
J:\INFORMATION MANAGEMENT\PROJECT MANAGEMENT\espace@Curtin\--- SHARED PROCESSING --\Procedures
2008\Attributions and links by publisher\IEEE attributions.doc

2

©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Knowledge Analysis with Tree Patterns

Fedja Hadzic1, Tharam S. Dillon1, Elizabeth Chang1
1Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology,

Perth, Australia
 fedja.hadzic@postgrad.curtin.edu.au

{tharam.dillon, elizabeth.chang}@cbs.curtin.edu.au

Abstract
Tree-structured knowledge representations

are increasingly being used since the
relationships between data objects can be
represented in a more meaningful way. A
number of tree mining algorithms were
developed for mining different subtree types
using different parameters. At this point in
research it would be useful to discuss what kind
of sub-problems can be solved within the current
tree mining framework. In this paper we provide
a general overview of the development in the
area of tree mining and discuss motivations and
useful application areas for each development.
Implications of using different tree mining
parameters and constraints are discussed. Such
an overview will be particularly useful for those
not so familiar with the area of tree mining as it
can reveal useful applications within their
domain of interest. It gives guidance as to which
type of tree mining will be most useful for their
particular application.

1. Introduction

Tree mining algorithms have found many
useful applications in areas such as
bioinformatics, scientific knowledge
management, web mining, XML mining, etc.
One of the key issues in the knowledge
management field is how to compare and match
the knowledge structures obtained from
heterogeneous sources. The tree structured
knowledge representations can be increasingly
found in many biomedical, web and scientific
domains, where traditional structured
representations would fail to capture the desired
semantics and relationships of data objects. This
in turn has given rise to the development of new
algorithms capable of efficiently extracting
information presented in semi-structured form.
These are generally known as frequent subtree
mining algorithms and the problem can be stated
as: given a tree database Tdb and minimum
support threshold (σ), find all subtrees that occur
at least σ times in Tdb. The scope of their

application usually depends on the assumptions
made about the data structure that the algorithm
is to be applied on. These assumptions depend
upon the domain of interest and what task is to
be accomplished in a particular application. The
two most commonly mined subtrees are induced
and embedded. An induced subtree preserves the
parent-child relationships of each node in the
original tree. In addition to this, an embedded
subtree allows a parent in the subtree to be an
ancestor in the original tree and hence ancestor-
descendant relationships are preserved over
several levels. Depending on whether the order
of sibling nodes is to be considered important
these subtrees can be further split into ordered
and unordered subtrees. The available support
definitions to use are transaction based,
occurrence match [30, 25]. and hybrid support
[12], and these will be explained in detail later in
the paper.

The overview of the frequent subtree mining
area presented in [6] is focused on algorithm
comparisons and various implementation issues,
such as the candidate enumeration approach,
frequency counting and the representative
structure of the tree. There exist a number of
approaches that mine different subtrees using
different support definitions and the implication
for general knowledge analysis has not been
addressed to a great detail. Hence at this point in
tree mining research it is desirable to discuss the
general implications behind using different types
of tree mining algorithms.

In this paper we provide a general overview
of the development in the area of frequent
subtree mining. A discussion is provided on the
motivations and implications for mining
different subtree types and using different
support definitions. We also discuss the
motivation behind imposing some constraints on
the embedded subtree type. For each support
definition (Section 2), subtree type (Section 3)
and constraint (Section4), example scenarios are
provided where the use of these particular tree
mining parameters will prove useful. We do not

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

1530-1605/08 $25.00 © 2008 IEEE 1

perform any experimental comparisons of the
listed algorithms since many of the comparisons
have already been provided in [6, 25, 11, 13].
This kind of overview will be particularly useful
for those not so familiar with the area of tree
mining as it can reveal useful applications within
their domain of interest. It gives guidance as to
which type of tree mining will be most useful for
their particular application and it lists the tools
available whose performance they can trace in
the references. Section 5 lists the available
algorithms for mining of the defined subtree
types within the current tree mining framework.

2. Support definitions

This section describes the current support
definition used within the frequent subtree
mining framework. Each subsection starts by
providing a definition of the support type and
describes the motivation for its use.

