
The construction of peers and artifacts:
the organizing role of “Programming Guidelines”

Vincenzo D'Andrea
Dipartimento di Ingegneria e
Scienze dell'Informazione –

University of Trento
 vincenzo.dandrea@unitn.it

Stefano De Paoli
Department of Sociology –

National University of Ireland
Maynooth - Ireland

 Stefano.DePaoli@nuim.ie

Maurizio Teli
Faculty of Sociology –
University of Trento

 maurizio@maurizioteli.eu

Abstract
In this paper, we1 study new organizational forms

for production processes that emerge in large scale
Free/Libre Open Source Software (FLOSS) projects.
We will focus on the textual artifacts known as
“Programming Guidelines” and on the rules and
practices they contain. Our reflection is grounded in
the practical activities of the people involved in the
innovation processes. In particular, we take into
account how in FLOSS to become a peer
(“Peering”) is an hybrid result of social dynamics
and artifacts actions. We will show how
Programming Guidelines participate in building
boundaries around the potential participants and in
defining the legitimate form of participation in terms
of coding practices. Our conclusions emerge from
the analysis of two empirical cases: the operating
systems OpenSolaris and the geographical
information system GRASS.

1. Introduction: “New” production and
innovation models

The literature about FLOSS and Internet related
phenomena stresses how the emergence of new
forms of organizational structure can be dependent
on new technologies, such as, for example, in the
argument by Weber [21], who underlined how:

“Standard arguments in organizational theory
predict that increasing complexity in a division of
labor leads to formal organizational structures….In
contrast,… much recent literature on the Internet and
the ‘new economy’ argues that Internet technologies
radically undermine organizational structures
because they reduce the costs of communication and
transaction toward an asymptote of zero. This is
supposed to enable the formation of ‘episodic
communities on demand,’ so-called virtual

1 Dr. Stefano De Paoli is supported by the Irish Higher
Education
Authority under the PRTLI 4 programme 'Serving Society:
Future
Communications Networks and Services' project (2008-
2010).

organizations that come together frictionlessly for a
particular task and then redistribute to the next task
just as smoothly” [18, page 171]

This argument is common among scholars from
different background and it can be described
referring to the work by Tapscott and Williams in
their recent book Wikinomics [20]. According to
them, the mass collaboration (the episodic
communities on demand, in Weber terms) that
characterizes the 21th century economy (the
wikinomics) is based on four structural factors,
namely: the Openness, the Sharing, the Peering and
the Acting Globally. Their view is that users
innovation and the mass collaboration – widely used
today by many enterprises, operating in the global
market - is strictly a results of the very existence of
these four structural factors. Tapscott and Williams
call the user innovation process as “prosumption”,
whereas the prosumer is a “professional consumers”,
namely a person who is at the same time the
innovator and the consumer of innovation [20].

While we share with Tapscott and Williams a
genuine interests for the mass collaboration issue,
that is a fundamental characteristic of FLOSS, we
disagree with their general perspective. Adopting a
constructivist approach [15] we claim that the
Openness, the Sharing, the Peering and the Acting
Globally are not what explain the user innovation
and the mass collaboration, but rather what has to be
explained, because they don't show up as exogenous
elements in the experience of groups construction
and evolution, but they are part of the different
processes bringing to mass collaboration as a result.

In a prior work [5] we have discussed how the
“Openness” of a FLOSS project is more a matter of
negotiations and instability, rather than a stable
structural factor. Our observations tell us that many
different degrees of Openness do exists in a software
project and in particular the Openness seems to be
related to the choice of licenses, which again is a
negotiated process among developers and users. The
Openness therefore is more the results of innovation
processes than what explains innovation in itself.
This idea is very close to the argument put forward

for example by Raymond in his famous essay The
Cathedral and the Bazaar [16], in which he explains
how the real innovation of Linux was not the
software per sé, but instead the organizational
process behind the development, namely the
Openness, Sharing and Peering rules of the Linux
development model (the Bazaar).

