Towards an Openness Rating System for Open Source Software

Wolfgang Bein

Center for the Advanced Study of Algorithms

School of Computer Science
Unwversity of Nevada
Las Vegas, NV 8915}

bein@cs.unlv.edu

Abstract

Many open source software projects are not very
open to third party developers. The point of open
source is to enable anyone to fix bugs or add desired
capabilities without holding them hostage to the origi-
nal developers. This principle is important because an
open source project’s developers may be unresponsive
or unable to meet third party needs, even if funding
support for requested improvements is offered.

This paper presents a simple rating system for eval-
uating the openness of software distributions. The rat-
ing system considers factors such as platform portabil-
ity, documentation, licensing, and contribution policy.
Several popular open source products are rated in order
to illustrate the efficacy of the rating system.

1 Motivation, Background and Related
Work

The spirit of open source software can perhaps be
illustrated by how mathematical knowledge is made
available to society. A recent volume by the combina-
torialists Aigner and Ziegler “Proofs from The Book”
[1] gives a number of theorems, which are chosen be-
cause they have beautiful and ingenious proofs. In fact
in that volume, for most theorems a number of differ-
ent proofs are given, though many theorems carry the
name of one famous mathematician. One such exam-
ple is Turdn’s graph theorem, which states that when
a graph G = (V,E) on n vertices has no p-clique !
(p > 2) then for the number of edges |E|, the upper

bound |E| < (1 — p—il)”; holds. The volume gives

LA subset of vertices of cardinality p is said to be a p-clique
if for every two vertices in the subset, there exists an edge con-
necting the two.

Clinton Jeffery
Department of Computer Science
Unaversity of Idaho
Moscow, ID 85844-1010
jeffery@uidaho. edu

the original Turdn proof, as well as four alternative
proofs. The theorem roughly says that if a graph has
very many edges then there necessarily have to exist
large cliques in the graph. Knowing this is useful in
the reliability analysis of communication networks, for
example.

If mathematics followed the practices of proprietary
software then anyone interested in the aforementioned
theorem would be able to see the statement of the the-
orem only by paying a fee (say, by purchasing this
article from a publishing house), but the inner work-
ings of Turan’s proof would not be accessible for any
price. Worse, anyone publishing any of the alterna-
tive proofs might have to fear being sued by Turan’s
estate. Of course, this would be complete folly, and in-
deed in the real world of mathematics anyone is free to
prove Turan’s as they please. Yet, it is still possible to
engage in profitable enterprise, as Springer Verlag did
with their best-selling volume (despite the fact that —
in principle — Turdn’s theorem can be found on the
world wide web.)

Imagine that a modern day Turan felt compelled to
keep the proof of his theorem under wraps. As an up-
standing mathematician, he really does not have the
option to state his discovery (the theorem) on his web-
site, while at the same time completely withholding
the proof. A reason for this modern Turan to have his
method not come out too soon could be a desire to
secure government funding before anyone else. So in
order to bask in the glory of his result without giving
away everything, he would publish a pretend-proof, a
proof not altogether false but instead completely in-
comprehensible. This way Turan can claim to follow
the ways of the scientific community while still ob-
structing true open access.

This is very similar to practices around many so-
called open source projects. Recently, a colleague of
ours undertook to extend a popular piece of open

source software, only to have her initial efforts stymied.
The software was developed largely with public funds,
but seemed to have adopted open source status as a
political ploy. The source code was available, but with-
out comments or build instructions. Naively handing
it off to its compiler, one got various dependency errors
and a failed build. The frustration was documented by
several persons on the project web forums, with the de-
velopers in complete denial that there was any problem
with (almost) no one in the world able to build their
“open source” software but them.

2 Cathedral and Bazaar

In the preceding example, the software’s website
stated that the code was available, but code submis-
sions were unwelcome. This is a separate issue; the
superiority of the cathedral model of software devel-
opment over the bazaar is a philosophical question
where different reasonable persons may disagree and
still produce excellent open source software [4]. Cor-
porate labs and elite schools share a fondness of and
desire to control their open source projects. In modern
days when a corporation open sources a proprietary
commercial system, such as SGI’s open sourcing GL
or Sun’s OpenSolaris or OpenJDK, it is easy to argue
that the cathedral-control is economically motivated
[2]. However, when Ralph Griswold went from AT&T
to a university and started giving his product away by
literally placing it in the public domain, he still ad-
hered to a cathedral model as the only way to main-
tain quality in an otherwise anarchic academic sched-
ule. The cathedral model did not preclude vigorous
efforts to make the software as usable by others as pos-
sible. Many other major academic research projects
that manage to produce a software release are similar;
the projects’ university budgets do not include time
to support a bazaar. The cathedral does not always
mean user-written contributions are unwelcome, it just
defines the terms of engagement.

