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Abstract
Many electrical grid transients can be described by
the propagation of electromechanical (EM) waves that
couple oscillations of power flows over transmission
lines and the inertia of synchronous generators. These
EM waves can take several forms: large-scale stand-
ing waves forming inter-area modes, localized oscil-
lations of single or multi-machine modes, or traveling
waves that spread quasi-circularly from major grid dis-
turbances. The propagation speed and damping of these
EM waves are potentially a powerful tool for assess-
ing grid stability, e.g. small signal or rotor angle sta-
bility, however, EM wave properties have been mostly
extracted from post-event analysis of major grid distur-
bances. Using a small set of data from the FNET sen-
sor network, we show how the spatially resolved Green’s
function for EM wave propagation can be extracted from
ambient frequency noise without the need for a major
disturbance. If applied to an entire interconnection, an
EM-wave Green’s function map will enable a model-
independent method of predicting the propagation of
grid disturbances and assessing stability.

1 Introduction
The frequency of the electrical grid is determined to
a great degree by the rotational speed of large syn-
chronous generators at centralized power stations[1].
In equilibrium, the mechanical power supplied to the
shafts of these generators is in balance with the elec-
trical power withdrawn by the electrical loads and sys-
tem dissipation. Fluctuations in this power balance both
large and small do occur, and the kinetic energy stored
in the rotational inertia of these large generators and as-
sociated turbines are the initial buffer against major fre-
quency changes, e.g. if the electrical load were to sud-
denly increase without a corresponding increase of input

mechanical power, the power to supply the load is ex-
tracted from the rotational kinetic energy of the genera-
tors, causing them to slow and the electrical frequency
to decrease. Such power imbalances are typically not
sustained because feedback control systems, i.e. gover-
nors and automatic generation control, modulate the me-
chanical input power and restore balance within a few
seconds to tens of seconds. In this manuscript, we are
interested in time scales that overlap with both the ”in-
ertial” dynamics of the electrical system as well as the
primary governor response[1].

The electrical transmission grid is a distributed sys-
tem, i.e. the electrical generation and load are point
sources spread over a wide geographical area (∼
2000 km) interconnected by a grid of high voltage (>
115 kV ) transmission lines. On longer time scales, the
frequency across this distributed system is uniform, and
any power imbalance is initially a local phenomenon.
When the electrical load suddenly increases at a partic-
ular transmission bus, the phases (and power flows) be-
tween that bus and its nearest neighbor buses suddenly
increase. The increased power flow causes the rotational
speed of nearby generators to slow as they deliver their
stored kinetic energy to the increased load. This slowing
increases the electrical phase angle between the nearby
generators and their nearest-neighbor generators. The
transfer of power from the nearest neighbors supports
the original generators, but their rotational speed also
slows (to a lesser degree as there are more of them)
building up phase difference and power flow from more
distant generators. The effect is an approximately circu-
lar, outward propagating electromechanical (EM) trav-
eling wave whose speed ( 1000 km/sec) is determined
to first order by the rotational inertia of the generators
and the susceptance of the transmission lines[2]. These
properties can show significant spatial variation over an
electrical grid, particularly in situations where genera-
tors and loads are clustered yet separated from one an-
other. There can also be temporal variation on many
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time scales as patterns of generation and load change in
time. In addition, the wave propagation may appear to
be one or two-dimensional depending on the topology
of the electrical grid[3].

Many transient grid phenomena can be understood
from the standpoint of EM waves, e.g, inter-area oscil-
lations (i.e. global modes) are a manifestation of an
interconnection-scale standing EM wave. From typi-
cal EM wave speeds and interconnection size, we esti-
mate the frequency of the fundamental, one-wavelength,
north-south mode in WECC to be approximately fN−S∼
[1000 km/sec]/[3000 km]∼ 0.3 Hz, consistent with ob-
served values[1]. The WECC modes with shorter wave-
lengths have higher frequency[1], which is also con-
sistent with the interpretation in terms of standing EM
waves. The physics of local plant modes is the same
as inter-area oscillations[1], however, local plant modes
typically only extend over a single or a few genera-
tors and a small part of the transmission system, inval-
idating a formal continuum description in terms of EM
waves. In spite of this, the technique we develop in this
manuscript should also be applicable to characterizing
local plant modes.

