
Model-driven Development Meets Security:
An Evaluation of Current Approaches

Kresimir Kasal
SBA Research

kkasal@sba-research.org

Johannes Heurix
Vienna University of

Technology
heurix@ifs.tuwien.ac.at

Thomas Neubauer
Vienna University of

Technology
neubauer@ifs.tuwien.ac.at

Abstract
Although our society is critically dependent on

software systems, these systems are mainly secured by
protection mechanisms during operation instead of
considering security issues during software design.
Deficiencies in software design are the main reasons for
security incidents, resulting in severe economic
consequences for (i) the organizations using the software
and (ii) the development companies. Lately, model-driven
development has been proposed in order to increase the
quality and thereby the security of software systems. This
paper evaluates current efforts that position security as a
fundamental element in model-driven development,
highlights their deficiencies and identifies current
research challenges. The evaluation shows that applying
special-purpose methods to particular aspects of the
problem is more suitable than applying generic ones,
since (i) the problem can be represented on the proper
abstraction level, (ii) the user can build on the knowledge
of experts, and (iii) the available tools are more efficient
and powerful.

1. Introduction

As our modern society is critically dependent on
software systems, the importance of software security is
constantly growing [1]. For example, companies depend
on applications to administer customer data, payment
information and inventory tracking. But not only
companies have a need for secure software: consumers
also use software to communicate with friends or family,
to check their banking accounts and to search for
resources available on the Internet. Threats resulting from
security breaches range from defeating copy protection
mechanisms to attacks such as malicious intrusions into
systems that control crucial infrastructure (cf. [2]).
Software vulnerabilities, arising from deficiencies in the
design or implementation of the software (e.g., due to
increasing complexity) are one of the main reasons for
security incidents (cf. [3]). These deficiencies are often
caused by the increasing complexity of software systems.
This is addressed with principles like abstraction,
modularization, and separation of concerns, concepts

which are all widely used. Although the object-oriented
paradigm is mostly employed nowadays, principles like
encapsulation, polymorphism, and inheritance are
insufficient, and a paradigm change is necessary [4]. For
this reason, as a successor of the computer-aided software
engineering (CASE) approach, model-driven
development (MDD) has been suggested to improve the
quality of complex software systems [4], [5]. MDD is
used to design abstractions, i.e., platform-independent
concepts, which are then translated into more accurate
ones that are adjusted to a particular platform. In a further
step, such platform-specific models are transformed into
production code. In such a development process, models
and mappings between them have to be maintained
instead of just the generated code. Aspect-oriented
software development (AOSD) is an emerging approach
with the goal of promoting advanced separation of
concerns (cf. [6], [7]). It allows multiple concerns (e.g.,
security, functionality) to be expressed separately and
unifies them into a working system in an automated way.
Because of good characteristics in tackling software
complexity, model-driven engineering was utilized to
develop secure information systems. Juerjens was the first
to propose a combination of model-driven development
and security using UMLsec (cf. [8]). Subsequently, many
proposals dealing with integrating security and modeling
languages followed and were summarized under the term
model-driven security (cf. [9]). It represents an approach
where security is applied together with model-driven
architecture [4] and focuses on building secure software
systems by specifying models together with their security
requirements. At the other end of the spectrum,
researchers have proposed formal languages, called
specification languages, to represent policies, models, and
system descriptions. Such languages are based on
mathematical logic systems and have also been applied to
the field of information security, for instance for
specifying formal security policies and for analyzing
cryptographic security protocols [10]. A great number of
modeling and specification approaches for describing
secure information systems are available, and the question
arises which method to use for which problem. When
intending to apply model-driven security, or at least to

analyze a model of a system, it is fundamental to know
which security mechanisms and security requirements can
be modeled by a certain technique and whether an
appropriate toolchain exists. As there is a multitude of
available modeling approaches, it can become tedious to
identify the most suitable method for solving the problem
at hand. There is no common comparison framework to
contrast the different methods with each other with regard
to security and to identify the most suitable approach.