Beyond Raymond’s famous essay, Nathan Willis’ ar-
ticle on linux.com [6] describes explicitly closed devel-
opment processes for open source software which con-
tradict the nature of their licenses, with examples in-
cluding KDE’s Oxygen and the GIMP’s Ul design.

While these examples are ironic and cathedral-style
open source development may be frowned upon by
some, they do not violate the main founding principle
of open source, which is that users are free to adapt,
maintain, and fix the software as needed. It is one
thing to use the cathedral model and maintain control
over one’s own development, and it is another to pose
as an open source project while minimizing the ability

of others to compile the code.

3 The Social Contract of Open Source

In our own open source software efforts, we were
aware of how much work it is to try and make a work-
ing program buildable by others: it remains an ongo-
ing challenge. However, from the example described
earlier, no comments or build instructions in software
developed by one of the leading software engineering
institutions in the world? It seemed deliberate.

We began to wonder how many other software
projects were buildable only by the developers who
wrote them. We have seen many open source projects
that did not compile readily for reasonably proficient
technical persons. When this is due to a lack of budget
or developers’ technical abilities, it is understandable
and requires no further comment. However, among
larger projects that ought to be buildable, we quickly
concluded that openness was not a Boolean variable,
but a complex and continuous space. Different open
source software projects range wildly in terms of how
friendly or hostile they are to developers.

We view the violation of the social contract inher-
ent in the “closed” open source project from the point
of view of the scientific method. All open source soft-
ware projects are science experiments; they have to
be reproducible (in the case of software, buildable and
runnable) by others in order for the results (say, the
claim that the source code release was complete and
correct) to be confirmed.

Daniel E. Markle’s blog (dated Thursday Decem-
ber 8 2005) contains an article titled Community and
“Fake” Open Source Projects [3] that lists four ways
to kill open source software: inadequate user documen-
tation, inadequate developer documentation, no open
bug tracking system, and no access to the development
work in progress. We view the first two of these as
essential elements and include them in our ratings sys-
tem in this paper, while the latter two are basic to a
successful bazaar, and highly desirable, but not intrin-
sic to whether the end user is able to use the software
for their own purposes.

Most software ratings systems will evaluate quality,
performance, or suitability for a given constituency’s
needs. For example, the Business Readiness Ratings
(BRR) system (see www.openbrr.org) defines twelve
categories to evaluate open source software: usability,
scalability, and so on. (See also [5].) These are largely
classic software engineering quality metrics. The rat-
ings system presented in this paper is focused on the
single issue of openness.

4 The Openness Factor Rating Scheme

This section presents the categories and a rubric
used to assess openness of different open source soft-
ware. We expect the rubric deserves correction and ex-
pansion and solicit input on it. Our Openness Factor
Rating (OFR) takes the geometric average of ratings
for n categories C1,Cs, ..., C,, taking values between
0 and 1:

OFR = (Cy-Co-...-Cp)¥

For our purposes we consider exactly nine categories
(ie., n = 9) and we describe below how to obtain rat-
ings C1,C5,...,C,. We note that the different open-
ness categories are not smooth linear distributions:
some categories are heavily skewed towards the value
1.0, as all open source projects are near each other in
that category.

Arithmetic mean gives less useful numbers in our
opinion. We also note that one could simply take the
minimum score in any one component, but that equates
single category offenders with multi-category offend-
ers. The validity of the current metric is not asserted.
Rather, the purpose of the paper is to generate discus-
sion and development of a metric that would be more
or less widely acceptable. However, in Section 5 we
give a number of examples, which show the usefulness
of our measure.

Language portability Not all open source code is
written in a language that runs everywhere. Un-
fortunately, even code written in a portable lan-
guage often will not compile using other compil-
ers besides the one it was developed on. This in-
cludes language version dependence, as in: code
only compiles under Java 1.5.x, do not use 1.4.x
or 1.6.x.

Rubric: a starting score of 1.0 is assigned for lan-
guages C, C++, Java. Other HLL’s get a factor
equal to the market share of platforms on which
they can be built; min(.8, sum(.1 per mainstream
CPU architecture for assembler)).