Inter-area and local plant modes are small signal os-
cillations that, under the right conditions, may become
unstable and spontaneously grow in amplitude. Even
if stable, these modes can be excited to significant am-
plitude by a major system disturbance. In either case,
the resulting oscillations can lead to protective relaying
actions that may cause loss of load, system separation,
or large-scale blackouts[1, 4]. A good understanding of
EM-wave propagation properties will create a better un-
derstanding of the oscillatory modes and transients of an
electrical interconnection. Even better, a real-time wide-
area measurement system (WAMS) that extracts the EM-
wave properties would provide a model-independent
method for estimating oscillatory mode shapes, frequen-
cies, and damping and a method for predicting how a
major disturbance will impact the rest of the intercon-
nection. The intent of this manuscript is to demonstrate
the feasibility of extracting the Green’s function[5] for
EM wave propagation from ambient frequency noise, a
crucial first step towards realizing such a real-time mon-
itoring tool.

2 Model-based stability

Rigorous one and two dimensional continuum models of
transmission and generation [2, 3] have been developed
that describe EM waves, and they predict propagation
characteristics similar to that described above. These
models are useful for developing qualitative understand-

ing of many transient grid phenomena, however, the use
of these reduced models in grid operations and moni-
toring is in doubt because the quantitative accuracy of
these models is questionable due to the complexity of
real electrical loads and control systems and the pres-
ence of additional equipment not included in the mod-
els, e.g. DC lines/ties, phase shifting transformers, and
other FACTS devices.

Specialized techniques have been developed for com-
puting the mode frequencies and damping for detailed
models of large interconnections with many generators
and transmission lines[1]. For a given system condi-
tion, these techniques can accurately characterize the in-
terconnection’s oscillatory modes. Also, detailed time-
harmonic transient models of an interconnection can
capture the details of EM waves, i.e. a frequency distur-
bance propagating outward from the initiating event[6]
even including the reflections of the waves off the grid
boundaries. We note that the accuracy of both types
of off-line studies is dependent on the time-consuming
task of creating models with accurate parameters for
many tens of thousands pieces of grid equipment, how-
ever, the uncertainty in model parameters due to con-
tinually changing grid operating conditions and equip-
ment availability calls into question the viability of real-
time assessment of interconnection stability using these
model-based techniques. Here, we explore the feasibil-
ity of estimating EM-wave Green’s functions from am-
bient frequency noise in WAMS measurements. These
Green’s functions will form the basis of a future model-
independent method for assessing small signal and tran-
sient stability.

3 Existing WAMS measurements

The advent WAMS[7, 8] allows for detection and mon-
itoring of EM waves in much more detail than in the
past. WAMS-based study of EM waves has focused
on two major areas: the propagation and spatial lo-
calization of major frequency disturbances[9, 10, 7, 6]
and the damping and mode structure of major inter-area
oscillations[11, 12, 13]. In the first example, a sudden
loss several hundred MWs of generation due to a sys-
tem disruption results in a frequency decline of 0.1 Hz,
which is easily detectable by WAMS[10]. Measuring
the differences in arrival times at different points in the
WAMS and assuming or estimating EM wave propaga-
tion speed allows for approximate location of the ini-
tial disturbance[9]. Alternatively, the WAMS transient
data could be used to estimate EM wave speeds between
the known disturbance location and the detection point,
however, major frequency disturbances only occur once
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every few days and the conditions of the electrical grid
are continually changing, which makes the applicabil-
ity of WAMS-extracted EM wave properties uncertain
for grid conditions as little as an hour later. In the fu-
ture, this time scale will likely shorten to a few min-
utes as time-intermittent renewable generation, such as
wind and solar photovoltaic, will create fast and stochas-
tic changes in grid conditions. It is exactly under these
highly variable conditions that real-time monitoring of
grid conditions via EM waves will be the most valuable.