In contrast with Tapscott and Williams[20]
arguments, in this paper we aim at discussing how
the “Peering” is a negotiated process of innovation,
based on practices of submission of pieces of code
and practices of judgement on the same pieces.
Peering is an important element of FLOSS projects,
sometime taken as the key of FLOSS technical
success and ability of delivering high quality
software, such as in Raymond's expression “Given
enough eyeballs, all bugs are shallow” [16] shows,
underlining the fact that the existence of a wide base
of peer-reviewers lead to a fast problem's solution.
So, source code review aims at fixing bugs and
known problems and at improving the quality of
software. In this pattern of practices of code
submission and judgement, an important activity is
carried on by “Programming Guidelines”, casting
into quite stabilized artifacts the proper use of code
conventions, discriminating between good and bad
coding practices. In summary, we can state that:
“Programming Guidelines” participate in the
definition of which pieces of code are legitimately
part of the FLOSS project collective and which are
not.

In studying the “Programming Guidelines”, we
attempt to describe the ways these textual artefacts
participate to the organizing process in large Open
Source Software projects, that we see as a case of
new organizational forms for production processes
[21]. We will show in this paper how “Programming
Guidelines” inscribe rules and practices organizing
the software development project, thus becoming a
critical pathway for our understanding of the
collective actions and task accomplishment in these
human groups [14]. In the rest of this paper, we will
start by grounding our contribution in the study of
the contemporary processes of production and
innovation, showing how some of the key elements
of innovation are the results of the practical activities
of the people involved. Focusing on one of these
social dynamics, Peering, we will show how in
FLOSS projects to become a peer is an hybrid result
of processes involving artefacts actions. More
precisely, we will show how Programming
Guidelines participate to the construction of
boundaries around the potential participants and
defining the legitimate form of participation in terms
of coding practices. In other words, we will show
how Peering is the result of the processes taking

place whithin and around the Programming
Guidelines.

In the last part of the paper, we will provide an
account of the empirical foundation of our
reflections, describing how the complex role of
Programming Guidelines as organizing artefacts
emerges through the analysis of two empirical cases,
the Operating System OpenSolaris, and the
Geographical Information System GRASS.

2. Coding conventions and Programming
Guidelines

The emergence of coding conventions (both
formally written and informally transmitted) can be
considered as the need of rules that computer
programmers follow in order to ensure that their
source code will be easy to read and maintain, in one
phrase to allow the sustainability in time of the code
base [18]. As an example, the Sun Microsystems
introduction to Java2 coding states that code
conventions are fundamental because:

- 80% of the lifetime cost of a piece of software
goes to maintenance;

- hardly any software is maintained for its whole
life by the original author;

- code conventions improve the readability of the
software, allowing engineers to understand new code
more quickly and thoroughly;

- if you ship your source code as a product, you
need to make sure it is as well packaged and clean as
any other product you create.

When coding conventions are formalized in
written documents, those documents are usually
known as “Programming Guidelines”. These
Guidelines are central in Free/Libre Open Source
Software (FLOSS) development, especially in the
case of large projects that could not take place
without them. In fact FLOSS development teams are
usually globally dispersed all over the globe. Given
this situation, developers must find solutions for
ensuring what they socially recognize as quality and
easy integration of their work in the main project and
several artifacts are used for this reasons [12, 3].
Programming Guidelines are among these artifacts
and in particular they act in a double direction: first,
they allow the standardization of the result of the
programming activity, in order to let the
development teams to receive “standardized
innovations” by the users; second, they build a
boundary around which kinds of user are allowed to
participate to the innovating process. As any
artifacts, “Programming Guidelines” are not without
history or social assembling processes; instead, they

2 http://java.sun.com/docs/codeconv/html/CodeConventions.do
c.html#16712

make possible to open up a path of comprehension of
the assembling power of production efforts, letting
us understand more which kind of criteria helps
defining the legitimate peer, which kind of previous
existing relationships are translated into them and
how they are part of sets of instructions that
cooperate to the definition of legitimate claims of
participation.

