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Abstract 
Although our society is critically dependent on 

software systems, these systems are mainly secured by 
protection mechanisms during operation instead of 
considering security issues during software design. 
Deficiencies in software design are the main reasons for 
security incidents, resulting in severe economic 
consequences for (i) the organizations using the software 
and (ii) the development companies. Lately, model-driven 
development has been proposed in order to increase the 
quality and thereby the security of software systems. This 
paper evaluates current efforts that position security as a 
fundamental element in model-driven development, 
highlights their deficiencies and identifies current 
research challenges. The evaluation shows that applying 
special-purpose methods to particular aspects of the 
problem is more suitable than applying generic ones, 
since (i) the problem can be represented on the proper 
abstraction level, (ii) the user can build on the knowledge 
of experts, and (iii) the available tools are more efficient 
and powerful. 
 
1. Introduction 

As our modern society is critically dependent on 
software systems, the importance of software security is 
constantly growing [1]. For example, companies depend 
on applications to administer customer data, payment 
information and inventory tracking. But not only 
companies have a need for secure software: consumers 
also use software to communicate with friends or family, 
to check their banking accounts and to search for 
resources available on the Internet. Threats resulting from 
security breaches range from defeating copy protection 
mechanisms to attacks such as malicious intrusions into 
systems that control crucial infrastructure (cf. [2]). 
Software vulnerabilities, arising from deficiencies in the 
design or implementation of the software (e.g., due to 
increasing complexity) are one of the main reasons for 
security incidents (cf. [3]). These deficiencies are often 
caused by the increasing complexity of software systems. 
This is addressed with principles like abstraction, 
modularization, and separation of concerns, concepts 

which are all widely used. Although the object-oriented 
paradigm is mostly employed nowadays, principles like 
encapsulation, polymorphism, and inheritance are 
insufficient, and a paradigm change is necessary [4]. For 
this reason, as a successor of the computer-aided software 
engineering (CASE) approach, model-driven 
development (MDD) has been suggested to improve the 
quality of complex software systems [4], [5]. MDD is 
used to design abstractions, i.e., platform-independent 
concepts, which are then translated into more accurate 
ones that are adjusted to a particular platform. In a further 
step, such platform-specific models are transformed into 
production code. In such a development process, models 
and mappings between them have to be maintained 
instead of just the generated code. Aspect-oriented 
software development (AOSD) is an emerging approach 
with the goal of promoting advanced separation of 
concerns (cf. [6], [7]). It allows multiple concerns (e.g., 
security, functionality) to be expressed separately and 
unifies them into a working system in an automated way. 
Because of good characteristics in tackling software 
complexity, model-driven engineering was utilized to 
develop secure information systems. Juerjens was the first 
to propose a combination of model-driven development 
and security using UMLsec (cf. [8]). Subsequently, many 
proposals dealing with integrating security and modeling 
languages followed and were summarized under the term 
model-driven security (cf. [9]). It represents an approach 
where security is applied together with model-driven 
architecture [4] and focuses on building secure software 
systems by specifying models together with their security 
requirements. At the other end of the spectrum, 
researchers have proposed formal languages, called 
specification languages, to represent policies, models, and 
system descriptions. Such languages are based on 
mathematical logic systems and have also been applied to 
the field of information security, for instance for 
specifying formal security policies and for analyzing 
cryptographic security protocols [10]. A great number of 
modeling and specification approaches for describing 
secure information systems are available, and the question 
arises which method to use for which problem. When 
intending to apply model-driven security, or at least to 



analyze a model of a system, it is fundamental to know 
which security mechanisms and security requirements can 
be modeled by a certain technique and whether an 
appropriate toolchain exists. As there is a multitude of 
available modeling approaches, it can become tedious to 
identify the most suitable method for solving the problem 
at hand. There is no common comparison framework to 
contrast the different methods with each other with regard 
to security and to identify the most suitable approach.  