In the second example, correlations in the frequency
spectra of noise-driven (or probe-signal driven) fre-
quency oscillations are used to identify the amplitude
and time-phase of standing EM-wave oscillations at sys-
tem buses participating in a small number of inter-area
oscillations[13]. We note that in [13], the frequency of
the single mode that was studied was previously iden-
tified by an eigenvalue analysis. The reliance on corre-
lations of spectra between buses appears to restrict this
analysis to a small numbers of modes that show a signifi-
cant level correlation across the interconnection. Modes
that are spatially localized will not show such long-range
correlations and would be difficult to identify. By only
studying a single or a few modes, this analysis ignores
a wealth of information in the remainder of the spectra
that describes how transients propagate throughout the
system.

4 Green’s function estimation

As an EM-wave propagates from a bus at location x1
to a bus at location x2, it effectively encodes all of the
grid properties between x1 and x2 making EM waves
a potentially powerful grid diagnostic. For a Dirac
delta-function frequency disturbance at x2 at t = 0,
i.e. ∆ f (x, t) = ∆ f0δ(x − x2)δ(t), the time response
of the frequency at x1 is called the Green’s function
G∆ f (x1,x2, t). In this manuscript, we demonstrate the
feasibility of estimating G∆ f (x1,x2, t) for EM wave
propagation in near real time from ambient frequency
noise. We note that the frequency disturbance used to
define G∆ f (x1,x2, t) also corresponds to a step change
in phase at x2, i.e. ∆Φ(x, t) = ∆Φ0δ(x−x2)Θ(t), which
corresponds to an abrupt change in the local generation-
load balance as described above and investigated in
[9, 10, 7, 6].

Our Green’s function estimation approach is adapted
from and closely follows recent theoretical work by
Snieder[14] on passive imaging via correlation of earth-
quake coda waves in locally isotropic media and re-
lated experimental work by Derode et al[15]. In this
manuscript, we review the relevant parts of Snieder’s

work and point out the essential differences with the
present problem. Additional references on the founda-
tions of this method can be found in the citations of [14]
and [15].

Snieder considers estimation of the Green’s function
for wave propagation between two observation points x1
and x2 in a two-dimensional wave propagation medium
that is embedded with many randomly placed scatterers
(indexed by s). Snieder assumes that a wave is launched
into the medium by some external source or event, and
the scatterers act as secondary sources of singly and
multiply scattered waves such that each scatterer re-
emits a wave given by Ss(t). The Ss(t) are uncorrelated
because the scattering sites are randomly placed. These
waves propagate from their scattering (source) locations
to x1 and x2 (with their individual time delays), and the
linear superposition of these waves form the aggregate
signals received at x1 and x2, i.e. px1(t) and px2(t).
Next, we form the cross correlation of the two received
signals over a time window T

C(x1,x2, t)≡
∫ T

0
px2(τ+ t)px1(τ)dτ. (1)

In principle, C(x1,x2, t) involves a double sum
over scatters s for px1(t) and s′ for px2(t), however,
Snieder[14] shows that if the individual scattered waves
(i.e. sources) Ss(t) do not have a time average compo-
nent, the cross terms with s 6= s′ average to zero after a
sufficiently long T , leaving only the diagonal terms with
s = s′. This requirement on the Ss(t) will be crucial in
determining the final form of G∆ f (x1,x2, t).

With only the diagonal terms (s = s′) remaining,
C(x1,x2, t) is simply a sum of autocorrelations of the
individual source signals Ss(t) where the time delay in
the autocorrelation is a sum of the original delay t in the
cross correlation from Eq. 1 and the difference in the ar-
rival times at x1 and x2 from scatterer s. The fact that
the Ss(t) do not have a DC component means that they
are oscillatory in nature, therefore, the individual auto-
correlations will be oscillatory are well. The phase of
these oscillations depends strongly on the autocorrela-
tion time delay, which itself depends on the difference in
arrival times at x1 and x2 from scatterer s. For source lo-
cations away from a straight line passing through x1 and
x2 (the “receiver line”), this difference in arrival time
varies rapidly with source location causing fast varia-
tions in the phase of the autocorrelations such that con-
tributions from these source locations interfere destruc-
tively. However, for source locations on the receiver line
and not between x1 and x2, the difference in arrival times
is nearly constant regardless of the absolute location of
s. The relative phase of these individual autocorrelations
is stationary, and the signals from these source locations
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interfere constructively. The Ss(t) emanating from lo-
cations on or very near the receiver line make the vast
contribution to the cross correlation C(x1,x2, t).