3. Theory and relevance of Programming
Guidelines

We study “Programming Guidelines” in two
ways. First, we observe how programming practices
are literally inscribed into them as textual artifacts,
separating one specific open source community from
others. As a first theoretical framework for our
exploratory analysis we assume the contribution by
Lanzara and Morner [14]. For the authors, if we want
to observe the coordination efforts and the complex
task accomplishment in FLOSS development, we
need to move the focus of our attention from the
organizational aspects to the technological artifacts.
We agree with Lanzara and Morner that «technology
can replace formal organizational rules and
structures in the coordination and governance of
complex activity systems» (p. 67). In this light, in
order to enquiring the spatially distributed software
development, the analysis of the role of technologies
and artifacts in FLOSS projects become
fundamental.

The notion of inscription taken from the Actor-
Network Theory is the act of inscribing in an artifact
a framework of action which defines «actors with
specific tastes, competences, motives, aspirations,
political prejudices, and the rest, and assumes that
morality, technology, science and economy will
evolve in particular ways» [1, p. 208]. This notion
for Lanzara and Morner [14] help to grasp the
organizing role of the technology in FLOSS project
because it helps to see how human agents delegate to
artifacts the ability to do things and perform
functions.

Using a semiotic approach then, we seek to
observe the stabilization of certain programming
practices (coding conventions) or, in other words,
how and why programming practices continue to be
practicized within an FLOSS project. In fact, it is
important to remark that “Programming Guidelines”
constitute a stabilization, over time, of how the
source code of a computer program is shaped. In
addition, the “Guidelines” may show why a certain
practice has been selected to become a standard
programming practice within a specific open source
community.

Second, we observe how these practices are
socially sustained and negotiated by FLOSS
developers. According to Akrich [1], in order to
maintain a complete methodological perspective it is
important to observe not only the construction of
technologies and artifacts (i.e. the inscription
process), but also how artifacts are used by users:
“we have to go back and forth continually between
the designer and the user, between the designer's
projected user and the real user, between the world
inscribed in the object and the world described by its
displacement.” (pp. 208-209). Following this
intuition we remark that the legitimization of the
“Programming Guidelines” is in fact a process
achieved through different paths of negotiation
among users and developers. Indeed, a contribution
to a FLOSS project might only be included in the
main code base if this is compliant with the
“Programming Guidelines”, thus creating a situation
for inclusion or exclusion of those who are not
programming according to them [4]. In this light we
focus also on the description of how users and
programmers do concretely use Programming
Guidelines.

4. Methodology

Our research is empirically based on two large
FLOSS projects: the Geographical Information
System known as Geographic Resources Analysis
Support System (GRASS), developed by a world-
wide team on a voluntary basis, and the Operating
System known as OpenSolaris, backed by Sun
Microsystems, Inc. The data collection has been
based on on-line observation, informed by a cyber-
ethnographic approach [11, 19], while the data
analysis has been carried on relying on a Grounded
Theory approach [10].

In the OpenSolaris case, we referred to
documents downloaded from the project website3

and on mailing lists, wikis, and blogs observation,
observation that took place since June 2005 to March
2007. In particular, in relation to this paper, the
information we focused on are the ones related to the
path an external developer is supposed to follow in
order to obtain the integration of source code in the
OpenSolaris code base, drawing upon the mailing list
“code”and on the about 500 threads on it in the
considered period.

Relevant documents of the GRASS projects have
been taken from the main web site of the project4.
We have also followed several discussion about the
application of programming practices and software
development of our case study during the period

3 http://www.opensolaris.org
4 http://grass.itc.it

January 2005 – December 2007. These discussion
have been extracted from the projects mailing lists,
in particular from both the GRASS Users and
Developers Mailing lists, using the internal search
engine. We have analyzed 55 emails organized in 20
threads. Our focus has been directed most on
messages sent by programmers who were not
member of the development core team. In order to
know who these programmers were we used the
GRASS Changelog files5. We have also extracted
data form the GRASS source code using the GRASS
Source code browser6.