Therefore, this work defines a taxonomy for model-
driven security based on the work of Khwaja and Urban
(cf. [11]). In particular, we extend Khwaja and Urban’s
comparison framework with security mechanisms that can
be modeled using a certain specification method. In this
way, we will answer the research questions (i) which
approaches are applicable for solving which development
problems and (ii) what specific features characterize these
techniques. In the scope of this paper we regard
evaluation as the “systematic assessment of the operation
and/or the outcomes of a program or policy, compared to
a set of explicit or implicit standards, as a means of
contributing to the improvement of the program or
policy” (cf. [12]). We use a combination of a testing
program approach and an objectives-based approach (cf.
[13]). The objectives used for the evaluation are taken
from literature. This evaluation provides management
decision makers such as chief security officers or
software developers with a funded decision-making basis
for the selection of model-driven security approaches. As
literature does not so far provide any evaluations focusing
on the comparison of model-driven security approaches,
and there is as yet no common comparison framework to
contrast the different methods to each other, this paper
provides a major contribution to the research area of
software engineering.

2. The Evaluation Taxonomy
This section identifies and describes several dimensions
in model-based security. The identified dimensions are
orthogonal but can still affect each other. For example, if
the modeling paradigm is aspect-oriented, one of the
artifacts that the method requires is a set of
transformation rules that are needed for model weaving.
The proposed taxonomy is influenced by the comparison
framework developed by Khwaja and Urban (cf. [11]).
The framework was intended for evaluation of
specification techniques and was already used by
Villarroel et al. (cf. [14]) to evaluate development
methods for secure information systems. Nevertheless,
Khwaja and Urban’s comparison framework did not
cover aspects such as security mechanisms that can be
modeled by a specific technique, and it did not classify
the distribution of modeled systems, the artifacts that
have to be provided by the modeler, or the applied
modeling paradigm. Furthermore, there was no

differentiation between several possible dimension
instantiations that can occur in system verification.
Therefore, these issues are handled in the proposed
taxonomy. The taxonomy will provide a classification
method that can easily be applied by a practitioner when
comparing model-driven security methods in order to
choose the appropriate one and consists of the following
dimensions:
Paradigm: This dimension is concerned with the
modeling paradigm. In case of model-driven security, two
alternatives are possible: In single, possibly hierarchical
models, crosscutting concerns are modeled in each place
where they are needed, which amounts to a significant
redundancy in the overall model. By contrast, in models
conforming to aspect-oriented development, crosscutting
concerns are described in a separate model to be
subsequently woven into (or integrated with) the primary
model using so called weaving rules, thus eliminating
redundancy.
Artifacts: There are three forms of artifacts: (i) Static
models describe the static structure of a system such as
classes and associations between them; (ii) Dynamic
models describe the behavior of a system including
interactions or states of entities; (iii) Transformation rules
define how models are transformed in the MDA approach
and how aspects are woven into aspect-oriented models.
Formality: Formal expressions allow for precise,
unambiguous and verifiable specifications of models.
Design patterns, for instance, are semi-formal models
specifying the system’s functionality by describing how
entities are assembled and interact with each other to
form the desired system. Metamodels are grammars
describing how valid models are built. Examples of
formal modeling techniques are automata, state machines,
or logics and calculus systems.
Distribution: This dimension deals with the existence of
distributed components and their interoperability.
Differences are made between single or multi-process
systems, where the latter may be distributed over multiple
machines acting as autonomous and possibly mobile
agents. Different instances of this dimension include
client/server constructs, P2P-architectures or multiple
agent systems.
Granularity: Coarse granularity allows abstracting from
details to get a more complete picture of the system, e.g.,
describing the system as a composition of interacting
subsystems where each subsystem consists of several
other components that are left outside the scope of the
model. Fine-grained models offer a more detailed view,
including elements such as classes and interacting
functions, but may also be of much higher complexity.
Executability: If the model is executable, it contains
enough information to be verified without the need to be
enriched with additional information, since its semantics
is represented in a mathematically precise and

