique which

allows such user-driven technological innovation to

occur with the support of developers, and on a larger

scale (i.e., to support communities). In both methods

technological innovation is initiated by users, and the

innovation is driven by user needs and experiences as

they incorporate the technologies into their every-day

life. From a technological standpoint, the methods are

similar in that both take full advantage of the

computational power, encoded experience, and

diversity of options of various already-built

computational tools in an exercise of recombination

and bricolage. The end result is better software

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9

because it is specifically geared to meet the needs of

the users involved in the development process.

7. Acknowledgements

The authors would like to thank the other members

of the design teams we worked with while making the

observations that led to the development of these

ideas, particularly Luigi Marini and Yong Liu.

8. References

[1] Berners-Lee, T., Cailliau, R., Groff, J.F. and

Pollerman, B., “World-Wide Web: The Information

Universe”, Electronic Networking: Research, Applications

and Policy, 1(2), 1992, 52-58.

[2] Berners-Lee, T., Hendler, J. and Lassila, O., “The

Semantic Web” Scientific American, 284(5) 2001. pp 34-43

[3] Blomberg, J.L. and Henderson, A., "Reflections on

Participatory Design: Lessons from the Trillium

Experience," Proceedings of CHI’90, ACM Press, Seattle,

WA, April 1990, pp. 353-360.

[4] Bødker, S. and Grønbæk, K., “Cooperative

Prototyping: Users and Designers in Mutual Activity”,

International Journal of Man-Machine Studies, 34(3), 1991,

453-478.

[5] Bødker, S., and Iversen, O.S., “Staging Professional

Participatory Design Practice – Moving PD beyond the

Initial Fascination of User Involvement”, Proceedings of

NordiCHI, ACM Press, 2002, pp.11-18.

[6] Boehm, B., "A Spiral Model of Software

Development and Enhancement," IEEE Computer, 21(5)

1988, pp. 61-72.

[7] Dombrowski, A., Marselle, J. and Szot, L., “The

Banner Schedule Route Planner” Technical Report ISRN

UIUCLIS--2006/12+CSCW, 2006.

[8] Feldstein, M. and Masson, P., “Tutorial: Unbolting

the Chairs: Making Learning Management Systems More

Flexible”, eLearn, 2006(1), 2006, p. 2.

[9] Floyd, C., “A Systematic Look at Prototyping”, In

Budde, R., Kuhlenkamp, K., Mathiassen, L., and

Zullighoven, H. (Eds.), Approaches to Prototyping.

Springer-Verlag, Berlin, 1984, pp. 1-18.

[10] Gunderson, P.A., “Danger Mouse's Grey Album,

Mash-Ups, and the Age of Composition.”, Postmodern

Culture & the Johns Hopkins University Press, 15(1),

September 2004.

[11] Heineman, G.T. and Councill, W.T. "Component

Based Software Engineering: Putting the Pieces Together"

Addison-Wesley 2001.

[12] Jones, M.C., Floyd, I.R and Twidale, M.B.

"Patchwork Prototyping with Open-Source Software" in The

Handbook of Research on Open Source Software:

Technological, Economic, and Social Perspectives, St.

Amant, K. and Still, B. (Eds), Idea Group, 2007.

[13] Jones, M.C., Rathi, D. and Twidale, M.B., "Wikifying

Your Interface: Facilitating Community-Based Interface

Translation", Proceedings of ACM Conference on Designing

Interactive Systems, 2006. pp. 321-330.

[14] Kaghan, W.N. and Bowker, G.C., “Out of Machine

Age?: Complexity, Sociotechnical Systems and Actor

Network Theory”, Journal of Engineering and Technology

Management, 18(3-4), 2001, pp. 253-269.

[15] Kensing, F., and Blomberg, J., “Participatory Design:

Issues and Concerns”, Computer Supported Cooperative

Work, 7(3-4), 1998, pp. 167-185.

[16] Kling, R., “Learning About Information Technologies

and Social Change: The Contribution of Social Informatics”,

The Information Society, 16, 2000, pp. 217-232.

[17] Nardi, B.A. and Miller, J.R., “Twinkling lights and

Nested Loops: Distributed Problem Solving and Spreadsheet

Development”, International Journal of Man-Machine

Studies, 34(2), 1991, pp. 161-184.

[18] Nielsen, J., Usability Engineering. Morgan Kaufman,

San Francisco, CA, 1993.

[19] O’Reilly, Tim “What Is Web 2.0: Design Patterns and

Business Models for the Next Generation of Software”,

2005, www.oreillynet.com/lpt/a/6228.

[20] Rademacher, P., “Are You Ready for Web 2.0?”,

BayCHI, www.baychi.org/calendar/20050809/, Aug. 2005.

[21] Raymond, E.S., The Cathedral & the Bazaar: Musings

on Linux and Open Source by an Accidental Revolutionary,

O’Reilly and Associates, Sebastapol, CA, 2001.

[22] Royce, W.W., “Managing the Development of Large

Software Systems,” Proc. of IEEE Wescon, 1970, pp. 1-9.

[23] Trist, E.L., “The sociotechnical Perspective; the

Evolution of Sociotechnical Systems as a Conceptual

Framework and as an Action Research Program", in Ven,

A.H. van de, and Joyce, W.F., Perspectives on Organization

Design and Behavior, Wiley, New York, 1981, pp. 19-75.

[24] von Hippel, E., “Innovation by User Communities:

Learning from Open Source Software,” Sloan Management

Review, 42(4), July, 2001, pp. 82–86.

[25] Weiss, A., “The Power of Collective Intelligence”,

netWorker, 9(3), ACM Press, 2005, pp. 16-23.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10