2.1. Transaction-based support

To clarify the term transaction when used in
the context of tree mining we find the following
definition suitable. A transaction is a set of one
or more items obtained from a finite item
domain, and a dataset is a collection of
transactions [4]. Hence, in the context of a tree
database, a transaction would correspond to a
fragment of the database tree whereby an
independent instance is described. When using
the transaction based support (TS) definition, the
support (σ) of a subtree t in tree database Tdb is
equal to the number of transactions in Tdb that
contain at least one occurrence of subtree t. If we
let the notation t≺ k, denote the support of
subtree t by transaction k, then for TS, t≺ k = 1
whenever k contains at least one occurrence of t,
and 0 otherwise. Suppose that there are N
transactions k1 to kN of tree in Tdb, the
transactional support of subtree t in Tdb is
defined as:

∑
=

N

i
ikt

1

≺

In traditional frequent itemset mining from
relational data checking whether an item exists
within a transaction is sufficient to determine the
traditional support definition. Hence using
transactional support would appear to be the
obvious choice when moving from relational to
XML frequent pattern mining. Furthermore, it is
common that in transfer from relational to XML
data an instance in relational data is described by

one transaction in XML data. This has made
transaction-based support the focus of many tree
mining works and from the available support
definitions it is the simplest one to consider.

2.2. Occurrence match support

Occurrence match support (OC) takes the
repetition of items in a transaction into account
and counts the subtree occurrences in the
database as a whole. Hence for OC, the support
(σ) of a subtree t in tree database Tdb is equal to
the total number of occurrences of t in all
transactions in Tdb. Let function g(t,k) denote
the total number of occurrences of subtree t in
transaction k. Suppose that there are N
transactions k1 to kN of tree in Tdb, the
occurrence match support of a subtree t in Tdb
can be defined as:

∑
=

N

i 1

 ki)g(t,

To illustrate the importance of occurrence
match support, consider the partial XML
representation of protein data displayed in Figure
2. The original dataset describes a protein
ontology instance store for Human Prion
Proteins in XML format [21]. Protein Ontology
(PO) provides a unified vocabulary for capturing
declarative knowledge about the protein domain.
and classifies that knowledge to allow reasoning.
Using the PO format, ATOMSequence labels
can be compared easily across PO datasets for
distinct protein families to determine sequence
and structural similarity among them. Structured
ATOMSequence labels, with repetition of Chain,
Residue and Atom details can be used to
compare a new unknown protein sequence and
structure with existing proteins in the PO dataset,
which helps users in drug discovery and design.
In this case the repetition in the structure of the
protein is of considerable importance.

Figure1. Snapshot of the representation of

Human Prion Protein dataset in XML format

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

2

Another scenario where occurrence match

support may be important is when performing
specialized queries on a tree structured database.
As an example, consider a publication based
library where author information is stored
separately in each transaction (eg. Figure 2). A
user may be interested in finding out information
about the total number of books that were
published in a certain year by a certain publisher.
To satisfy this query, the repetition of book-year-
publisher relations within a transaction will need
to be considered. The answer is given by the
total number of occurrences of relation book-
year-publisher in the whole database. In these
scenarios the repetition of items within a
transaction is considered important and the
knowledge of the number of repetitions provides
useful information.

2.3. Hybrid support

As the name implies for hybrid support (HS)
definition we are combining TS with OC support.
The support of a subtree t is denoted by ‘x|y’,
where ‘x’ denotes the number of transactions that
support subtree t, and y denotes the least number
of times that t has occurred in those x
transactions. HS provides extra information
about the intra-transactional occurrences of a
subtree. Hence, using HS threshold of x|y, a
subtree is considered frequent iff it occurs in x
transactions and it occurs at least y times in each
of the x transactions. To determine if a subtree is
frequent the transaction support definition from
Section 2.1 can be used with the difference that
t≺ k = 1 iff g(t,k) ≥ y, and t≺ k = 0, otherwise.

In certain applications the number of times a
subtree occurs within a transaction is of interest.
Example applications could be taken from many
web information systems applications, where
specialized queries on tree structured databases
commonly take place. As an example, consider
a publications database where author information
may be separately stored in each transaction, as
shown on left of Figure 2.

Figure 2. Example publications database DB

(left) and query subtree (right)

A user may be interested in finding ‘n’

number of authors that have published at least ‘x’
books with publisher ‘Y’. To satisfy this query,
the repetition of author-book-publisher(Y)
relation within a transaction will need to be
considered. This query is displayed on the right
of Figure 2 and the HS threshold would be equal
to n|x since author information is stored
separately in each transaction, and we want to
find at least ‘x’ books with publisher ‘Y’. In
these scenarios HS would provide useful
information automatically without any post
processing which would need to occur if either
OC or TS supports were used.

3. Subtree types

This section starts by providing a quick

overview of some basic tree concepts. It then
discusses the common subtree types considered
within the tree mining area. Each type is
separately explained and the differences in
implication and uses within a particular
application are discussed.

A tree can be denoted as T(V,L,E), where (1)
V is the set of vertices or nodes; (2) L is the set
of labels of vertices, for any vertex v∈V, L(v) is
the label of v; and (3) E = {(x,y)| x,y∈ V } is the
set of edges in the tree. A root is the topmost
node in the tree. The parent of node v is defined
as the predecessor of node v. A node v can only
have one parent while it can have one or more
children which are defined as its successors. A
node without any child is a leaf node; otherwise,
it is an internal node. If for each internal node,
all the children are ordered, then the tree is an
ordered tree. The number of children of a node
is commonly termed as fan-out/degree of the
node. A path from vertex vi to vj, is defined as
the finite sequence of edges that connects vi to
vj. The length of a path p is the number of edges
in p. If p is an ancestor of q, then there exists a
path from p to q.