5. Guidelines as a re-production of
corporate practices: OpenSolaris

The OpenSolaris project was opened to the public
on June 2005, when a corporation, Sun
Microsystems, Inc., released part of of the code of its
operating system, Solaris, under the terms of a
FLOSS license, the Common Development and
Distribution License (CDDL). As the license name
let us understand, OpenSolaris was released
according to a strategy of increasing the number of
developers and distributors of the operating system
(based on the code of ATT Unix System V mixed
with Berkeley Software Distribution code in the
'80s). According to this plan, a set of technological
and textual artifacts has been created, both by the
corporation itself and by the group of people
participating to what is known as “The OpenSolaris
Community”, that is the group of people practising
software development and use in connection with the
project website. During our research on this project
we focused our attention on how the practices of
participation to the community activities are strongly
mediated by the artifacts at play, artifacts which
defines the boundaries of participation relying on the
practices coming from different arenas of activities,
like the business oriented structure of the
corporation, the history of Solaris programming
practices, and the wider FLOSS panorama. The
intermingling of these different practices backs the
emerging of groups, discourses, and strategies in
“The OpenSolaris Community”. Programming
Guidelines, in the name of “Style Guidelines”, which
should be correctly considered as part of “The
Developers Reference”, are one of this artifact,
mainly acting as a separator between who has the
knowledge to contribute source code to Solaris and
who has not.

In particular, we consider two different aspects of
“Style Guidelines”, that are: their origin, connected

5 Available at http://grass.itc.it/devel/grassreleases.html
6 http://web.soccerlab.polymtl.ca/grass-evolution/grass-

browsers/code-browser.html

with the proprietary stage of Solaris development,
and their ability to participate to two different paths
in the OpenSolaris life. First, “Guidelines” align with
the marketing-oriented need for stability between the
different versions of the operating system, shaping
the network of entities potentially participating the
project; second, they strengthen the role of Sun
history and practices in carrying on the innovation
process, due to the stability of software production
inscribed in them.

5.1. The Developers Reference brings to the
history of Solaris

“The Developers Reference is big.
Really, really big. I mean, you just
won't believe how vastly, hugely,
mind-bloggingly big it is” Mike
Kupfer7

The Developers Reference8 is a comprehensive
ensemble of documentation that helps defining a path
of use and development of OpenSolaris that goes
from the installation to the code submission, passing
through the description of the system and the
processes of test and review of the contributed code.
In this path we find the “Style Guide”9, as a sub-
section of a piece of documentation titled “Best
Practices and Requirements”10. As this title show,
contributing code to the project involves a double
path of adherence to constraints (requirements) and
of enactment of good programming practices. All of
them entered the OpenSolaris community through
the mediation of Sun stabilized practices and Sun's
employees habits, as the introduction to this section
reminds:

 “These rules must be followed by all developers.
These rules are the same ones which Sun engineers
have been required to follow when developing
Solaris, and are the primary reason Solaris, and now
OpenSolaris, is among the world's best available
software”

This piece introduces clearly the relationship of
translation of Solaris into OpenSolaris, stressing the
continuity between them. In particular, talking about
“Guidelines”, the fact that “these rules are the same
one” construct newcomers in OpenSolaris
development as followers of the practices and rules
of the original developers, which are the Sun
engineers involved in the system development
previously than it was released under the CDDL

7 http://opensolaris.org/os/community/on/devref_toc/
8 http://opensolaris.org/os/community/on/devref_toc/
9 http://opensolaris.org/os/community/on/devref_toc/devref_7/#

7_2_style_guide
10 http://opensolaris.org/os/community/on/devref_toc/devref_7/#

7_best_practices_and_requirements

license. In that way, not only artifacts participate to
the definition of the knowledge prospective
participants have to gain, but also make it in
connection with the stabilized company habits and
needs, enrolling new participant to the Sun views of
software development. As the next sub-section will
show, these views are equally important when we
look at the requirements phase, into which a defined
commercial strategy has been inscribed.