unambiguous way. Otherwise, the model could not be
executed by a machine. In such a case, it needs to be
supplemented with additional data during the
transformation process. With executable models,
extracting test cases from them and making them
executable is a plausible technique for validating the
system.
Verification: The system’s verification can be handled in
different ways: While manual testing is error-prone and
tedious, automated test case generation is more preferable
where we distinguish between (i) deriving both test cases
and production code from the same model (ii) and test-
specific models being independent from the system built
manually. Model checking verifies conformance to a
specific requirement, while theorem proving involves
verifying whether a theory (system specification) entails a
logic formula (requirement).
Tool support: If available, tool support includes assisting
the user in the modeling process of the system, generating
code, checking the system specification’s syntax and
consistency, as well as checking whether a system is
consistent with its specification (verification) and
completely fulfills the user requirements (validation).
Applicability: In this dimension we differentiate between
several application domains for which systems can be
specified by applying a particular technique. Examples for
application domains are information systems, Web
applications, e-commerce systems, embedded systems,
etc.
Security mechanisms: In this section, security modeling
techniques are categorized according to security
mechanisms (and thus, indirectly, security requirements)
that can be represented and modeled by a particular
method. Possible instances for security mechanisms are
access control, security protocols and intrusion detection
mechanisms. Security mechanisms enforce security
requirements. A security aspect represents a particular set
of behavior needed by a certain system, as used in aspect-
oriented software development (AOSD). A security
aspect can represent a security mechanism.

2. Model-driven Security Approaches

This section presents selected model-driven security
and formal method approaches, starting with UMLsec, a
hierarchical methodology, followed by interesting aspect-
oriented approaches. Finally, general and special-purpose
formal techniques will be discussed.

2.1. UMLsec (Juerjens 2002)

UMLsec is a very general and powerful technique. It
enhances UML’s expressiveness by applying security-
related stereotypes, tags, and security constraints. These
are used to encapsulate knowledge on prudent security
engineering such that developers need not be specialized
in the domain of security [3]. UMLsec is both a modeling

language and a methodology, since the corresponding
tool suite allows for iterative refinement and adaptation of
the system models. UMLsec, as a modeling language,
allows the specification of requirements regarding
confidentiality, integrity, non-repudiation, and non-
interference (secure information flow). These
requirements are expressed as stereotypes and tagged
values and are translated into constraints that evaluate the
security properties of the model, since the author provides
a formal semantics for the fragment of UML that is
needed for UMLsec. A system is composed of
subsystems which are in turn composed of further
subsystems or components that can be modeled in the
form of class diagrams or state charts. UMLsec can also
be applied to model aspects and systems’ crosscutting
concerns separately. In such a case, the modeler would
have to provide transformation (weaving) rules that
specify and determine how specific models have to be
integrated [15]. By applying UMLsec, the system can be
described on several levels of granularity. Even if there is
no consensus on whether UML is an architecture
description language (ADL) (cf. [16]), it can also be used
to model system architectures, since package and
deployment diagrams can be expressed by using UML
and therefore also by UMLsec. Formal semantics was
provided [3] to formally analyze the behavior of
interacting components. Because interactions can be
specified in UML, distributed systems can be modeled as
well [17]; Juerjens demonstrated this with the TLS
security protocol [3].

In UMLsec the modeler has to provide static and
dynamic models including secrecy (confidentiality),
integrity, non-interference, non-repudiation, data
authenticity (can a piece of data be traced back to its
original source?), and entity authenticity (can a protocol
participant be identified?) as security requirements.
Although Juerjens provided a formal basis and thus the
foundation for executable UML modeling to simulate
whole systems, UMLsec lacks support for exact, traceable
and fully automated transition from models to
implementation code, thus denying executability. In the
meantime, this problem has been solved in the form of a
rich toolset making it possible to formally verify the
designed models [18]: With state-of-the-art model
checkers and theorem provers, this toolset allows the
automatic analysis of exported UML models formatted in
XML Metadata Interchange (XMI) format. Although
UMLsec was initially intended to tackle the problem of
designing secure information systems, the author recently
also addressed the development of secure embedded
systems (cf. [19]). As this approach evolves, further
application areas may emerge.