3.1. Ordered Induced Subtrees

A tree T’(V’, L’, E’) is an ordered induced
subtree of a tree T (V, L, E) iff (1) V’⊆V, (2)
E’⊆E, (3) L’⊆L and L’(v)=L(v), (4) ∀v’∈V’,
∀v∈V, v’ is not the root node, and v’ has a parent
in T’, then parent(v’)=parent(v), (5) the left-to-
right ordering among the siblings in T’ is
preserved. An induced subtree T’ of T can be
obtained by repeatedly removing leaf nodes or

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

3

the root node if its removal doesn’t create a
forest in T.

These subtrees are the simplest among the
ones considered in this paper, and the main
implication is that the parent-child relationships
must remain the same as in the original tree. As
such they have been extensively used and are the
most common type considered by the tree
mining algorithms. A reason for this would be
explained as that when transforming from
relational data into tree structured data the
derived tree structure itself has only a few levels
and hence all the meaningful information is
effectively represented by an induced subtree.

As an example, consider again the tree
representation of a publication database DB from
Figure 2. If all the frequent ordered induced
subtrees are extracted then all the possible
queries could be answered with respect to the
minimum support threshold used. The example
query subtree on left of Figure 2 is of induced
subtree type and in fact all particular queries
could be answered with subtrees of an induced
type. Hence, an algorithm for mining induced
subtrees would be sufficient for this application.

The popularity of mining induced subtrees
could be partly because they are the most easily
detected subtree type by a human observer and it
is naturally to think of subtrees in this sense.
However when certain application indicated the
need for extending the parent-child relationship
between the nodes to ancestor-descendant the
focus has shifted toward the mining of embedded
subtrees. This allows one to detect information
embedded deeply within the tree structure and
the importance of this is discussed next. Induced
subtree are a subset of embedded subtrees and
hence mining embedded subtree adds much more
complexity to the task.

3.2. Ordered Embedded Subtrees

A tree T’(V’, L’, E’) is an embedded subtree
of a tree T(V, L, E) iff (1) V’⊆V, (2) if (v1,v2) ∈
E’ then parent(v2) = v1 in T’, only if v1 is
ancestor of v2 in T and (3) L’⊆L and L’(v)=L(v).

When structurally rich information is
represented using XML it is quite common that
the document is organized into several levels and
each transaction can be many levels deep. In
these cases many query trees posed on an XML
document may be of embedded subtree type
since there will be many more ancestor-
descendant relationships present among the
nodes. Furthermore, certain concepts may be

represented in a more specific/general way in
certain documents.

When trying to find the common structures
among knowledge representations if embedded
subtrees are mined we are allowing structures to
be considered similar even if they occur at
different levels in the tree. In an embedded
subtree the relationship is not limited to parent-
child and hence by allowing ancestor-descendant
relationships enables the extraction of more sub-
structures where the levels of embeddings
between the nodes are not limited to one and can
be different. For example if in knowledge
representation ‘A’ the level of embedding
between the nodes ‘a’ and ‘b’ representing some
domain concepts is much larger than the level of
embedding between the nodes representing the
same concepts in knowledge representation ‘B’,
then ‘A’ stores more specific knowledge about
the concept represented by node ‘a’. Since it is
common that knowledge representations could
differ in the amount of specific knowledge
stored, mining of embedded subtrees is more
suitable for general knowledge comparison.

The representations used in our example
from Figure 3 correspond to the knowledge
models used for classification purposes, and
hence the extra specific knowledge corresponds
to the additional number of attribute constraints
used for further separation of class values. The
knowledge models were obtained using data
mining tools on the publicly available datasets
describing the 1984 United States Congressional
Voting Records Database [5]. We used different
subsets of data and a feature selection approach
[9] in order to mimic a real world scenario when
different organizations collect their own sets of
data and find different features to be relevant.
Each of the knowledge models is represented as
a separate subtree (transaction) within the tree
database and transaction based support is used to
extract the largest embedded subtree that occurs
in each transaction. If we have k different models
than a subtree will only be considered frequent if
it occurs in all k models. Hence, the transaction
based support was used with the threshold of 2.

Please note that since in this domain we are
dealing with a binary classification problem and
the knowledge model is represented by a binary
decision tree, we filter out any of the subtree
patterns where any of the nodes has a degree
larger than 2. These patterns would be
meaningless as there would be three class values
distinguished by two attribute constraints. They
do not indicate substructures that imply true

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

4

shared knowledge since their classificatory
purpose has been lost.