5.2. The “Bill Joy Normal Form”

As already mentioned, the history of Solaris has
been translated into instructions for OpenSolaris
developers, also in the form of “The Developers
Reference”, and it participates in an equally
important way to the shape the final contributed code
needs to have, that is the style Solaris code has since
its first appearance as SunOS (the previous name of
Solaris). Small changes have taken place in the style,
mainly adhering to the ANSI C style, dismissing the
K&R style (from the initial letters of Brian
Kernighan and Dennis Ritchie, the writers of one of
the most famous handbook on the C programming
language, [13]), but the biggest contribution to the
style was the one by one of the founders of Sun
Microsystems, Bill Joy. As a developer wrote in the
code-discuss mailing list:

“I have read the style guidelines. Given that my
driver was not written to conform to "Bill Joy
Normal Form", hand conversion would be painful.

Does anybody have an indent recipe, or
sed/perl/etc script to re-format C code into something
which can pass cstyle.pl? ”

[code-discuss, Jul 12, 2006]

This piece of email moves our attention to two other
elements: the first one, the need to change the style
can be framed in negative terms (painful); the second
one, this change is needed in order to pass cstyle.pl,
that is an automated script able to check the code
style before the code enters a review from peers.
OpenSolaris (and Solaris) have two of those scripts,
the cited cstyle.pl and hdrchk, which construct a first
technological boundary to the participation of code
to the project and to the standardization of results
before entering the review process carried on by
peers. So, coding conventions, at this time, are the
results of history, different practices coming from
different panoramas, and automated tools to check
the adherence to them. How the guidelines and the
review process affect the technological result is what
we are going to learn from the case of GRASS.

6. The construction of good functions and
good developers: GRASS

In the GRASS case we use the “Programming
Guidelines” as the key for understanding the source
code contributions done by programmers that were
not member of the GRASS Development Team. In
fact, the social dynamics related to the software
source code development still remain largely
unstudied, due to the difficulties for social
researchers to access the source code as empirical
data. Programming Guidelines constitute an
interesting entry point in this problem.

6.1. GRASS Guidelines

As previously stated, we base our observation on
the case of a FLOSS GeGIS known as GRASS [7].
GRASS started at the beginning of the '80 as a small
project of the United States Army. In 1996, US Army
decided to stop the development of the system and
invited the users to migrate toward proprietary GIS a.
At the end of 1998 a new GRASS Development
Team (GDT) came up with the aim to re-launch the
GRASS development and community. The GDT is
today composed by an international group of
voluntary researchers affiliated to different
institutions; the GDT has also a structure very close
to the “town council” model [2].

In large FLOSS projects, software development
is usually managed using internet based technologies
known as Versioning Control Systems (VCSs) [17].
The VCSs keep track of all work and all changes in
a set of files, and allows several developers to
collaborate on-line in the software development
processes. The VCSs are based on a client/server
architecture: a server stores the current version(s) of
the project and its history, and clients connect to the
server in order to check-out a complete copy of the
project, work on this copy and then later check-in
their changes.

The knowledge and application of the GRASS
programming guidelines and of the ANSI C standard
are fundamental for getting a write access for source
code in GRASS Version Control System11. GRASS
programming practice are inscribed in two file
respectively called “SUBMITTING FILE” and
“SUBMITTING SCRIPT”. The main GRASS web
page dedicated to development clearly address the
need for programmers to follow the rules of these
files:

“C language coding standards: Check your code
against the rules defined in the 'SUBMITTING' file .

11 During the period we consider here GRASS VCS was the
Concurrent Version System. However recently the project has
been migrated in SVN.