2.2. Secure Software Architectures by Using
Aspects (H. Yu et al. 2005)

Yu et al. [20] apply software architecture models
(SAM) to define the system’s software architecture and
the required security aspects. The approach is a formal
method for aspect-oriented modeling at an architectural
level. SAM is a development framework based on two
complementary formalisms: predicate transition nets (also
referred to as high-level Petri nets) and temporal logic.
Petri nets are used to visualize and describe the high-level
static structure of the system, as well as to model the
architecture’s behavior. Linear temporal logic formulas
(LTL) are used to specify the required security properties
(that is, security requirements, such as constraints set on
the information flow between the interacting
components). A consequence of expressing security
properties in temporal logic is that policies (i.e., sets of
security properties or requirements) are expressed on a
very low abstraction level. Expressible policies include
safety and liveness properties and variations of these (cf.
[21]). In SAM, a hierarchical set of compositions is used
to describe the system. Each composition consists of a set
of components, a set of connectors, and a set of
constraints that have to be satisfied by the interacting
components (cf. [7]). The approach is well suited for
modeling distributed architectures. In the problem domain
model, a precise description of the system’s functionality
is given. Once this model is established, it is divided into
the base architecture model and the security aspect model
by applying separation of concerns. The base architecture
model defines the software architecture of the targeted
application, including basic functional modules and their
connections. In this model, no security properties
(requirements) are specified; these are specified in the
security aspect model, along with vulnerabilities, threats,
and provided mechanisms that enforce security policies.
Thus, security aspects in this context represent
components which implement security-relevant features
and mechanisms of information systems. A secure
architecture model, the result of merging the base
architecture model with the security aspect model, is the
model where security policies are enforced. As Petri nets
are the basis for the modeling formalism, model checking
could also be applied to verify security properties (which
are represented by LTL formulas). However, the
approach lacks any tool support and no significant further
work has been done in order to enhance the proposed
method.

2.3. A Model-Based Aspect-Oriented Framework
for Building Intrusion-Aware Software Systems
(Zhu et al. 2008)

Zhu et al. [22] propose a model-based, aspect-oriented
framework for building intrusion-aware software systems.
Such a system includes a group of intrusion detection
aspects (IDAs) which can automatically detect intrusions.
The authors developed a UML profile with aspect-

oriented extensions to model attacks and thereby intrusion
detection aspects (IDAs) responsible for detecting these
attacks. The modeler has to provide static and dynamic
views of the system’s aspects. Class diagrams are used to
represent the system’s static attributes, and state machine
diagrams are used to represent the dynamic views of
intrusions, which describe how the attacker intrudes into
the system. The attack scenario models are then
transformed into programs (i.e., code is generated for the
IDAs) and subsequently woven into the primary program.
After weaving, the aspects act as intrusion detection
components to automatically identify attacks against the
target system. The method is not limited to a specific
application domain and the framework can also be used to
make distributed systems intrusion-aware. Several open
source tools like ArgoUML, AspectJ, and Novasoft
Metadata Framework are used to build the framework.
When modeling intrusions, the level of formality is high
due to state machines describing the attacks.
Nevertheless, when considering the remaining
application, which is written in an ordinary programming
language and for which no model is available, the system
is too complex to be verified formally. Therefore, the
resulting intrusion-aware application needs to be tested
manually by applying a set of attacks from the Web
security threat classification released by the Web
Application Security Consortium (WASC) [23].

2.4. Automated Validation of Internet Security
Protocols and Applications

In [24], the authors propose a tool, called AVISPA,
intended to speed up the development of security
protocols and to improve their security. The approach
provides a language called the High-Level Protocol
Specification Language (HLPSL) which is used to
describe the protocols and their intended security
requirements, and a number of analysis tools to formally
validate them [10]. The authors state that the approach
provides a modular and expressive formal language for
specifying security protocols and properties, and
integrates several different back-ends that implement a
variety of automatic analysis techniques ranging from
protocol falsification to abstraction-based verification
methods for both finite and infinite numbers of sessions
[24]. The language offers an expressive formalism that
allows specification of roles, control flows, data structures
as well as security requirements [24]. Providing four
separate analysis back-ends, the specification validation is
tackled from different angles. Upon termination, the
analysis result is presented, stating whether the problem
could be solved, whether the problem could not be solved
due to exhausted resources (e.g., memory) or some other
reason that prevented the tool from solving the problem.

In general, the method offers a high level of formality,
since HLPSL is based on Lamport’s Temporal Logic of

Actions [25]. The user has to provide a dynamic model of
the system’s behavior which is represented by a
distributed system consisting of interacting processes with
messages sent to and received from each other. The
model is not executable, since it is an abstraction of the
protocol and not its implementation. Authenticity,
integrity, and confidentiality can be analyzed with this
approach. However, as with all methods based on state
exploration, the size and the complexity of analyzed
systems are severely limited by the state explosion
problem (cf. [26]).