Figure 3. Different knowledge models (KM1,

KM2, KM3) and the shared conceptualization
(common embedded subtree KS)

The largest frequent ordered embedded
subtree (KS) would display the largest common
structure between the KMs and is displayed last
in Figure 3. By comparing KS with the
knowledge models we can see that it was
necessary to mine embedded subtrees in order to
detect the common knowledge structure. If
induced subtrees were mined only the root node
and its value nodes would be considered
frequent. KM2 only differs to the Ks in the sense
that it has one extra attribute after the last node
which splits the class values further into ‘D’ and
‘R’, rather than generalizing it to ‘R’. The
knowledge model KM1 stores two additional
attributes after the first attribute node. We can
say that KM2 is only more general than KM1 in
between the first and second attribute while it is
more specific at the last node.

Merging of knowledge structures has been
of interest for a long time and many useful
applications can be found in e-commerce,
enterprise application integration and the general
management of scientific knowledge. Another
related area where merging of tree structured
knowledge models will be useful is in a
classification ensemble which is a multi-
classifier system where each classifier is
developed for the same domain problem [18].
The shared knowledge structure would indicate
the general knowledge of the domain. The new
classifier is then expected to have better
generalization capability and hence be more
accurate in classifying future unseen data
objects. As shown in Figure 3 mining of
embedding subtrees can be useful for this task.

As already noticed in some of our examples
mining of ordered subtrees is useful for queries
performed on a single database where the sibling
node order is already known and hence the order
restriction can be placed on the subtree. Ordered
subtrees have many applications in molecular
biology [19] protein structure analysis [10],
natural language processing [16] etc. A general
remark for these applications is that the left-to-
right order among sibling nodes is commonly
fixed and known beforehand.

Even though in this example it happened to
be that the common subtree was ordered in the
same order among all the knowledge models, the
order among any sibling nodes could be
exchanged and the information content would
still be the same. When comparing conceptual
knowledge models, different sibling node order
usually does not make the structure match any
less. Hence, the order of sibling nodes does not
need to be preserved in which case we are

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

5

talking about unordered subtrees which are
discussed next.

3.3. Unordered Subtrees

The definitions of unordered induced and
embedded subtrees would be the same as those
in Sections 3.1 and 3.2., respectively, with the
only difference that the condition (5) can be
relaxed so that the order among sibling nodes
does not need to be preserved.

In many cases the order among the sibling-
nodes is considered irrelevant to the task and is
often not available. If one is interested in
comparing knowledge structures among different
documents it is very common that the order of
sibling nodes may differ but the information
contained in the structure is essentially the same.
In these cases mining of unordered subtrees is
much more suitable as a user can pose queries
and does not have to worry about the order. All
matching sub-structures will be returned with the
difference being that the order of sibling nodes is
not used as an additional candidate grouping
criterion. This makes the task more complex
since a group of ordered subtrees now maps to
only one unordered candidate, and hence
determining tree isomorphism is harder [27].
However, for most of knowledge management
tasks the unordered mining is starting to have
better applications.

To illustrate this consider the two example
knowledge models represented in Figure 4,
which were learned from the publicly available
‘zoo’ dataset [5]. Even though at first sight they
appear as different models, when the
classification rule underlying the structure is
examined it implies the same classification
information. Hence the order of sibling nodes did
not play any role in the information content of
the structure. Furthermore, since the user cannot
be sure of the order of sibling-nodes many
queries posed in such domains would be of the
unordered subtree type.

Figure 4. Two knowledge models (KM1 and

KM2) different in sibling node order but
representing same information

4. Constrained embedded subtrees

This section overviews some additional
constraints that can be imposed on an embedded
subtree. We narrow our focus on the actual
constraints where the general problem of
frequent subtree mining is not modified but the
traditional definition of an embedded subtree has
been changed according to the added constraint.
These constraints have been implemented within
the general TMG framework [23, 25]. Each
constraint is discussed with some application
areas where its enforcement would be useful.

4.1. Level of embedding constraint

If T’(V’, L’, E’) is an embedded subtree of T,
and there is a path between two nodes p and q,
the level of embedding (δ) is defined as the
length of the path between p and q, where p∈V’
and q∈V’, and p and q form an ancestor-
descendant relationship. A maximum level of
embedding (Φ) is the limit on the level of
embedding between any p and q. In other words,
given a tree database Tdb and Φ, then any
embedded subtree to be generated will have the
maximum length of a path between any two
ancestor-descendant nodes in T equal to Φ. In
this regard, we could define induced subtree Ti
as an embedded subtree where the maximum
level of embedding that can occur in T is equal to
1, since the level of embedding of two nodes that
form a parent-child relationship equals to 1.
The level of embedding constraint was discussed
in [25] as a way of tackling the complexity of
mining embedded subtrees. By restricting the
level of embedding the number of possible
candidates can be reduced and less time and
space is required to complete the task [25].