This ensures a smooth integration into the standard
GRASS code base:”12

The rules follows this invitation and as we said
their application is fundamental for becoming an
active member of the development team. In fact the
expert developers judge those who aspire to become
part of the development team in the light of their
knowledge of the guidelines, as the following
excerpt from a talk identifies :”If I realise that they
are delivering quality, that is, what they develop is
usually
working and submitted in a reasonable way, then,
following our rules to code development, we grant
write access to this person.”.
 Here we would like to address just one of these
rules, even if it may seem very basic. One of the
more interesting characteristic of the GRASS
programming practices is the existence of C
Language dedicated library of functions:

“Use the following GRASS library functions
instead of the standard C functions. The reason for
this is that the following functions ensure good
programming practice (eg always checking if
memory was allocated) and/or improves
portability.[..] They may perform a task slightly
different from their corresponding C library function,
and thus, their use may not be the same.” [8]

As an example of the difference between a
standard C function and the GRASS dedicate
function we propose here a the difference between
the C standard function malloc() and dedicated
GRASS function G_malloc(). The malloc() function
is the base function used to dynamically allocate a
portion of memory in C. Its prototype is: void
*malloc(size_t size) which allocates “size” bytes of
memory. With a successful completion of the
function, the malloc() functions return a pointer to
the allocated space [9]. Below we have the GRASS
G_malloc() function.:

void *G_malloc (size_t n)
{
 void *buf;
 if (n <= 0) n = 1;
 /* make sure we get a valid request

*/
 buf = malloc(n);
 if(buf) return buf;
 G_fatal_error("G_malloc: out of

memory");
 Return NULL;
}
GRASS Dev. Team (2006).13

The dedicated GRASS function G_malloc()
performs the same basic operation as the
correspondent C function, allocating a memory
portion of “n” bytes and returning a pointer to the
allocated space. In addition , the G_malloc() : it
12 http://grass.itc.it/devel/index.php#submission
13 GRASS Software: grass6/lib/gis/alloc.c

manages the error message in a standardized way for
all the GRASS programming framework, using
another dedicated function called G_fatal_error().
Thus it is evident that for a programmer the
knowledge and application of the basic standard C
programming practices is not enough to gain a write
access to GRASS VCS . Programmers need also to
know how the dedicated GRASS C function operates
and how the GRASS programming practices are
implemented in the software system.

We will now provide an example of application
of the GRASS Programming Guidelines as related to
the G_malloc() function, taken form the GRASS
Developers mailing list. The example we present is
about source code “cleaning” with the elimination of
the standard C function from the GRASS code and
the substitution with the GRASS analogous function.
This task of cleaning the software – in the example
we propose – is done by a developers who aims at
becoming part of the GRASS Development Team.
Hence, his work has to be judged by GRASS expert
developers. In the example a programmer send a
patch opening his message as follows: “Attached is a
patch to lib/imagery to update memory allocation.
Objections?”

The question “Objections?” is about the process
of source code review by the expert developers. As
we can note now from this excerpt of the submitted
patch, some of the cleaning work has been done on
the substitution of the standard C function malloc()
with the GRASS dedicated function G_malloc(). The
symbol minus (-) represents the eliminated lines of
code, while the symbol plus (+) represent the new
lines of code:

+void *I_malloc(size_t n)
{
 void *b;
- b = malloc (n);
(* standard C malloc() removed *)
- if (b == NULL)
- printf (stderr, "Out of Memory\n");
(* elimination of the error message *)
+ b = G_malloc(n);
(* add GRASS memory allocation function

*)
+ return b;
}
GRASS Developers Mailing list, message sent

Thu, 04 Aug 2005, (italic comments added)14
It is worth noticing that the GRASS code

cleaning done by this developers follows the
prescription inscribed in the SUBMITTING FILE
and in the G_malloc() function:

1. the standard C function malloc() is replaced
with the G_malloc()

2. the error message displayed by the C function
fprintf() is eliminated, because it is already contained

14 http://lists.osgeo.org/pipermail/grass-dev/2005-
August/019294.html

http://lists.osgeo.org/pipermail/grass-dev/2005-August/019294.html
http://lists.osgeo.org/pipermail/grass-dev/2005-August/019294.html

and managed in a standardised way by the
G_malloc() function using the G_fatal_error().

If no objections came up, it is possible for the
developers to commit the code of the patch to the
GRASS CVS.

Even if the example we provided above seems to
be simplistic, in fact it isn't. It is worth noticing that
it is thanks to small contributions and their
coordination that FLOSS development is possible [5,
14].