From the physical, stationary phase argument above,
one can already see that C(x1,x2, t) will contain infor-
mation about G(x1,x2, t). Consider a source point s on
the receiver line very near x2 but on the opposite side
of x2 relative to x1. Viewed from x1, we could hardly
distinguish whether a delta-function pulse from s origi-
nated from s or from x2. The signal detected at x1 would
be nearly equal to that caused by delta-function pulse
from x2, which is exactly G(x1,x2, t). A similar argu-
ment can be made for the contributions from the other
source terms on or near the receiver line but not neces-
sarily close to x2.

First applying a Fourier transform, Snieder[14] works
out the details of the stationary phase calculation by con-
verting the sum over individual source terms s to an in-
tegral over a source area density n(x). The result, given
by his Eq. 24 and adapted to our setting, is

C(x1,x2,ω) =
πc
iω
|S(ω)|2[G(x2,x1,ω)

∫ 0

−∞

n(x)dx

+ G(x1,x2,ω)
∫

∞

R
n(x)dx]. (2)

where C(x1,x2,ω) and G(x1,x2,ω) are the Fourier
transforms of the cross correlation and Green’s func-
tion, |S(ω)|2 is power spectral density averaged over the
sources Ss(t), and c is the phase speed of EM-wave be-
tween x1 and x2. The integrals in Eq. 2 are carried out
along two sections of the receiver line with x1 at x = 0
and x2 at x = R. Snieder[14] performed his derivation
for surface waves on a solid, and he accounted for differ-
ent polarizations and different wave modes. EM waves
are also two-dimensional waves, however, they are only
scalar waves with a single mode. Therefore, in Eq. 2, we
have dropped the polarization, mode indexes, and com-
plex conjugation in Snieder’s Eq. 24. Equation 2 is the
starting point for our estimation of EM-wave Green’s
function from ambient frequency noise on an electrical
interconnection.

5 EM-wave Green’s function esti-
mation

The electrical grid has been approximated as a two-
dimensional continuum of transmission and generation,
and frequency disturbances have been shown to prop-
agate as EM waves as described above[3]. To use the
Green’s function estimation technique as described by
Snieder[14], we must be careful in its application. In

the continuum description of the grid, there are not em-
bedded scatterers as described by Snieder[14], however,
his scatterers simply acted as sources of uncorrelated in-
jections of signals Ss(t) from randomly placed locations.
In the case of the electrical grid, random fluctuations of
load at substation buses will play the same role.

On short time scales, changes in load P at a bus in
the transmission system are abrupt, and an individual
change can be modeled as a step function in time. Previ-
ously, we argued that such changes in load create instan-
taneous frequency deviations at this bus (located at xs) in
the form of a Dirac delta-function in time, i.e. ∆ f (x, t) =
∆ fsδ(x− xs)δ(t). If we used the cross correlation in
Eq. 1 to estimate G∆ f (x1,x2, t), the source terms Ss(t)∼
∆ fsδ(x−xs)δ(t) have a time-average component violat-
ing a basic assumption made by Snieder[14]. To circum-
vent this difficulty, we choose instead to work with the
time derivative of the frequency deviation ∆ f ′ and es-
timate the Green’s function G∆ f ′(x1,x2, t). The source
terms are Ss(t) ∼ ∆ fsδ(x− xs)dδ(t)/dt, which have no
time-average component. The average of the power
spectra in Eq. 2 is then |S(ω)|2 ∝ ω2. Substituting into
Eq. 2, we find

C∆ f ′(x1,x2,ω)

iω
= −πc[G∆ f ′(x2,x1,ω)A−

+ G∆ f ′(x1,x2,ω)A+]. (3)

Taking the inverse Fourier transform of Eq. 3 yields∫
C∆ f ′(x1,x2, t)dt = −πc[G∆ f ′(x2,x1, t)A−

+ G∆ f ′(x1,x2, t)A+], (4)

where A− and A+ are the integrals over the source
density in Eq. 2 from −∞ → 0 and from R → ∞, re-
spectively. If the electrical grid is in a quasi-steady
state over the time window T , ∆ f and ∆ f ′ satisfy
the same homogenous partial differential equation and
G∆ f ′(x1,x2, t) = G∆ f (x1,x2, t). Therefore, the time inte-
gral of the cross correlation C∆ f ′(x1,x2, t) in Eq. 4 also
yields the Green’s function for ∆ f , a quantity of funda-
mental importance.