2.5. Symbolic Model Verifier

The Symbolic Model Verifier (SMV) is a model-
checking system that can be used for analyzing designs of
synchronous and asynchronous process systems. It
provides a language for describing finite automata, and it
can directly check the validity of temporal logic formulas
(that is, linear temporal logic, or LTL for short, and
computation tree logic, or CTL for short). The tool uses a
textual description of the system’s dynamic model and the
corresponding specification which is expressed in LTL
and CTL terms. On termination, it produces either ’true’
if the specification holds or a trace showing why the
required property is violated. SMV programs consist of
one or more modules, which can declare variables and
assign values to them. Usually, assignments give the
initial value of a variable (e.g., init(var) := 0), whereas the
variable’s next value is specified in terms of expressions
comprising the current value (e.g., next(var) := ((var + 1)
mod 3)) [27], thereby modeling state transitions. Values
can also be nondeterministic, in case the environment is
influencing the system. In SMV, processes can be
represented by modules that can be composed
synchronously or asynchronously. In the latter case, the
modules run at different speeds, and they are interleaving
arbitrarily. Such asynchronous compositions can be used
for describing communication protocols, asynchronous
circuits, and other systems whose actions are not
synchronized with a global clock [27].

In general, the proposed method offers a high level of
formality, since it is based on temporal logic. It is well
suited for modeling distributed systems, and the user has
to provide a model of the system’s dynamic behavior. The
granularity of modeled systems can vary: On the one
hand, processes that communicate with each other can be
modeled, which can describe a view of the system’s
architecture. On the other hand, the method can be
applied for modeling finite state machines, such as Mealy
automata. Executable software systems cannot be
modeled, but security protocols can. Properties like
authenticity, integrity, confidentiality and non-repudiation
can be verified. Of course, these have to be transformed
into temporal logic formulas first (that is, combinations of
safety and liveness properties, since all properties can be

traced to them [21]) to be analyzable. Lastly, as with all
model checking methods, the size and the complexity of
analyzed systems are severely limited by the state
explosion problem (cf. [26]).

2.4. Alloy

Alloy is a declarative modeling language based on
first-order logic, extended with relational logic operators
[28]. The language was primarily designed for modeling
software designs. Models written in the Alloy language
can be analyzed using the so-called Alloy Analyzer, a
model-finder built on a SAT (satisfiability problem)
solver to simulate models and check their properties.
Hereafter, we use the term Alloy to refer to both the
language and the tool. The key elements of the approach
are a logic, a language, and an analysis, which are
introduced below [28].

• In [28], the authors describe Alloy as a first-
order relational logic, which provides the building blocks
of the language. All logical structures are represented as
relations, and all structural properties are expressed with
relational operators. States and executions are both
described using constraints.

• The language adds a syntax to the underlying
first-order relational logic. To support classification, the
Alloy language supports typing, sub-typing and compile-
time type-checking. Furthermore, the language’s module
system allows a reuse of generic declarations and
constraints.

• Literally speaking, the analysis of Alloy models
is a form of constraint solving, either by finding an
instance of a model or by finding a counterexample for a
given property. An instance is an example of the specified
model, in which both the facts and the predicate hold. To
make instance finding feasible, a user-specified scope is
defined that limits the size of the analyzed instances.
Within this bound, the analyzer translates the constraint
into a Boolean formula and solves it using a commercial
SAT solver [28]. The solution is then presented to the
user.

In general, the proposed method is suitable for
modeling static and dynamic aspects of software systems.
Furthermore, it offers a high level of formality, since the
language is based on first-order relational logic. The
Alloy language is abstract enough to model the problem
domain’s specific entities, as well as to model distributed
systems, since message transmissions can be represented
as dynamic operations. The modeled systems are not
executable but are also not bound to a specific application
area, since Alloy is expressive enough to capture several
problem domains. As the approach is based on first-order
logic, security requirements such as authenticity,
integrity, non-repudiation, and confidentiality can be
expressed. These have to be specified by the user as first-
order formulas.