Therefore, this work defines a taxonomy for model-
driven security based on the work of Khwaja and Urban 
(cf. [11]). In particular, we extend Khwaja and Urban’s 
comparison framework with security mechanisms that can 
be modeled using a certain specification method. In this 
way, we will answer the research questions (i) which 
approaches are applicable for solving which development 
problems and (ii) what specific features characterize these 
techniques. In the scope of this paper we regard 
evaluation as the “systematic assessment of the operation 
and/or the outcomes of a program or policy, compared to 
a set of explicit or implicit standards, as a means of 
contributing to the improvement of the program or 
policy” (cf. [12]). We use a combination of a testing 
program approach and an objectives-based approach (cf. 
[13]). The objectives used for the evaluation are taken 
from literature. This evaluation provides management 
decision makers such as chief security officers or 
software developers with a funded decision-making basis 
for the selection of model-driven security approaches. As 
literature does not so far provide any evaluations focusing 
on the comparison of model-driven security approaches, 
and there is as yet no common comparison framework to 
contrast the different methods to each other, this paper 
provides a major contribution to the research area of 
software engineering. 
 
2. The Evaluation Taxonomy 
This section identifies and describes several dimensions 
in model-based security. The identified dimensions are 
orthogonal but can still affect each other. For example, if 
the modeling paradigm is aspect-oriented, one of the 
artifacts that the method requires is a set of 
transformation rules that are needed for model weaving. 
The proposed taxonomy is influenced by the comparison 
framework developed by Khwaja and Urban (cf. [11]). 
The framework was intended for evaluation of 
specification techniques and was already used by 
Villarroel et al. (cf. [14]) to evaluate development 
methods for secure information systems. Nevertheless, 
Khwaja and Urban’s comparison framework did not 
cover aspects such as security mechanisms that can be 
modeled by a specific technique, and it did not classify 
the distribution of modeled systems, the artifacts that 
have to be provided by the modeler, or the applied 
modeling paradigm. Furthermore, there was no 

differentiation between several possible dimension 
instantiations that can occur in system verification. 
Therefore, these issues are handled in the proposed 
taxonomy. The taxonomy will provide a classification 
method that can easily be applied by a practitioner when 
comparing model-driven security methods in order to 
choose the appropriate one and consists of the following 
dimensions:  
Paradigm: This dimension is concerned with the 
modeling paradigm. In case of model-driven security, two 
alternatives are possible: In single, possibly hierarchical 
models, crosscutting concerns are modeled in each place 
where they are needed, which amounts to a significant 
redundancy in the overall model. By contrast, in models 
conforming to aspect-oriented development, crosscutting 
concerns are described in a separate model to be 
subsequently woven into (or integrated with) the primary 
model using so called weaving rules, thus eliminating 
redundancy.  
Artifacts: There are three forms of artifacts: (i) Static 
models describe the static structure of a system such as 
classes and associations between them; (ii) Dynamic 
models describe the behavior of a system including 
interactions or states of entities; (iii) Transformation rules 
define how models are transformed in the MDA approach 
and how aspects are woven into aspect-oriented models. 
Formality: Formal expressions allow for precise, 
unambiguous and verifiable specifications of models. 
Design patterns, for instance, are semi-formal models 
specifying the system’s functionality by describing how 
entities are assembled and interact with each other to 
form the desired system. Metamodels are grammars 
describing how valid models are built. Examples of 
formal modeling techniques are automata, state machines, 
or logics and calculus systems.  
Distribution: This dimension deals with the existence of 
distributed components and their interoperability. 
Differences are made between single or multi-process 
systems, where the latter may be distributed over multiple 
machines acting as autonomous and possibly mobile 
agents. Different instances of this dimension include 
client/server constructs, P2P-architectures or multiple 
agent systems.  
Granularity: Coarse granularity allows abstracting from 
details to get a more complete picture of the system, e.g., 
describing the system as a composition of interacting 
subsystems where each subsystem consists of several 
other components that are left outside the scope of the 
model. Fine-grained models offer a more detailed view, 
including elements such as classes and interacting 
functions, but may also be of much higher complexity.  
Executability: If the model is executable, it contains 
enough information to be verified without the need to be 
enriched with additional information, since its semantics 
is represented in a mathematically precise and 