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

6

As was shown in the previous section there
is some difference in mining induced and
embedded subtrees. In certain scenarios,
allowing the extra embeddings can result in
unnecessary and misleading information but in
other cases it proves useful as it detects common
structures besides the difference in concept
granularity. Moving from embedded subtrees
where the allowed level of embedding is equal to
the depth of the tree to induced where the level is
limited to one, is a rather large jump and many
useful patterns could be missed. Hence in this
sense the maximum level of embedding
constraint may prove useful as one could
progressively decrease the level of embedding
which can give clues about some general
difference among the knowledge representations
compared.

4.2. Distance-constrained embedded
subtrees

A tree T’(V’, L’, E’) is an ordered distance-

constrained embedded subtree of a tree T(V, L,
E) if it satisfies all the properties of an embedded
subtrees (section 3.2), and v’∈V’ there is an
integer stored indicating the level of embedding
(δ) in tree T between v’ and the root node of T’.

Essentially this constraint allows the
subtrees to be distinguished based upon their
node distance relative to the root node. Since
many embedded subtrees can form one candidate
this adds more granularity since each of those
subtrees are now grouped as different candidates
when the distance among the nodes is different.
Hence mining distance constrained subtree is
more expensive in terms of space and time
required [23].

For some applications it is important to note
this difference so that specialized queries could
be posed. As an illustrative example, consider
Figure 5 where we display two example trees
which indicate a part of the ancestor family tree
from two ill patients (the examples were
extracted from an image of a disease family tree
obtained from [1]). Such information is used for
linkage analysis of an illness by performing gene
testing which can provide information about one
having a disease related gene mutation. When
looking for a disease gene scientists often start
by studying DNA samples from family members
over several generations that have a number of
relatives who have developed an illness [1].

Woman, ill

Mother, healthy Father, healthy

Mother, healthy Father, healthy

Mother, healthy Father, ill

Man, ill

Mother, healthy Father, healthy

Father, healthy Mother, ill

Mother, healthy Father, ill

Patient A

Patient B

Figure 5. Example representation of two ill
patients (A and B) with common ancestors

For example a scientist may want to

discover how many ill relatives an ill patient has
and to discover the number of generations that
separates them. Using the traditional embedded
subtree definition we could only extract
information about the number of ill relatives but
could not have the information about the number
of generations that separate the patient and the
relatives that have a common disease. This is
because the traditional embedded subtree
definition does not have this kind of expressive
capability. In contrast, by utilizing the distance-
constrained embedded subtrees, we can find out
exactly how many generations they are separated
by, through inspecting the distance information
stored between the nodes. From the Figure 5
patient A has only one diseased ancestor and it is
her grand-grand father, while patient B has two
diseased ancestors, a grand-mother and grand-
grand father.

Even though we do not have such an
example in a figure, it is worth noting that it
could well be the case that an ill patient will have
two ancestors of the same gender that have the
illness. In this case the traditional embedded
subtree definition would group these subtree
occurrences as one candidate and indicate
wrongly that there is only one ancestor with a
disease. On the other hand, by mining distance-
constrained embedded subtrees, both occurrences
will be considered as separate entities due to the
difference in the distance to the root node which
is used as an additional candidate grouping
criterion.

This notion of distance constrained
embedded tree mining will have important
applications in biological sequences, web
information systems and conceptual model

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

7

analysis. However it is important to note here
that by no means, we are claiming that distance
constrained embedded subtrees should replace
the mining of embedded subtrees. Embedded
subtrees without any constraint has still many
important applications an one of them was
ahown in Section 3.2.

5. Frequent subtree mining algorithms

This section gives an overview some of the
algorithms developed for the problem of frequent
subtree mining. Initially the enumeration
problem for tree-structured data is discussed
which is one of the main performance
bottlenecks. The enumeration method employed
is commonly the determining factor for the
efficiency of an algorithm since if unnecessary
candidates are generated which then have to be
checked for frequency will result in a decrease in
space and time efficiency.

With more complex relationships inherent in
tree-structured data, enumeration of subtrees
becomes more challenging than enumeration of
itemsets from structured data. The two
commonly used enumeration strategies used for
tree-structured data are enumeration by extension
and join [6]. Other reported technique to mine
frequent subtrees is to utilize the Pattern-Growth
method [28], which is an extension of the FP-
growth [14] method for structured data. Pattern-
Growth does not perform level-by-level
candidate enumeration as is normally done by
Apriori-based approaches and it is the only
known method to obtain frequent subtrees
without candidate generation process. An idea of
utilizing a tree model for efficient enumeration
appeared in [29]. The approach uses the XML
schema to guide the candidate generation so that
all candidates generated are valid because they
conform to the schema. This idea was extended
to the Tree Model Guided (TMG) candidate
generation [22, 24] which utilizes the underlying
tree-structure of the document for efficient
candidate generation. This non-redundant
systematic enumeration technique ensures that
all the candidate subtrees generated are valid, in
the sense that they conform to the structural
aspects of the document.