3. Evaluation of Model-driven Security
Approaches
Tables I provides a detailed overview of the surveyed
methods, answering the question which modeling
approaches are applicable for solving which problems. In
summary, the conducted classification revealed that
UMLsec is the most generally applicable approach
focused on security, since all the other methods are either
limited to modeling single security mechanisms (e.g.,
role-based access control), or they are general enough to
model security as well but offer no security-specific
language elements. The aspect-oriented approaches
concentrate on just a single security aspect and lack the
adaptability of the other methodologies, thus are unable to
support the development of secure real-world applications
on their own where usually several security aspects are of
equal importance. Alloy is an example of such a language
which is indeed very expressive but does not provide
established rules of prudent security engineering to make
them available for users who may not be experts in
security. In such a case, the user has to model all the
security aspects of the problem domain, which often

requires a deep understanding of security (e.g.,
cryptographic protocols).
Likewise, the Symbolic Model Verifier (SMV) model-
checking system can be applied for analyzing dynamic
behavior of parallel executing processes and can be used
for the analysis of cryptographic security protocols as
well. However, the level of abstraction offered by the
SMV modeling language is far lower than the level
adequate for describing security protocols. As a result,
modeling security protocols in the SMV language is more
complex than in AVISPA, since there are much more
details to consider. Therefore, even if generally applicable
methods (e.g., UMLsec, Alloy) can be applied to a
broader range of security problems than special-purpose
methods, this does not imply that they are more adequate.
First, it depends on the particular problem which method
fits best. And second, we have made the experience that
picking the adequate special purpose method and
applying it to the particular problem is more efficient and
leads to better results, since (i) the problem can be
represented on the proper abstraction level, (ii) the user
can build on the knowledge of experts, and (iii) the
available tools are more efficient and powerful.

Dimension Juerjens H. Yu et al. Zhu et al. AVISPA SMV Alloy
Paradigm hierarchical aspect-oriented aspect-oriented hierarchical hierarchical hierarchical
Artifacts static and

dynamic models
static and
dynamic models
weaving rules

static and
dynamic models
weaving rules

dynamic models dynamic models static and
dynamic models

Formality metamodels
constraints

high-level
Petri nets
temporal logic

metamodels
state machines

temporal logic
of actions

temporal logic first-order logic

Distribution yes yes no yes yes yes
Granularity packages,

classes
components and
connectors

classes processes processes classes

Executability no no no no no no
Verification model checking

theorem proving
model checking no model checking

theorem proving
model checking model finding

Tool support yes no no yes yes yes
Applicability information

systems
embedded
systems

widely
applicable

widely
applicable

security
protocols

synchronous
and
asynchronous
systems

widely
applicable

Security
mechanisms
and
requirements

confidentiality
integrity
non-repudiation
non-interference
authenticity
access control

safety liveness intrusion
detection

confidentiality
integrity
authenticity

safety
liveness

confidentiality
integrity
authenticity
non-repudiation

Table 1: Evaluation results

5. Conclusion
In recent years, model-driven development has been
introduced in order to increase the quality and thereby the
security of software systems. This paper presented an
evaluation of current efforts that position security as a
fundamental element in model-driven development. Our
evaluation revealed that approaches that analyze
implementations of modeled systems are still missing.
Due to the fact that implementations are not generated
automatically from formal specifications, verification of
running code is reasonable. A further insight was that all
the aspect-oriented approaches modeled only a single
security aspect. So even if the presented techniques
worked well for modeling a single security mechanism, it
has not been shown by anyone how adequate the AOSD
principle is for developing secure real-world applications.
Therefore, modeling several security aspects and
combining them with the primary model is one of the next
steps that the modeling community has to take. Further
work will focus on the evaluation of how complex the
weaving rules may become and how difficult it might be
to verify a system consisting of several security aspects if
more than one aspect is considered. Successfully
modeling and thus generating a secure system including
several security mechanisms, such as a security protocol
(e.g., Needham-Schroeder) and access control (e.g., role-
based access control), would provide the necessary
confidence that the AOSD paradigm is suitable for
development of complex and secure real-world
applications.

References
[1] P. T. Devanabu and S. Stubblebine, “Software
engineering for security: a roadmap,” in ICSE ’00:
Proceedings of the Conference on The Future of Software
Engineering. ACM, 2000, pp. 227–239.
[2] The Economist, “Cyberwarfare is becoming scarier,”
The Economist (US), 2007.
[3] J. Juerjens, Secure Systems Development with UML.
Springer, 2005.
[4] E. Fernandez-Medina, J. Juerjens, J. Trujillo, and S.
Jajodia, “Model-driven development for secure
information systems,” Information and Software
Technology, 2008.
[5] D. C. Schmidt, “Model-driven engineering,” IEEE
Computer, vol. 39, no. 2, 2006.
[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” pp. 220– 242, 1997.
[7] J. Dehlinger and N. Subramanian, “Architecting
secure software systems using an aspect-oriented
approach: A survey of current research,” Iowa State
University, Tech. Rep., 2006.