It is interesting to note that also the
SUBMITTING file (i.e. the GRASS programming
guidelines) are subject to his kinds of dynamics. In
the following message a programmer (one of those
aiming at becoming member of the GRASS
Development Team) sent a patch to the
SUBMITTING:”I rearranged the messaging section
of the SUBMITTING file to make it a little easier to
read (IMHO). Objections to committing?”15.

Again the question “Objections” is related to the
peer review of his patches. In this case one of the
member of the GRASS Development Team
suggested a change to the patch, related to the order
in which the programing rules were presented. The
programmer accepted the modification suggested by
the expert developer and the patch was finally
committed to the GRASS VCS.

This last example tell us two interesting things.
First of all programming guidelines are not static
things. They change during the times, in the same
ways the source code change. Second, it is
interesting to remark that also programmers who
aspire to become member of the GRASS
Development Team may concur to modifying the
documents on which they are judged (even if the
modifications are very small).

7. Guidelines between inscriptions and
de-scription

We started underlining how our concerns are
related to the organization of mass production in the
contemporary society, mainly in the Internet-
mediated groups that characterize the recent
development of organizations [21]. In particular, we
have conceptualized Peering as a productive process
of peers construction instead of conceptualizing it as
a structural predetermined factor, as Tapscott and
Williams do [20]. As the dynamic approach to
FLOSS has shown [6] the practices of participation
in FLOSS projects follow trajectories that needs to
be scholarly understood as a socio-technical

15 GRASS Developers Mailing List message sent Fri, 05 Aug
2005, http://lists.osgeo.org/pipermail/grass-dev/2005-
August/019304.html

processes. In this processes, the importance of
artefacts could not be underestimated and need an
empirically oriented research.

On our side, we have empirically shown how
“Programming Guidelines” are part of these
processes as translated both in formal procedures, the
OpenSolaris Developers Reference, and in
technological choices, like the G_malloc function.
That translations participate in the life of the two
projects standardizing the result of the programming
activities and building a boundary around which kind
of entities could participate in that.

In this sense, we have shown not only how
software is the result of an organizational process,
(a mirror of the same organizational structure
producing it as the Conway's Law highlight, [12]),
but also how the software is participating in defining
the same organizational unfinished structure.
Software not only tells something about
organization, it organizes too [14].

In particular, the processes of inscription of
actions in the “Programming Guidelines” have
underlined how we can't understand FLOSS projects
without relating to their history. In the OpenSolaris
casehistory is able to explain the actual shape of the
programming guidelines and the conventional way
developers refer to the form of code. At the same
time, looking at the “Programming Guidelines” like
we did with GRASS, on one side let us understand
the network of paper relationships that surrounds the
contribution to code, on the other one showed how
the same artefacts are potentially under discussion in
a dynamic way.

8. Conclusions

In conclusion, in this paper we have tried to
provide an initial account of innovation processes
based on mass collaboration. The Peering process on
which is a characteristics of this collaboration is a
negotiated process in which artifacts do play an
important roles. In fact “Programming Guidelines”
act as a separator between good collaboration and
bad one, affect the way developers produce software,
and the amount and kind of knowledge that needs to
be mobilized.

From this point of view, the ability of source code
to enhance the time lasting dimension of
conventions, that will need strong interventions to
change the yet existing code, is also the ability to
bring into code the history of projects, their technical
specificity and their power relationships, especially
the one between actual participants and prospective
ones.

If the OpenSolaris case shows how we can't
ignore history and the related practices while

http://lists.osgeo.org/pipermail/grass-dev/2005-August/019304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-August/019304.html

discussing about the shape formal coding
conventions have, the GRASS case shows how this
conventions are strictly connected with the precise
technological result that can be achieved. .

The examples we provided here are probably not
enough for drawing general conclusions and also not
representative of a wide range of negotiations. In our
future work, we will enlarge our empirical analysis,
taking in account controversial situation, litigations
on the final shape of the source code and even
disagreement on the application of the code
conventions.