unambiguous way. Otherwise, the model could not be 
executed by a machine. In such a case, it needs to be 
supplemented with additional data during the 
transformation process. With executable models, 
extracting test cases from them and  making them 
executable is a plausible technique for validating the 
system.  
Verification: The system’s verification can be handled in 
different ways: While manual testing is error-prone and 
tedious, automated test case generation is more preferable 
where we distinguish between (i) deriving both test cases 
and production code from the same model (ii) and test-
specific models being independent from the system built 
manually. Model checking verifies conformance to a 
specific requirement, while theorem proving involves 
verifying whether a theory (system specification) entails a 
logic formula (requirement).  
Tool support: If available, tool support includes assisting 
the user in the modeling process of the system, generating 
code, checking the system specification’s syntax and 
consistency, as well as checking whether a system is 
consistent with its specification (verification) and 
completely fulfills the user requirements (validation).  
Applicability: In this dimension we differentiate between 
several application domains for which systems can be 
specified by applying a particular technique. Examples for 
application domains are information systems, Web 
applications, e-commerce systems, embedded systems, 
etc.  
Security mechanisms: In this section, security modeling 
techniques are categorized according to security 
mechanisms (and thus, indirectly, security requirements) 
that can be represented and modeled by a particular 
method. Possible instances for security mechanisms are 
access control, security protocols and intrusion detection 
mechanisms. Security mechanisms enforce security 
requirements. A security aspect represents a particular set 
of behavior needed by a certain system, as used in aspect-
oriented software development (AOSD). A security 
aspect can represent a security mechanism.  
 
2. Model-driven Security Approaches 

This section presents selected model-driven security 
and formal method approaches, starting with UMLsec, a 
hierarchical methodology, followed by interesting aspect-
oriented approaches. Finally, general and special-purpose 
formal techniques will be discussed. 

 
2.1. UMLsec (Juerjens 2002)  

UMLsec is a very general and powerful technique. It 
enhances UML’s expressiveness by applying security-
related stereotypes, tags, and security constraints. These 
are used to encapsulate knowledge on prudent security 
engineering such that developers need not be specialized 
in the domain of security [3]. UMLsec is both a modeling 

language and a methodology, since the corresponding 
tool suite allows for iterative refinement and adaptation of 
the system models.  UMLsec, as a modeling language, 
allows the specification of requirements regarding 
confidentiality, integrity, non-repudiation, and non-
interference (secure information flow). These 
requirements are expressed as stereotypes and tagged 
values and are translated into constraints that evaluate the 
security properties of the model, since the author provides 
a formal semantics for the fragment of UML that is 
needed for UMLsec. A system is composed of 
subsystems which are in turn composed of further 
subsystems or components that can be modeled in the 
form of class diagrams or state charts. UMLsec can also 
be applied to model aspects and systems’ crosscutting 
concerns separately. In such a case, the modeler would 
have to provide transformation (weaving) rules that 
specify and determine how specific models have to be 
integrated [15]. By applying UMLsec, the system can be 
described on several levels of granularity. Even if there is 
no consensus on whether UML is an architecture 
description language (ADL) (cf. [16]), it can also be used 
to model system architectures, since package and 
deployment diagrams can be expressed by using UML 
and therefore also by UMLsec. Formal semantics was 
provided [3] to formally analyze the behavior of 
interacting components. Because interactions can be 
specified in UML, distributed systems can be modeled as 
well [17]; Juerjens demonstrated this with the TLS 
security protocol [3].  

In UMLsec the modeler has to provide static and 
dynamic models including secrecy (confidentiality), 
integrity, non-interference, non-repudiation, data 
authenticity (can a piece of data be traced back to its 
original source?), and entity authenticity (can a protocol 
participant be identified?) as security requirements. 
Although Juerjens provided a formal basis and thus the 
foundation for executable UML modeling to simulate 
whole systems, UMLsec lacks support for exact, traceable 
and fully automated transition from models to 
implementation code, thus denying executability. In the 
meantime, this problem has been solved in the form of a 
rich toolset making it possible to formally verify the 
designed models [18]: With state-of-the-art model 
checkers and theorem provers, this toolset allows the 
automatic analysis of exported UML models formatted in 
XML Metadata Interchange (XMI) format. Although 
UMLsec was initially intended to tackle the problem of 
designing secure information systems, the author recently 
also addressed the development of secure embedded 
systems (cf. [19]). As this approach evolves, further 
application areas may emerge. 