[8] J. Juerjens, “UMLsec: Extending UML for secure
systems development,” in UML ’02: Proceedings of the
5th International Conference on The Unified Modeling
Language, 2002.
[9] D. Basin, J. Doser, and T. Lodderstedt, “Model driven
security for process-oriented systems,” in SACMAT ’03:
Proceedings of the eighth ACM Symposium on Access
control models and technologies. ACM, 2003, pp. 100–
109.
[10] L. Vigano, “Automated security protocol analysis
with the AVISPA tool,” Electronic Notes in Theoretical
Computer Science, vol. 155, pp. 61–86, 2006.
[11] A. Khwaja and J. Urban, “A synthesis of evaluation
criteria for software specifications and specification
techniques,” International Journal of Software
Engineering and Knowledge Engineering, 2002.
[12] C. H. Weiss, Evaluation: Methods for Studying
Programs and Policies. Prentice-Hall, 1998.
[13] H. E. R., “Assumptions underlying evaluation
models,” Educational Researcher, 1978.
[14] R. Villarroel, E. Fernandez-Medina, and M. Piattini,
“Secure information systems development - a survey and
comparison,” Computers & Security, 2005.
[15] J. Fox and J. Juerjens, “Introducing security aspects
with model transformations,” in ECBS ’05: Proceedings
of the 12th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems.
IEEE Computer Society, 2005.
[16] D. Coleman, G. Booch, D. Garlan, S. Iyengar, C.
Kobryn, and V. Stavridou, “Is UML an architectural
description language,” 1999.
[17] B. Best, J. Juerjens, and B. Nuseibeh, “Model-based
security engineering of distributed information systems
using UMLsec,” in ICSE ’07: Proceedings of the 29th
international conference on Software Engineering, 2007.
[18] J. Juerjens, “UML analysis tools,
http://mcs.open.ac.uk/jj2924/umlsectool/index.html,”
[19] J. Juerjens, “Developing secure embedded systems:
Pitfalls and how to avoid them,” 2007.
[20] H. Yu, D. Liu, X. He, L. Yang, and S. Gao, “Secure
software architectures design by aspect orientation,” in
ICECCS ’05: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer
Systems. IEEE Computer Society, 2005, pp. 47–55.
[21] B. Alpern, B. Alpera, F. B. Schneider, and F. B.
Schneider, “Recognizing safety and liveness,” Distributed
Computing, vol. 2, pp. 117–126, 1987.
[22] Z. J. Zhu and M. Zulkernine, “A model-based
aspect-oriented framework for building intrusion-aware
software systems,” Information and Software
Technology, 2008.
[23] WASC, “Threat classification,” Web Application
Security Consortium, Tech. Rep., 2008. [Online].
Available: http://www.webappsec.org/projects/threat

[24] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L.
Compagna, J. Cuellar, P. H. Drielsma, P. Heam, O.
Kouchnarenko, J. Mantovani, S. Moedersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L.
Vigano, and L. Vigneron, “The AVISPA tool for the
automated validation of internet security protocols and
applications,” in Lecture Notes in Computer Science
3576, 2005.
[25] L. Lamport, “The temporal logic of actions,” ACM
Transactions on Programming Languages and Systems,
vol. 16, pp. 872–923, 1994.
[26] A. Valmari, “The state explosion problem,” in
Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, the volumes are based on the Advanced Course on
Petri Nets. London, UK: Springer Verlag, 1998, pp. 429–
528.

[27] M. Huth and M. Ryan, Logic in Computer Science.
Cambridge University Press, 2004.
[28] D. Jackson, Software abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

Acknowledgments
This work was supported by grants of the Austrian
Government’s BRIDGE Research Initiative (contract
824884), the FIT-IT Research Initiative (contract 816158)
and was performed at the research center Secure Business
Austria funded by the Federal Ministry of Economy,
Family and Youth of the Republic of Austria and by the
City of Vienna.