If we had a map of G∆ f (x1,x2, t) for many pairs
of locations throughout the interconnection, we could
quickly compute the time dependence of the frequency
deviation following a major disturbance to the grid’s bal-
ance of generation and load. In addition, G∆ f (x1,x2, t)
can also be used to estimate the local EM-wave speed
and attenuation throughout the interconnection which
can then be used to quickly compute the frequencies and
mode shapes of many inter-area oscillations and the full
transient response to a grid disturbance.
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Figure 1: The approximate location of the FNET sen-
sors used in this analysis are indicated by the filled cir-
cles. The black lines are the receiver lines for each pair
of buses. The EM-wave speed for the receiver lines
are computed from the arrival times estimated from the
Green’s function G∆ f (x1,x2, t) for each pair of buses.

6 Source data and analysis

To test the concepts described above, we have analyzed
a small sample of data from the FNET WAMS[7]. The
FNET sensors provide time-synchronized frequency
measurements every 0.1 secs at many transmission buses
throughout the U.S. Here, we focus on three closely-
spaced buses in the Eastern interconnection shown in
Fig. 1. The frequency measurements are actually per-
formed at a location on the distribution system attached
to the transmission bus, however, it has been shown
that frequency disturbances travel through the distribu-
tion system quickly compared to the transmission sys-
tem making the FNET frequency measurements accu-
rate representations of the bus-local frequency on the
transmission bus[7].

Figure 2a shows a 30-minute segment of frequency
data from bus 0 in Fig. 1. On this time scale, the data
from the other two buses closely track bus 0 and are in-
distinguishable. The data show normal variations about
the base frequency, and important for our discussion, the
data does not show any significant transients that can be
attributed to a system disturbance. The data sets do show
spurious spikes which we attribute to sensor noise. We

have not made any specific effort to remove such noise.
To apply Eq. 4, we must cross correlate d∆ f/dt at the

three different sites. We compute the derivative at time t
from the linear coefficient of a parabolic fit to a window
of data ∆t wide and centered on t. The window ∆t is var-
ied in the following analysis to investigate the sensitivity
of the results to this implicit filtering. Figure 2b shows
the resulting d∆ f/dt for buses 0 and 1 for ∆t ranging
from 0.5 secs to 1.5 secs. We will use these two buses
to investigate the how quickly the Green’s function esti-
mation technique converges.

The cross correlation in Eq. 4 can be computed over
a range of averaging times T . As T becomes longer, the
cross correlation time integral averages over a greater
number of load fluctuations and the destructive inter-
ference between the Ss(t) away from receiver lines be-
comes more complete[14], improving the estimation of
G∆ f (x1,x2, t). However, a long T would limit our abil-
ity to detect rapid changes in grid conditions in real
time. Figure 3 shows the evolution in C∆ f ′(x1,x2, t) for
T ranging from 1 minute to 16 minutes and for a ∆t of
1.0 sec and 1.5 sec for buses 0 and 1. In Figure 3, T in-
creases by a factor of two for each of the five curves in
the groups of ∆t.

Many FNET observations of the of the Eastern in-
terconnection following a major disturbance show that
the post-disturbance frequency is relatively constant for
times greater than 10 sec after the disturbance[9, 10, 7].
Since the cross correlation in Fig. 3 is the derivative of
this response (i.e. of the Green’s function), the cross
correlation should approach a steady value of zero be-
yond about 10 sec. For ∆t = 1.5 sec, the fluctuations in
C01 beyond 10 sec are greatly diminished for T ≥ 4 min
and C01 appears to reach a relatively constant functional
form. For ∆t = 1.0 sec, T ≥ 8 min is required to achieve
similar behavior. These minimum values of T necessary
to achieve adequate destructive interference of the noise
sources off of the receiver line should be compared to
the ∼ 20 min averaging time to extract accurate results
for bus-specific amplitudes of a single inter-area mode
in [13]. In principle, our method should require less av-
eraging time because we are using all of the information
in the cross correlation below a frequency of ∼ 1/∆t as
opposed to the single frequency in [13].