 
2.2. Secure Software Architectures by Using 
Aspects (H. Yu et al. 2005)  



Yu et al. [20] apply software architecture models 
(SAM) to define the system’s software architecture and 
the required security aspects. The approach is a formal 
method for aspect-oriented modeling at an architectural 
level. SAM is a development framework based on two 
complementary formalisms: predicate transition nets (also 
referred to as high-level Petri nets) and temporal logic. 
Petri nets are used to visualize and describe the high-level 
static structure of the system, as well as to model the 
architecture’s behavior. Linear temporal logic formulas 
(LTL) are used to specify the required security properties 
(that is, security requirements, such as constraints set on 
the information flow between the interacting 
components). A consequence of expressing security 
properties in temporal logic is that policies (i.e., sets of 
security properties or requirements) are expressed on a 
very low abstraction level. Expressible policies include 
safety and liveness properties and variations of these (cf. 
[21]). In SAM, a hierarchical set of compositions is used 
to describe the system. Each composition consists of a set 
of components, a set of connectors, and a set of 
constraints that have to be satisfied by the interacting 
components (cf. [7]). The approach is well suited for 
modeling distributed architectures. In the problem domain 
model, a precise description of the system’s functionality 
is given. Once this model is established, it is divided into 
the base architecture model and the security aspect model 
by applying separation of concerns. The base architecture 
model defines the software architecture of the targeted 
application, including basic functional modules and their 
connections. In this model, no security properties 
(requirements) are specified; these are specified in the 
security aspect model, along with vulnerabilities, threats, 
and provided mechanisms that enforce security policies. 
Thus, security aspects in this context represent 
components which implement security-relevant features 
and mechanisms of information systems. A secure 
architecture model, the result of merging the base 
architecture model with the security aspect model, is the 
model where security policies are enforced. As Petri nets 
are the basis for the modeling formalism, model checking 
could also be applied to verify security properties (which 
are represented by LTL formulas). However, the 
approach lacks any tool support and no significant further 
work has been done in order to enhance the proposed 
method. 

 
2.3. A Model-Based Aspect-Oriented Framework 
for Building Intrusion-Aware Software Systems 
(Zhu et al. 2008)  

Zhu et al. [22] propose a model-based, aspect-oriented 
framework for building intrusion-aware software systems. 
Such a system includes a group of intrusion detection 
aspects (IDAs) which can automatically detect intrusions. 
The authors developed a UML profile with aspect-

oriented extensions to model attacks and thereby intrusion 
detection aspects (IDAs) responsible for detecting these 
attacks. The modeler has to provide static and dynamic 
views of the system’s aspects. Class diagrams are used to 
represent the system’s static attributes, and state machine 
diagrams are used to represent the dynamic views of 
intrusions, which describe how the attacker intrudes into 
the system. The attack scenario models are then 
transformed into programs (i.e., code is generated for the 
IDAs) and subsequently woven into the primary program. 
After weaving, the aspects act as intrusion detection 
components to automatically identify attacks against the 
target system. The method is not limited to a specific 
application domain and the framework can also be used to 
make distributed systems intrusion-aware. Several open 
source tools like ArgoUML, AspectJ, and Novasoft 
Metadata Framework are used to build the framework. 
When modeling intrusions, the level of formality is high 
due to state machines describing the attacks. 
Nevertheless, when considering the remaining 
application, which is written in an ordinary programming 
language and for which no model is available, the system 
is too complex to be verified formally. Therefore, the 
resulting intrusion-aware application needs to be tested 
manually by applying a set of attacks from the Web 
security threat classification released by the Web 
Application Security Consortium (WASC) [23]. 

 
2.4. Automated Validation of Internet Security 
Protocols and Applications  

In [24], the authors propose a tool, called AVISPA, 
intended to speed up the development of security 
protocols and to improve their security. The approach 
provides a language called the High-Level Protocol 
Specification Language (HLPSL) which is used to 
describe the protocols and their intended security 
requirements, and a number of analysis tools to formally 
validate them [10]. The authors state that the approach 
provides a modular and expressive formal language for 
specifying security protocols and properties, and  
integrates several different back-ends that implement a 
variety of automatic analysis techniques ranging from 
protocol falsification to abstraction-based verification 
methods for both finite and infinite numbers of sessions 
[24]. The language offers an expressive formalism that 
allows specification of roles, control flows, data structures 
as well as security requirements [24]. Providing four 
separate analysis back-ends, the specification validation is 
tackled from different angles. Upon termination, the 
analysis result is presented, stating whether the problem 
could be solved, whether the problem could not be solved 
due to exhausted resources (e.g., memory) or some other 
reason that prevented the tool from solving the problem.  

In general, the method offers a high level of formality, 
since HLPSL is based on Lamport’s Temporal Logic of 



Actions [25]. The user has to provide a dynamic model of 
the system’s behavior which is represented by a 
distributed system consisting of interacting processes with 
messages sent to and received from each other. The 
model is not executable, since it is an abstraction of the 
protocol and not its implementation. Authenticity, 
integrity, and confidentiality can be analyzed with this 
approach. However, as with all methods based on state 
exploration, the size and the complexity of analyzed 
systems are severely limited by the state explosion 
problem (cf. [26]). 