In regards to mining of induced ordered
subtrees some of the available algorithms are:
FREQT [2], AMIOT [15], IMB3-Miner[25],
and PrefixTreeISpan [32].

FREQT [2] algorithm uses the rightmost
expansion technique and an optimized pruning
technique. AMIOT [15], uses the ‘right-and-left

tree join’ method to enumerate only those
candidates that have a high probability of being
frequent. IMB3-Miner [25] is one of the
algorithms developed within the TMG candidate
enumeration framework and it utilizes the level
of embedding constraint to mine induced
subtrees. More recently the algorithm
PrefixTreeISpan [32] extends the notations of
prefix and post-fix from sequential mining and
uses the idea of divide and conquer to find the
complete set of frequent patterns. The main idea
is to examine the prefix-tree subtrees and project
their corresponding postfix-forests [32] into the
projected database.

Some of the existing algorithms capable of
extracting frequent ordered embedded subtrees
are TreeMiner [30], XSpanner [28], X3-Miner
[22], MB3-Miner [24], and IMB3Miner [25] The
TreeMiner [30] algorithm uses a data structure
called the vertical scope-list and utilizes the join
approach for candidate generation. TreeMiner
consists of two versions, one which adopts a
depth first search approach and the other which
uses the breadth-first approach for candidate
generation and counting. XSpanner [28] utilizes
the Pattern-Growth method for candidate
generation. X3-Miner was where the idea of
TMG was first introduced and the algorithm was
mines XML documents and returns XML sub-
patterns with label and value information. It was
not optimized very well for the problem and it
had some time efficiency issues. It was then
extended to MB3-Miner [24] which introduced
an efficient representation of a tree structure
called Embedding List [24] so that the TMG
approach can be efficiently implemented, and
this resulted in great performance increase. In
[24] authors provided a TMG mathematical
model for estimating the worst case complexity
of enumerating all embedded subtrees. This
motivated the strategy of tackling the complexity
of mining embedded subtrees by introducing the
Level of Embedding [25] constraint. Thus, when
it is too costly to mine all embedded subtrees,
one can decrease the level of embedding
constraint gradually down to 1, from which all
the obtained subtrees are induced. From the
application perspective, the work presented in
[10] demonstrates the potential of the algorithms
for mining ordered subtrees in providing
interesting information when applied to tree
structured biological data.

For the problem of extracting all frequent
unordered induced subtrees some of the existing
algorithms are: Unot [2], RootedTreeMiner [8],

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

8

HybridTreeMiner [7], the method presented by
Nijssen and Kok in [17] and UNI3 [11].

The uNot algorithm [2] uses a reverse search
technique for incremental computation of
unordered subtree occurrences. Breadth-first
canonical form (BFCF) and depth-first canonical
form (DFCF) for labeled rooted unordered trees
have been presented in [8]. In the same work the
authors proposed two algorithms:
RootedTreeMiner which is the authors’ re-
implementation of uNot, a vertical mining
algorithm based upon BFCF and FreeTreeMiner,
based on extension of DFCF for discovering
labeled free trees. As an extension to the work,
HybridTreeMiner [7] is an efficient algorithm
that systematically enumerates subtrees by
traversing an enumeration tree which is defined
based upon the BFCF for unordered subtrees.
Nijssen & Kok [17] present a bottom-up strategy
for determining the frequency of subtrees, and
argue that the complexity of enumerating
unordered trees as opposed to ordered is not
much higher. All these approaches only consider
the transactional support definition while the
UNI3 algorithm [11] which is an extension of the
TMG approach for the problem of unordered
subtree mining, can use any of the three
discussed support definitions.

There are not many algorithms available that
mine unordered embedded subtrees. TreeFinder
[26] was the first attempt which uses inductive-
logic programming for enumerating all candidate
subtrees, but which in the process can miss many
frequent subtrees. SLEUTH [31] was the first
complete approach proposed and it enumerates
unordered subtrees by using unordered scope-list
joins via the descendant and cousin tests. While
it can handle occurrence match support its main
focus is on transaction based support and there
are some limitations for occurrence match
support as demonstrated in [13]. As an extension
to the TMG framework for mining of unordered
embedded subtrees, the U3 algorithm [13] was
proposed. The previously used Embedding List
[11] was replaced by a compressed version
called Recursive List [13] that reduces the
memory space consumption and has additional
functionalities. U3 has the capability of
restricting the level of embedding allowed in the
extracted subtrees and can use any of the three
support definitions. Unordered tree mining has
been successfully applied in [20] for the analysis
of phylogenetic databases.