From the definition of the cross correlation in Eq. 1
and the interpretation in terms of Green’s functions, the
cross correlation in Fig. 3 should non-zero for both pos-
itive and negative times shifts t, however, it should be
zero at t = 0 as a disturbance does not propagate with
infinite speed. In Fig. 3, we only show the cross corre-
lation for one half of the time axis, and it does not go
to zero at t = 0. Both of these points can be explained
by the distribution of sources around the receiver lines
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a)

b)

Figure 2: a) A 30-minute window of frequency data
from the FNET sensor near bus 0. The data shows nor-
mal variability about the base frequency with no sig-
nificant sudden increase or decrease in frequency. The
downward spikes near 50 and 400 sec are likely just spu-
rious, non-Gaussian sensor noise. The frequency data
from buses 1 and 2 are indistinguishable from bus 0 on
this time scale. b) d f/dt for bus 0 (black) and 1 (red) for
the first 20 secs of the window in a). d f/dt vs t is calcu-
lated from the linear coefficient a quadratic fit to the data
in a) using different length time windows ∆t centered on
t.

in Fig. 1 and the filtering we perform on d f/dt.
When a pulse is emitted at x1, it propagates at finite

speed and generates a response at x2 some time later,
therefore, EM-wave propagation from x1 → x2 gener-
ates a non-zero cross correlation in Eq. 1 for t > 0
and is due to sources contained in the integral A− in
Eq. 4. A similar argument concludes that EM-wave
propagation from x2 → x1 generates a non-zero cross
correlation for t < 0 and is due to sources contained in
the integral A+. From these arguments, it is clear that
G∆ f ′(x2,x1, t) is the causal Green’s function for EM-
wave propagation from x1 → x2 and is non-zero for
t > 0, and G∆ f ′(x1,x2, t) is the anti-causal Green’s func-
tion and is non-zero for t < 0. For time-reversal invari-
ant systems, G∆ f ′(x2,x1, t) = G∆ f ′(x1,x2,−t), however,
the cross correlation in Eq. 4 need not be symmetric be-
cause the location and orientation of the receiver line in
the network may yield weights A− and A+ that are not
the same. Such a situation arises when one end of the
receiver is near the edge of the network and proximity
of the edge restricts either A− or A+.

For the three pairs of observation points in Fig. 1, one
end of the receiver line is restricted in each case, i.e.
near 0 for 0→ 1 and 0→ 2 and near 2 for 1→ 2. For
0→ 1 and 0→ 2, we use the cross correlation for t ≤ 0
and the anti-causal Green’s function. For 1→ 2, we use
t ≥ 0 and the causal Green’s function. These choices
corresponds to waves emanating from noise source on
the unrestricted end of the receiver line. It is these cross
correlations (and resulting Green’s functions) that are
presented in Figs. 3 and 4. For waves from noise sources
on the restricted end, we find cross correlations that are
smaller than and lack the coherent oscillations of those
in Figs. 3 and 4.

The approximate symmetry of the cross correlation
about t = 0 also explains why the curves in Fig. 3 and
4 do not approach zero at t = 0. To obtain a reasonable
signal-to-noise ratio, we filter d f/dt using parabolic fits
centered on t. The effect is to spread out any rapid time
variation of d f/dt causing sharp pulses to appear to ar-
rive before causality would allow. Since our filtering
window ∆t is of the same order as the propagation time
delay, a pulse is that is in reality sharp generates a con-
tribution at t = 0 when first passed through our filter.

With a better understanding of the techniques for
estimating the Green’s function for EM wave propa-
gation over an electrical grid, we compute the cross
correlations for each pair of observation points using
∆t = 1.5 sec and T = 4 min. The cross correlations are
shown in Fig. 4a and the integrals, i.e. the Green’s func-
tion G∆ f (x1,x2, t) for the local frequency, are shown in
Figs. 4a and b. The absolute scaling of C(x1,x2, t) and
G∆ f (x1,x2, t) is arbitrary because we currently have no
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Figure 3: The cross correlation of d f/dt at buses 0 and
1, C01. The two groups of curves are computed using
d f/dt data generated using ∆t fitting windows 1.0 and
1.5 sec wide. Within each group, averaging times T of
1, 2, 4, 8, and 16 minutes are used. The reduction in
fluctuations of C01 beyond about 10 sec is used as an in-
dication of the quality of destructive interference of the
EM waves launched by sources away from the receiver
line for buses 0 and 1. These fluctuations become small
and the functional form of C01 becomes relatively con-
stant at ∆t = 1.0 sec and T = 8 minutes or ∆t = 1.5 sec
and T = 4 minutes. The zeroes for the ∆t = 1.0 sec data
are incrementally offset by 0.1 along the vertical axis for
clarity of the figure. The zeroes for ∆t = 1.5 sec data are
offset in a similar way with the zero for the T = 1 minute
data at 1.0.