 
2.5. Symbolic Model Verifier 

The Symbolic Model Verifier (SMV) is a model-
checking system that can be used for analyzing designs of 
synchronous and asynchronous process systems. It 
provides a language for describing finite automata, and it 
can directly check the validity of temporal logic formulas 
(that is, linear temporal logic, or LTL for short, and 
computation tree logic, or CTL for short). The tool uses a 
textual description of the system’s dynamic model and the 
corresponding specification which is expressed in LTL 
and CTL terms. On termination, it produces either ’true’ 
if the specification holds or a trace showing why the 
required property is violated. SMV programs consist of 
one or more modules, which can declare variables and 
assign values to them. Usually, assignments give the 
initial value of a variable (e.g., init(var) := 0), whereas the 
variable’s next value is specified in terms of expressions 
comprising the current value (e.g., next(var) := ((var + 1) 
mod 3)) [27], thereby modeling state transitions. Values 
can also be nondeterministic, in case the environment is 
influencing the system. In SMV, processes can be 
represented by modules that can be composed 
synchronously or asynchronously. In the latter case, the 
modules run at different speeds, and they are interleaving 
arbitrarily. Such asynchronous compositions can be used 
for describing communication protocols, asynchronous 
circuits, and other systems whose actions are not 
synchronized with a global clock [27].  

In general, the proposed method offers a high level of 
formality, since it is based on temporal logic. It is well 
suited for modeling distributed systems, and the user has 
to provide a model of the system’s dynamic behavior. The 
granularity of modeled systems can vary: On the one 
hand, processes that communicate with each other can be 
modeled, which can describe a view of the system’s 
architecture. On the other hand, the method can be 
applied for modeling finite state machines, such as Mealy 
automata. Executable software systems cannot be 
modeled, but security protocols can. Properties like 
authenticity, integrity, confidentiality and non-repudiation 
can be verified. Of course, these have to be transformed 
into temporal logic formulas first (that is, combinations of 
safety and liveness properties, since all properties can be 

traced to them [21]) to be analyzable. Lastly, as with all 
model checking methods, the size and the complexity of 
analyzed systems are severely limited by the state 
explosion problem (cf. [26]). 

 
2.4. Alloy 

Alloy is a declarative modeling language based on 
first-order logic, extended with relational logic operators 
[28]. The language was primarily designed for modeling 
software designs. Models written in the Alloy language 
can be analyzed using the so-called Alloy Analyzer, a 
model-finder built on a SAT (satisfiability problem) 
solver to simulate models and check their properties. 
Hereafter, we use the term Alloy to refer to both the 
language and the tool. The key elements of the approach 
are a logic, a language, and an analysis, which are 
introduced below [28].  

• In [28], the authors describe Alloy as a first-
order relational logic, which provides the building blocks 
of the language. All logical structures are represented as 
relations, and all structural properties are expressed with 
relational operators. States and executions are both 
described using constraints.  

• The language adds a syntax to the underlying 
first-order relational logic. To support classification, the 
Alloy language supports typing, sub-typing and compile-
time type-checking. Furthermore, the language’s module 
system allows a reuse of generic declarations and 
constraints.  

• Literally speaking, the analysis of Alloy models 
is a form of constraint solving, either by finding an 
instance of a model or by finding a counterexample for a 
given property. An instance is an example of the specified 
model, in which both the facts and the predicate hold. To 
make instance finding feasible, a user-specified scope is 
defined that limits the size of the analyzed instances. 
Within this bound, the analyzer translates the constraint 
into a Boolean formula and solves it using a commercial 
SAT solver [28]. The solution is then presented to the 
user.  

In general, the proposed method is suitable for 
modeling static and dynamic aspects of software systems. 
Furthermore, it offers a high level of formality, since the 
language is based on first-order relational logic. The 
Alloy language is abstract enough to model the problem 
domain’s specific entities, as well as to model distributed 
systems, since message transmissions can be represented 
as dynamic operations. The modeled systems are not 
executable but are also not bound to a specific application 
area, since Alloy is expressive enough to capture several 
problem domains. As the approach is based on first-order 
logic, security requirements such as authenticity, 
integrity, non-repudiation, and confidentiality can be 
expressed. These have to be specified by the user as first-
order formulas. 