Besides the Razor algorithm [23], we are not
aware of any other tree mining algorithms that

take the distance among the nodes into account
when extracting all frequent embedded subtrees.

 A final note from the overviewed
approaches is that the general TMG approach for
candidate enumeration has been extended for all
the sub-problems of tree mining discussed in this
paper. Any of the subtree types can be mined and
all the support definitions can be used.
Furthermore this adaptability for a variety of
problems was never at a cost of a noticeable
reduction in efficiency since the extended
algorithms in most of cases performed better to
the state-of-the-art algorithms at that time. This
was experimentally demonstrated in [24, 25, 11,
13]. Furthermore the integration of capability for
mining constrained subtrees can prove useful for
more specific queries on knowledge
representations, as was shown in the previous
section.

6. Conclusions and future work

In this paper we have provided a general
overview of our developments in the area of tree
mining. The motivation behind each
development was illustrated with example
scenarios. An overview of possible tree mining
parameters that can be used within the current
tree mining framework was provided. These
parameters include the support definitions, types
of subtrees that can be mined, and types of
constraints that can be imposed on the subtrees.
Possible application areas and the implications of
using different tree mining parameters were
discussed, and the available algorithms using
those specific parameters were listed. Our future
work involves the integration of distance
constraint for unordered embedded subtrees and
the application of tree mining to the problems of
automatic ontology learning and matching.

7. References

[1] Access Excellence @ the national health museum
“Understanding gene testing: What does a predictive
gene tell you” Retrieved June 15, 2007, from
http://www.accessexcellence.org/AE/AEPC/NIH/gene
14.html.
[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H.
Sakamoto, and S. Arikawa, “Efficient substructure
discovery from large semi-structured data”, In Proc. of
the 2nd SIAM Int’l Conf. on Data Mining (SDM’02),
2002, pp. 158–174.
[3] T. Asai, H. Arimura, T. Uno, and S. Nakano,
“Discovering Frequent Substructures in Large
Unordered Trees”, In Proc. of the 6th Int’l Conf. on
Discovery Science, 2003.

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

9

[4] R. J. Bayardo, R. Agrawal, D. Gunopulos,
“Constraint-based rule mining on large, dense data
sets”, In Proc. of the 1999 Int’l Conf. on Data
Engineering (ICDE’99), Sydney, 1999.
[5] C. Blake, E. Keogh, and C.J. Merz, “UCI
Repository of Machine Learning Databases”.
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
[6] Y. Chi, S. Nijssen, R.R. Muntz, and J.N. Kok,
“Frequent Subtree Mining - An Overview”,
Fundamenta Informaticae, Special Issue on Graph
and Tree Mining, vol. 66, No. 1-2, 2005, pp. 161-198.
[7] Y. Chi, Y. Yang, R.R. Muntz, “HybridTreeMiner:
An efficient algorihtm for mining frequent rooted trees
and free trees using canonical forms”, In Proc. of the
16th Int’l Conf. on Scientific and Statistical Database
Management, Santorini Island, Greece, 2004.
[8] Y. Chi, Y. Yirong, and R.R. Muntz, “Canonical
Forms for Labeled Trees and Their Applications in
Frequent Subtree Mining” Knowledge and
Information Systems, 2004.
[9] F. Hadzic, and T.S. Dillon, “Using the
Symmetrical Tau (τ) Criterion for Feature Selection
in Decision Tree and Neural Network Learning”,
Proc. of the 2nd Workshop on Feature Selection for
Data Mining, in conj. with 2006 SIAM International
Conference on Data Mining, Bethesda, 2006.
[10] F. Hadzic, T.S. Dillon, A. Sidhu, E. Chang, and
H. Tan, “Mining Substructures in Protein Data”, IEEE
ICDM 2006 Workshop on Data Mining in
Bioinformatics (DMB 2006), 18-22 December, Hong
Kong, 2006.
[11] F. Hadzic, H. Tan, T.S. Dillon, and E. Chang,
“UNI3 – Efficient Algorithm for Mining Unordered
Induced Subtrees Using TMG Candidate Generation”,
IEEE Symposium on Computational Intelligence and
Data Mining (CIDM 2007), Honolulu, Hawaii, 2007.
[12] F. Hadzic, H. Tan, T.S. Dillon, and E. Chang,
“Implications of frequent subtree mining using hybrid
support definition”, Data Mining & Information
Engineering, 18-20 June, The New Forest, UK, 2007.
[13] F. Hadzic, H. Tan, T.S Dillon, and E. Chang, “U3
– Mining unordered embedded subtrees using model
guided candidate generation”, Submitted to the 6th
IEEE Int’l Conf. on Data Mining, Omaha, NE, 2007.
[14] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining
Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach”, Data Mining and
Knowledge Discovery, Vol. 8, 2004, pp. 52-87.
[15] S. Hido, and H. Kawano, “AMIOT: Induced
Ordered Tree Mining in Tree-structured Databases”,
In Proc. of the 5th IEEE Int’l Conf. on Data Mining
(ICDM’05), Houston, Texas, USA, 2005, 170-177.
[16] M. S. Neff, J.B. Roy, and A.R. Omneya,
“Creating and querying hierarchical lexical data
bases”, In Proc. of the 2nd Applied Association for
Computational Linguistics Conference, Austin, Texas,
1998, pp. 84-99.
[17] S. Nijssen, J.N. Kok, “Efficient discovery of
frequent unordered trees”, In Proc. of the 1st Int’l
Workshop Mining Graphs, Trees, and Sequences
(MGTS-2003), Dubrovnik, Croatia, 2003.