Library portability The more libraries required and
the more version dependencies, the more difficult
it is for independent third parties to build and use
the software. Some libraries are more universal
than others; if they are part of a language standard
that has survived multiple decades, they are not
much of an obstacle to openness.

Rubric: A score of 1.0 for software with no exter-
nal libraries that are not part of an ANSI or ISO
language standard. Factor the market shares of all

required libraries not provided with the source dis-
tribution. Apply penalties for libraries without bi-
nary distributions, libraries available for only some
compilers, and libraries larger and more compli-
cated than the application that uses them (e.g.
Boost is often larger than the application that uses
it, and tricky to get working for particular compil-
ers).

Contributors The more people who have contributed
to the software, the more convincing the argument
is that others have been able to build and run the
software in the past.

Rubric: A score of 1.0 = 1,000 contributors. .9 =
100 contributors, .8 = 104 contributors.

Users The more users a piece of software has, the
more eyeballs have seen its text messages, and the
more international and multi-cultural it is likely
to be.

Rubric: A score of 1.0 = 100,000 users; .9 = 10,000
users; .8 = 1000 users; .7 = 100 users

Build Documentation Build documentation would
include README files, install.txt files, Makefiles,
Ant files, and so on. They affect openness in a
fundamental way.

Rubric: A score of 1.0 = there are technical reports
(or multi-page documents) on how to build the
system, building is straightforward; .9 = there are
environment variables that must be set, or a non-
standard configuration step; .8 = the build is doc-
umented but has multiple manual steps requiring
reading; .7 = the build requires study (say, a half
hour) of build documentation; .5 = the build re-
quires training, or a day or more to work through;
0.1 = there is no build documentation.

User Documentation User documentation is a ma-
jor component of making a piece of open source
software usable by others.

Rubric: A score of 1.0 = there are good books
on how to use the software; .9 = there are techni-
cal reports and/or articles on how to use the soft-
ware; .8 = there is adequate user documentation,
perhaps provided by a website and/or online help;
0.5 although there is documentation, the software
has a steep learning curve and is difficult to learn
without training or study; 0.1 = there is little or
no user documentation—users guess.

Source Documentation Source code comments and
technical documentation on the implementation

are essential for a piece of open source software
to be maintained and extended.

Rubric: A score of 1.0 = there are books or book-
level documents on the implementation, which is
heavily commented; .9 = there is somewhat com-
plete documentation beyond comments, such as
requirements and/or design documents; .8 = there
is typical code comments, including header com-
ments; 0.1 = there is little or no source documen-
tation.

License Different open source licenses vary as to how
open they really are. There is some minimal def-
inition of “open source” that a license must com-
ply with, but beyond that, public domain is more
open than BSD which is more open than the GNU
license.

Rubric: A score of 1.0 = public domain; .9 =
more liberal than GNU; BSD-style or AT&T-style
licenses; .8 = GNU style licenses.

Permanence and accessibility of repository
“Openness” spans time. Will a piece of open
source software still be available when its inventor
dies and stops paying an ISP? Is it at the mercy
of some university administrators? Real open
source software is widely mirrored and unlikely to
get lost.

Rubric: A score of 1.0 = the source code is eas-
ily obtained from many third-party mirror sites;
.9 = neutral, third-party open source repository;
.8 = software is hosted at 1-2 major sites, mainly
the developers’ institution; .7 = software is hosted
at a canonical site from a small institution of un-
known permanence; .4 = software is found mainly
by googling for it; it moves frequently or is taken
down by authorities.

5 Case Studies

The case studies presented in this paper represent
examples from a range types and sizes of open source
software projects. If your favorite open source program
is not present, by all means please rate it according to
the rubric and see how it measures up. If you send
us your results, we reserve the right to use them in a
future study.

5.1 GALib

The popular genetic algorithms library GAlib from
MIT (lancet.mit.edu/ga/) makes an excellent subject

of study. It is 21,000 lines of C++, compiles on UNIX,
Windows, and MacOS. It is commented moderately
well. It is distributed only through a university web-
site. How does it fare:

Language portability 1.0 — C++ is available every-
where.
Library portability 0.9 — GAlib does not depend on
other libraries, except for the optional graphics.
Contributors 0.5 — GAlib is Cathedral style, with user
bug reporting
Users 0.7 — GAlib is widely used within a niche (ap-
proximately 100).
Build Documentation 1.0 — GAlib is properly docu-
mented and easy to build
User Documentation 1.0 — GAlib has thorough user
documentation.
Source Documentation 0.8 — GAlib has header com-
ments and occasional explanations of interesting code.
License 1.0 — the GAlib license is less restrictive than
the GNU license
Repository 0.4 — GAlib remains publicly available only
by the grace of a private institution.