10. References

[1] Akrich, M., The De-Scription of Technical Objects. In
Bijker W. and J. Law (eds.), Shaping Technology/Building
Society: Studies in Sociotechnical Change, MIT Press,
Cambridge, 1992, 205-224.

[2] Cox, A., Cathedrals, Bazaars and the Town Council.
Slashdot, 1998, Retrieved June 8th, 2008, from
http://slashdot.org/features/98/10/13/1423253.shtml

[3] Crowston, K. and J. Howison, “The Social Structure of
Free and Open Source Software Development”, First
Monday, 10 (2), 2005, Retrieved June 8th, 2008, from
http://www.firstmonday.org/issues/issue10_2/crowston/ind
ex.html

[4] De Paoli S. and D'Andrea (2008). How artefacts rule
web-based communities: practices of free software
development, International Journal of Web Based
Communities , Volume 4(2), 199-219.

[5] De Paoli, S., M. Teli and V. D'Andrea (forthcoming).
Free and Open Source Licenses in Community Life: Two
Empirical Cases, accepted for publication, First Monday

[6] Ducheneaut, N., Socialization in an Open Source
software community: A socio-technical analysis, Computer
Supported Cooperative Work, 2005, 14 (4), 323 – 368

[7] GRASS Development Team, Geographic Resources
Analysis Support System (GRASS) Software. ITC-IRSTt,
Trento, Italy, 2006. http://grass.itc.it

[8] GRASS Development Team. SUBMITTING FILE.
Retrieved August 23th, 2008, from
http://grass.osgeo.org/grass63/source/SUBMITTING

[9] IEEE. Definition of malloc in IEEE Std 1003.1
standard. Retrieved June 8th, 2008, from

http://www.opengroup.org/onlinepubs/009695399/function
s/malloc.html

[10] Glaser, B. G. and A. L. Strauss, The discovery of
grounded theory: strategies for qualitative research,
Weidenfeld and Nicolson, London, 1967

[11] Hakken, D., Cyborg@Cyberspace? An Ethnographer
Looks to the Future, Routledge, New York, 1999

[12] Hersleb, J. D. and R. E. Grinter, Splitting the
organization and integrating the code: Conway's law
revisited. In Proceedings of the 21st International
Conference on Software Engineering (Los Angeles,
California, May 16 – 22, 1999), IEEE Computer Society
Press, Los Alamitos, CA, 85 – 95

[13] Kernighan, B. W. and D. M. Ritchie. The C
Programming Language, NJ: Prentice Hall, Englewood
Cliffs, 1978

[14] Lanzara, G. F. and M. Morner, “Artifacts rule! how
organizing happens in open software projects”. In
Czarniawska, B. and T. Hernes (eds.), Actor Network
Theory and Organizing, Copenhagen Business School
Press, Copenaghen, 2005, 67-90.

[15] Latour, B., Reassembling the Social. An Introduction
to Actor-Network-Theory, Oxford University Press, New
York, 2005

[16] Raymond, E. S.. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary, O’Reilly and Associates, Sebastopol, CA,
1999

[17] Revision Control. Wikipedia. Retrieved August 23th,
2008, from
http://en.wikipedia.org/wiki/Revision_control

[18] Spinellis, D., Code Reading: The Open Source
Perspective, Addison-Wesley, 2003

[19] Teli, M., F. Pisanu and D. Hakken. “The Internet as a
Library-of-People: For a Cyberethnography of Online
Groups” [65 paragraphs]. Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research,
2007, 8(3), Art. 33.

[20] Tapscott, D. and A. D. Williams. Wikinomics: How
Mass Collaboration Changes Everything, Portfolio, USA,
2006

[21] Weber, S., The Success of Open Source, Harvard
University Press, Cambridge, MA, 2004

http://en.wikipedia.org/wiki/Revision_control
http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html
http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html
http://grass.osgeo.org/grass63/source/SUBMITTING
http://grass.itc.it/
http://www.firstmonday.org/issues/issue10_2/crowston/index.html
http://www.firstmonday.org/issues/issue10_2/crowston/index.html
http://slashdot.org/features/98/10/13/1423253.shtml