method to estimate A+ or A− in Eq. 4. In an attempt
to maintain the relative scaling between the three differ-
ent observation pairs, we have used the product of root-
mean-squares of d f/dt at x1 and x2 as estimates of A+

and A−
As discussed earlier, G∆ f (x1,x2, t) is the frequency

response at x1 after a Dirac delta-function perturbation
to the frequency at x2, which is equivalent to a sudden
increase (decrease) in generation (load) at x2. Figure 4b
actually presents −G∆ f (x1,x2, t) which is the response
to a sudden loss of generation at x2. The general shape
and time extent of the transient closely resembles ac-
tual measurements (made with FNET) of such frequency
declines after a loss of generation[9, 10, 7], however,
the response in Fig. 4b was estimated from ambient fre-
quency noise. This noise can be analyzed in real time
to provide an on-line prediction of the local and system-
wide impact of such a major disturbance.

The arrival time of an EM wave following a major
disturbance has been estimated by finding the time of
fastest frequency decline[10]. For our analysis, this

Figure 4: a) The cross correlations for each pair of ob-
servation points in Fig. 1 computed using ∆t = 1.5 sec
and T = 4 mintues. b) The negative of the integral of
the cross correlations in a), which are proportional to
−G∆ f (x1,x2, t), i.e. the frequency response at x1 due to
a sudden loss of generation at x2.

is given by the time of the peak value of C(x1,x2, t).
These arrival times are t0→1 = 0.8 sec, t0→2 = 0.6 sec,
and t1→2 = 0.4 sec. The straight-line geographic dis-
tances between these buses are L0→1 = 585 km, L0→2 =
460 km, and L1→2 = 510 km. The EM-wave speeds esti-
mated from these values are shown in Fig. 1. The slower
EM-wave speeds appear to be correlated with regions of
dense transmission and generation which is qualitatively
consistent with the interpretation in [3]. However, these
analysis should be repeated for time windows T imme-
diately following a major system disturbance, such as
those in [10], so that a quantitative comparison of the
full G∆ f (x1,x2, t) can be made.
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7 Conclusions and future work

Using signal processing techniques developed for pas-
sive imaging in seismology[14], we have demonstrated
how the transient response of the electrical grid to sud-
den changes in load or generation can be estimated from
ambient frequency noise gathered over a WAMS. Our
method provides the entire time response, not just the
phases and relative amplitudes for an individual EM
standing-wave mode. We have shown how the quality
of the Green’s function for the transient response varies
versus different levels of filtering of the raw signal and
different cross-correlation integration times. In this ini-
tial work, raw signal filtering with a time constant of
about 1− 1.5 sec is required to achieve an integration
time of less than about 5− 10 mintues. Shorter cross-
correlation integration times are preferred as they allow
for closer to real-time monitoring.

There is much future work to do in this new area.
Here, we mention a few possible directions:

• PMU data has faster time resolution and different
signal-to-noise characteristics. This method should
be applied to PMU data to investigate if improve-
ments in Green’s function estimation are possible

• The estimated Green’s function should be com-
pared to the transient responses generated by ma-
jor disturbances such as loss of hundreds of MW
of generation. The Green’s function should be es-
timated from the ambient frequency noise both be-
fore and after the event and compared with the fre-
quency decline during the event.

• Using data from the FNET WAMS or PMU data,
all nearest-neighbor Green’s functions should be
estimated and an EM-wave propagation speed and
attenuation map developed for an entire intercon-
nect. The mode shapes, frequencies, and damp-
ing of all inter-area modes should be estimated and
compared with off-line simulations.
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