OFR = .77

Earlier versions of GAlib had build issues; relatively
trivial oversights in distribution packaging are show-
stoppers for third parties.

5.2 Unicon

The Unicon programming language from unicon.org
is perhaps 50,000 lines of C. It compiles on UNIX, Win-
dows, and MacOS. It is commented well. It is dis-
tributed through Source Forge, although the test ver-
sions of source and Windows binary distributions are
routinely available from a university website.

Language portability 1.0 — C is available everywhere.
Library portability 0.7 — Unicon requires libraries that
it provides itself (gdbm, xpm, libtp) and links to third
party libraries if available.

Contributors 0.8 — Unicon has about 12 developers with
commit authority, with user bug reporting.

Users 0.7 — Unicon is used within a niche (around 100
users).

Build Documentation 0.8 — Unicon requires a configu-
ration step, and needs its bin/ directory to be added
to the PATH.

User Documentation 1.0 — Unicon has thorough user
documentation.

Source Documentation 1.0 — the source is heavily com-
mented, mostly thanks to Ralph Griswold and his stu-
dents who wrote Icon. There are books and technical
reports available.

License .8 — Unicon uses the GNU license.

Repository 0.9 — Unicon uses Source Forge, which is
near-permanent.
OFR = .85

5.3 Alice

The Alice 3D animation environment and semi-
visual programming language from alice.org is mostly
written in Java, a very portable language, with a little
bit in Python, also a quite portable language. Judg-
ing from the 2.0/2.2/3.0beta implementations’ perfor-
mance on Macintosh and Linux, these portable lan-
guages are not as portable as is sometimes claimed.

Language portability 0.9 — Java is available every-
where, but version dependencies aside, the software
seems stable mainly on Windows.

Library portability 0.9 — Alice depends on fonts that
do not view very nicely on UNIX/Linux.

Contributors 0.4 — Alice uses closed source ivory tower
development, with user bug reporting.

Users 0.8 — Alice is popular with thousands of users,
mainly in the field of education.

Build Documentation 0.1 — Alice does not include build
documentation.

User Documentation 1.0 — Alice has marvelous user
documentation

Source Documentation 0.1 — the source is barely com-
mented.

License 0.9 — Alice uses a more liberal than GNU li-
cense.

Repository 0.8 — The source repository is based at
CMU and we are almost at its mercy. An obsolete
version (2.0) is hosted on code.google.com.

OFR = .49

5.4 Linux kernel

The Linux kernel is very large and written in a mix-
ture of C and assembler.

Language portability 0.8 — C is available everywhere,
but assembler is not already written for every CPU.
Library portability 1.0 — an OS is complete by defini-
tion.

Contributors 1.0 — Linux has thousands of contribu-
tors.

Users 1.0 — Linux has millions of users.

Build Documentation 1.0 — Linux has fabulous build
documentation.

User Documentation 1.0 — Linux has thorough user
documentation.

Source Documentation 0.95 — the source is heavily com-
mented, but who wants to read all that low-level code?

License .8 — Linux uses the GNU license.
Repository 1.0 — Linux is massively mirrored.
OFR = .95

5.5 Open Office

OpenOffice.org is an Office Productivity Suite writ-
ten in C+4++ with hundreds of thousands of lines of
code. It runs under many operating systems, includ-
ing Microsoft Windows, Linux, Solaris, BSD, Open-
VMS, 0S/2 and IRIX. It is commented — though qual-
ity varies across the large project. It is distributed
mainly through the OpenOffice.org web site.

Language portability 1.0 — C++ is available every-
where.

Library portability 1.0 — The Open Office project
provides libraries as part of its download.
Contributors 1.0 — Open Office has many developers, is
open to contributions, and includes user bug reporting.
Users 1.0 — Open Office is used widely by millions of
people.

Build Documentation 1.0 — Open Office has extensive
build documentation.

User Documentation 1.0 — Open Office has extensive
user documentation.

Source Documentation 0.9 — the source is commented,
though quality varies across the large project.

License 0.8 — Effective with OpenOffice.org 3.0 Beta
the Open Office project uses the GNU Lesser General
Public License v3 (LGPL).

Repository 0.7 — Open Office uses its own Web site,
although it appears that it is in fact widely mirrored.