 
3. Evaluation of Model-driven Security 
Approaches 
Tables I provides a detailed overview of the surveyed 
methods, answering the question which modeling 
approaches are applicable for solving which problems. In 
summary, the conducted classification revealed that 
UMLsec is the most generally applicable approach 
focused on security, since all the other methods are either 
limited to modeling single security mechanisms (e.g., 
role-based access control), or they are general enough to 
model security as well but offer no security-specific 
language elements. The aspect-oriented approaches 
concentrate on just a single security aspect and lack the 
adaptability of the other methodologies, thus are unable to 
support the development of secure real-world applications 
on their own where usually several security aspects are of 
equal importance. Alloy is an example of such a language 
which is indeed very expressive but does not provide 
established rules of prudent security engineering to make 
them available for users who may not be experts in 
security. In such a case, the user has to model all the 
security aspects of the problem domain, which often 

requires a deep understanding of security (e.g., 
cryptographic protocols).  
Likewise, the Symbolic Model Verifier (SMV) model-
checking system can be applied for analyzing dynamic 
behavior of parallel executing processes and can be used 
for the analysis of cryptographic security protocols as 
well. However, the level of abstraction offered by the 
SMV modeling language is far lower than the level 
adequate for describing security protocols. As a result, 
modeling security protocols in the SMV language is more 
complex than in AVISPA, since there are much more 
details to consider. Therefore, even if generally applicable 
methods (e.g., UMLsec, Alloy) can be applied to a 
broader range of security problems than special-purpose 
methods, this does not imply that they are more adequate. 
First, it depends on the particular problem which method 
fits best. And second, we have made the experience that 
picking the adequate special purpose method and 
applying it to the particular problem is more efficient and 
leads to better results, since (i) the problem can be 
represented on the proper abstraction level, (ii) the user 
can build on the knowledge of experts, and (iii) the 
available tools are more efficient and powerful. 

 
 
Dimension Juerjens H. Yu et al. Zhu et al. AVISPA SMV Alloy 
Paradigm hierarchical aspect-oriented aspect-oriented hierarchical  hierarchical hierarchical 
Artifacts static and 

dynamic models 
static and 
dynamic models 
weaving rules 

static and 
dynamic models 
weaving rules 

dynamic models dynamic models static and 
dynamic models 

Formality metamodels 
constraints 

high-level  
Petri nets 
temporal logic 

metamodels 
state machines 

temporal logic 
of actions 

temporal logic first-order logic 

Distribution yes yes no yes  yes  yes  
Granularity packages, 

classes 
components and 
connectors 

classes processes processes classes  

Executability no no no no  no  no  
Verification model checking 

theorem proving 
model checking no  model checking 

theorem proving 
model checking model finding 

Tool support yes no no  yes  yes  yes 
Applicability information 

systems 
embedded 
systems 

widely 
applicable 

widely 
applicable 

security 
protocols 

synchronous 
and 
asynchronous 
systems 

widely 
applicable 

Security 
mechanisms 
and 
requirements 

confidentiality 
integrity  
non-repudiation  
non-interference 
authenticity 
access control 

safety liveness intrusion 
detection 

confidentiality 
integrity 
authenticity 

safety 
liveness 

confidentiality 
integrity  
authenticity 
non-repudiation 

 
Table 1: Evaluation results 
 
 
 



5. Conclusion 
In recent years, model-driven development has been 
introduced in order to increase the quality and thereby the 
security of software systems. This paper presented an 
evaluation of current efforts that position security as a 
fundamental element in model-driven development. Our 
evaluation revealed that approaches that analyze 
implementations of modeled systems are still missing. 
Due to the fact that implementations are not generated 
automatically from formal specifications, verification of 
running code is reasonable. A further insight was that all 
the aspect-oriented approaches modeled only a single 
security aspect. So even if the presented techniques 
worked well for modeling a single security mechanism, it 
has not been shown by anyone how adequate the AOSD 
principle is for developing secure real-world applications. 
Therefore, modeling several security aspects and 
combining them with the primary model is one of the next 
steps that the modeling community has to take. Further 
work will focus on the evaluation of how complex the 
weaving rules may become and how difficult it might be 
to verify a system consisting of several security aspects if 
more than one aspect is considered. Successfully 
modeling and thus generating a secure system including 
several security mechanisms, such as a security protocol 
(e.g., Needham-Schroeder) and access control (e.g., role-
based access control), would provide the necessary 
confidence that the AOSD paradigm is suitable for 
development of complex and secure real-world 
applications. 
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