[18] A. Prodromidis, P. Chan, and S. Stolfo,
“Metalearning in distributed data mining systems:
Issues and approaches”, Proc. of the 3rd In’l Conf. on
Knowledge Discovery and Data Mining, 1997
[19] B. Shapiro, and K. Zhang, “Comparing multiple
RNA secondary structures using tree comparisons”,
Computer Applications in Biosciences, 1990, pp. 309-
318.
[20] D. Shasha, J.T.L. Wang, and S. Zhang,
“Unordered Tree Mining with Applications to
Phylogeny” 20th Int’l Conf. Data Engineering, 2004.
[21] A.S. Sidhu, T.S. Dillon, E. Chang, and B.S.
Sidhu, “Protein ontology: vocabulary for protein data”
3rd Int’l IEEE on Conf. on Information Technology
and Applications, (IEEE ICITA 2005), Sydney, 2005.
[22] H. Tan, T.S. Dillon, L. Feng, E. Chang, and F.
Hadzic, “X3-Miner: mining patterns from XML
Database”, Data Mining '05, Skiathos, Greece, 2005.
[23] H. Tan, T.S. Dillon, F. Hadzic, and E. Chang,
“Razor: mining distance constrained embedded
subtrees”, Workshop on Ontology Mining and
Knowledge Discovery from Semistructured documents
(MSD 2006), in conj. with the 2006 Int’l Conf. on
Data Mining, 28-22 December, Hong Kong, 2006.
[24] H. Tan, T.S. Dillon, F. Hadzic, E. Chang, and L.
Feng, “MB3-Miner: mining eMBedded sub-TREEs
using Tree Model Guided candidate generation”, Proc.
of the 1st Int’l Workshop on Mining Complex Data,
held in conj. with ICDM’05, Houston, USA, 2005.
[25] H. Tan, T.S. Dillon, F. Hadzic, L. Feng, and E.
Chang, “IMB3-Miner: Mining Induced/Embedded
Subtrees by Constraining the Level of Embedding”
PAKDD’06, Singapore.
[26] A. Termier, M-C. Rousset, and M. Sebag,
“Treefinder: A First Step Towards XML Data
Mining”, In Proc. of IEEE ICDM’02, 2002.
[27] Valentine, G. Algorithms on Trees and Graphs,
Springer-Verlag, Berlin, 2002.
[28] C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang,
and B. Shi, “Efficient Pattern-Growth Methods for
Frequent Tree Pattern Mining”, In Proc. of
PAKDD’04, 2004.
[29] L.H. Yang, M.L. Lee, and W. Hsu, “Efficient
mining of XML query patterns for caching”, In Proc.
of the 29th Int’l Very Large Data Bases (VLDB) Conf.,
Berlin, Germany, 69-80.
[30] M.J. Zaki, “Efficiently Mining Frequent Trees in
a Forest: Algorithms and Applications”, In IEEE
Transaction on Knowledge and Data Engineering, 17,
8, 2005, pp. 1021-1035.
[31] M.J. Zaki, “Efficiently Mining Frequent
Embedded Unordered Trees” Fundamenta
Informaticae 65, IOS Press, 2005, pp. 1-20.
[9] Y. Zhang, W.N. Street, and S. Burer, “Sharing
Classifiers among Ensembles from Related Problem
Domains”, Proc. of the 5th IEEE Int’l Conf. on Data
Mining, 2005.
[32] L. Zhou, Y. Lu, H. Zang, R. Hu, C. Zhou,
“Mining Frequent Induced Subtrees by Prefix-Tree-
Projected Pattern Growth”, Proceedings of the 7th
International Conference on Web-Age Information
Management Workshops (WAIMW'06), 2006.

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

10