OFR = .93
5.6 LaTex

LaTeX is a document markup language and docu-
ment preparation system especially well suited for the
preparation of scientific papers and books. It and the
underlying TeX system have survived complete reim-
plementation and extensive revision multiple times.

Language portability 1.0 — LaTex can be ported to
just about any operating system.

Library portability 1.0 — Libraries are available for
just about any operating system.

Contributors 0.8 — Different distributions are available.
However it seems that LaTeX follows a cathedral style
software model.

Users 1.0 — LaTeX is used widely by millions of people
Build Documentation 1.0 — LaTex has extensive build
documentation.

User Documentation 1.0 LaTex has extensive user

documentation.

Source Documentation 1.0 — the source is commented
well.

License 0.5 — is distributed under a free software li-
cense, the LaTeX Project Public License (LPPL). The
LPPL is not compatible with the GNU General Public
License and is therefore somewhat controversial. For
example, the Debian Linux community considered
excluding LaTeX from its core distribution.
Repository 1.0 — LaTeX code and development is
widely mirrored.

OFR = .90
5.7 OpenSolaris

Solaris is an excellent example of a widely used com-
mercial software whose owners found it expedient to
open the source.

Language portability 0.7 — OpenSolaris is mostly C
and above but includes assembler for a small range of
CPUs, including x86 and sparc.

Library portability 1.0 — As an operating system, it
depends on no third party libraries.

Contributors 0.9 — OpenSolaris is organized into com-
munities around core technologies, which encourages
participation.

Users 1.0 — it is murky trying to distinguish OpenSo-
laris users from Sun’s commercial Solaris users, but it
counts as a large audience.

Build Documentation 0.7 — building an OS is compli-
cated; more so when its instructions start by telling
you your compiler probably will not work.

User Documentation 1.0 — Numerous titles including
an adaptation of Sobell’s popular UNIX book suggest
that OpenSolaris is well-documented.

Source Documentation 1.0 — A two-volume internals
book set on OpenSolaris is available from Prentice-
Hall.

License 0.9 — OpenSolaris uses a license based on the
Moxzilla license. It is somewhat less restrictive than
the GPL.

Repository 1.0 — Repositories on three sites use three
different protocols.

OFR = .90

5.8 SecondLife

Second Life is a popular multi-user client-server vir-
tual world building system developed by Linden Labs.
Like OpenSolaris, it began as a proprietary program
and was migrated to open source. Note that only the

client has been open sourced; the server was widely
announced as being open sourced, and then Linden
backed off on their plans. The server constitutes the
“keys to the kingdom”, since Linden derives most of
their revenue from their servers and the virtual prop-
erty that they host.

Language portability 1.0 — SecondLife is written in
C++, quite portable.
Library portability 0.2 — SecondLife viewer source
distribution includes a binary .dll file, a shared library
of unknown contents. Worse, it is not usable without
a server whose source code has not been released.
Contributors 0.5 — It is not clear how many persons
outside Linden Labs have contributed to SecondLife.
Users 1.0 — Second Life has millions of users.
Build Documentation 0.7 — The SecondLife viewer
build is non-trivial.
User Documentation 1.0 — There are many books on
Second Life.
Source Documentation 0.7 — There are comments in
the code, but not a lot.
License 0.8 — GPL.
Repository 0.8 — The software is hosted at Linden Labs.

OFR = .68
5.9 Freespire

Freespire is a Linux distribution, which came about
after the closing of the ill-fated Linspire and Lindows
projects. Freespire seeks to make Linux easy on the
PC, mainly by including proprietary codecs, drivers
and applications.

Language portability 0.8 — Freespire uses a Debian
kernel; it is as portable as Linux.

Library portability 0.8 — Freespire uses proprietary
libraries in part.

Contributors 0.7 — Freespire has a somewhat limited
contributor base.

Users 0.7 — Freespire has a somewhat limited user
base.

Build Documentation 0.7 — Freespire’s build documen-
tation is not as extensive as for other distributions.
User Documentation 0.8 — Freespire’s user docu-
mentation is not as readily available as for other
distributions.

Source Documentation 0.5 — there are proprietary
segments of the projects.

License 0.8 — Open, except for proprietary parts.
Repository 0.5 — The distribution is not widely
mirrored.

OFR = .69

5.10 MediaPortal

MediaPortal (from www.team-mediaportal.com) is
an example of an important category of open-source
software: platform-specific. MediaPortal only runs on
Windows, even though it is a “fork” of a multi-platform
open source project, XBMC.

Language portability 0.86 — Written in a mixture
of C# and C++, the former being a platform-specific
niche language, albeit a nice one. The number would
be lower, but there is a free C# Express compiler
available so long as you are a Windows developer.
86% is taken from the current Windows market share.
Library portability 0.7 — MediaPortal uses an enor-
mous number of libraries, including Windows-only
libraries and Net 2.0. It complains of missing hotfixes
on mainstream Windows versions.

Contributors 0.8 — On the Source Forge site, 69
accounts are associated with the project, however,
many are non-developers.

Users 0.7 — The Source Forge site lists an approximate
subscriber count of 52 for the MediaPortal mailing
list.

Build Documentation 0.3 — There are build instruc-
tions available. The software is very large and complex
to download or build. No “source distribution” is
available other than the SVN repository. The SVN
repository includes many binary .exe and .dll files,
making it unclear whether it is complete in source
form.

User Documentation 0.9 — There are articles available
on using MediaPortal.

Source Documentation 0.8 — MediaPortal includes
normal code comments.

License 0.8 — MediaPortal is under the GPL.
Repository 0.9 — Source Forge.

OFR = .72

6 Openness Categories

According to the OFR numbers given in Section 5,
the highest openness of any tool measured is the Linux
kernel with a score 0.95 and the lowest project is the
Alice project with a score of 0.49. We propose to in-
troduce openness classes as follows: OFR greater than
0.9 is class I, OFR greater than 0.75 is class II, and
OFR less than 0.75 is class III. According to this des-
ignation, Linux and OpenOffice are class I, GAlib and
Unicon are class II, and Alice, SecondLife, Freespire
and MediaPortal are class III open source software.

Figure 1 illustrates our categories further. Assume
that a category C; is considered to have a “passing”

grade if its score is above %, else it is considered “fail-
ing.” In the figure we show the geometric progression
as the number of failing scores increases. More than
two failing scores will put a project into class II. More
than four failing scores result in class III evaluation.

1.00 4 Class |
0.90
0.80 Class Il
0.70

Class Il

0.60 —

0.50

0.40

Figure 1. Class Digression for C; = 3

The geometric nature of our scoring system makes
it possible to readily assign an OFR to a combined
project. Say project A has OFR 4 = a and project B
has OFRp = b then the combined score for the com-
bined project A, B, OFR 4 5 can be calculated as

OFRAJ; =+Va-b.

This assumes that both projects have roughly equal
weight. If the projects are weighted by weights « and
[then we have

OFR_A’B = (ao‘ . b’B)Ti[’.
7 Conclusions

Although the proposed OFR classification system is
relatively simplistic and straightforward it does seem to
separate open source projects out into the sheep and
goats. During our research work we were somewhat
surprised that many of the case studies (some of them
not included, eg. Firefox, Gimp, Chromium) received
high marks under the OFR system. The fact that many
of the presented examples fall into the “closed” open
source Category III is skewed by our looking specifi-
cally for open source posers. The majority of the open
source community largely adheres to the open source
rules and practices. The Category III projects gen-
erally stand out as not very open projects, although
some are worse than others. It will be valuable to
identify more such open source posers. The authors
wish to reiterate their respect for both closed source
and cathedral-style development. We hope, however,
that the OFR measure will help encourage some open
source projects to be more open.

Further work could focus on better quantifying mea-
sures for each of the nine categories. Certainly new
categories could be introduced. One could also reflect
on weighing categories, perhaps depending on the type
of open source project, given that the project “Linux
kernel” is quite different from the project “LaTex” or
the project “Unicon”. We finally note that Freespire
is really the concatenation of two projects, namely a
relatively open Debian project and a project that has
many proprietary parts. Thus the rating value of 0.72
could have been derived using the concatenation for-
mula given at the end of Section 6.

References

[1] Martin Aigner and Giinther M. Ziegler. Proofs from
The Book. Springer Verlag, 3rd edition, 2004.

[2] R. Glass. A look at the economics of open source.
Communications of the ACM, 47:25-27, 2004.

[3] Daniel E. Markle. Community and “Fake” Open
Source Projects. www.ashtech.net, 2005.

[4] Eric S. Raymond. The Cathedral and the Bazaar.
O Reilly, 1999.

[5] Todd R. Weiss. Open-source group to create online
forum for corporate users. Computerworld, 2007.

[6] Nathan Willis. When open source projects
close the process, something’s wrong.
www.linux.com/archive/feature/120635, 2007.

