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Abstract 
Cluster analysis is a fundamental technique in 

traditional data analysis and many clustering 
methods have been identified, including the 
commonly used k-means approach, which requires 
the number of clusters to be specified in advance and 
is dependent on initial starting points. We present an 
evolutionary-based rough clustering algorithm, 
which is designed to overcome these limitations. 
Rough clusters are defined in a similar manner to 
Pawlak’s rough set concept, with a lower and upper 
approximation, allowing multiple cluster membership 
for objects in the data set. The paper describes the 
template, the data structure used to describe rough 
clusters. It also provides an overview of the 
evolutionary algorithm used to develop viable cluster 
solutions, consisting of an optimal number of 
templates providing descriptions of the clusters. This 
algorithm was tested on a small data set and a large 
data set.  
 
 
1. Cluster analysis  
 

Cluster analysis is a fundamental technique in 
both traditional data analysis and in data mining. The 
technique is defined as grouping ‘individuals or 
objects into clusters so that objects in the same 
cluster are more similar to one another than they are 
to objects in other clusters’ [8:470]. Many clustering 
methods have been identified, including partitioning, 
hierarchical, nonhierarchical, overlapping, and 
mixture models. One of the most commonly used 
nonhierarchical methods is the k-means approach [9], 
[14].  

In the k-means approach, objects are randomly 
selected as initial seeds or centroids, and the 
remaining objects are assigned to the closest centroid 
on the basis of the distance between them. The aim is 
to obtain maximal homogeneity within subgroups or 
clusters, and maximal heterogeneity between clusters. 
The data set is partitioned into clusters and an error 

term e is calculated, usually based on the Euclidean 
distance between each object and the cluster 
centroids. The usual approach is to search for a 
partition with small e by moving cases from one 
partition to another [8]. The search through the 
problem space to find the lowest value of e is 
considered computationally expensive and local 
optimization has traditionally been used. In addition, 
the number of clusters in each partition is decided 
prior to the analysis, a major limitation of the 
technique. A k-Modes approach has been developed 
as an extension of the k-Means algorithm, and has 
been applied to categorical data clustering by 
replacing means with modes [4]. However even with 
this extension, the number of clusters needs to be set 
in advance. 

In the last few decades, as data sets have grown in 
size and complexity, and the field of data mining has 
matured, many new techniques based on 
developments in computational intelligence have 
started to be more widely used as clustering 
algorithms. For example, the theory of fuzzy sets 
developed by Zadeh [31] introduced the concept of 
partial set membership as a way of handling 
imprecision in mathematical modeling. This was 
subsequently applied to cluster analysis [2], [7] 

One technique from the field of computational 
intelligence receiving considerable attention is the 
theory of rough sets [19], [21], [22]. In most previous 
applications of rough sets theory, the technique was 
used for classification problems, where prior group 
membership is known, and results are usually 
expressed in terms of rules for group membership 
[12], [20], [26].  

This paper describes a rough clustering technique, 
based on a simple extension of rough sets theory, 
applicable where prior group membership is not 
known. Before describing this technique, a brief 
introduction to canonical rough sets theory is 
provided.  
 
 
 



2. Rough sets  
 

The concept of rough or approximation sets, was 
introduced by Pawlak [19], [21], [22] and is based on 
the assumption that, with every object of an 
information system (or data matrix), there is 
associated a certain amount of information. This 
information is expressed by means of attributes used 
as descriptions of the objects. The data is treated 
from the perspective of set theory and none of the 
traditional assumptions of multivariate analysis are 
relevant. For a comprehensive introduction to rough 
sets (RS) theory, see [16], [21] or [22]. 

The complete information system expresses all 
the knowledge available about the objects being 
studied. More formally, the information system is a 
pair, S = ( U, A ), where U is a non-empty finite set 
of objects called the universe and  A = { a1, …, aj } is 
a non-empty finite set of attributes on U. With every 
attribute a ∈ A we associate a set Va such that 
a : U → Va. The set Va is called the domain or value 
set of a. In statistical terms, this value set equates to 
the range of values associated with a specific 
variable. The initial detailed data contained in the 
information system is used as the basis for the 
development of subsets of the data that are “coarser” 
or “rougher” than the original set. As with any data 
analysis technique, detail is lost, but the removal of 
detail is controlled to uncover the underlying 
characteristics of the data. The technique works by 
‘lowering the degree of precision in data, based on a 
rigorous mathematical theory. By selecting the right 
roughness or precision of data, we will find the 
underlying characteristics’ [16:141]. 

A core concept of RS is that of equivalence 
between objects (indiscernibility). Objects about 
which we have the same knowledge form an 
equivalence relation. Let S = ( U, A ) be an 
information system, then with any B ⊆ A there is 
associated an equivalence relation, INDA (B), the B-
indiscernibility relation. It is defined as: 

 
INDA (B) = { ( x, x' ) ∈ U 2 | ∀ a ∈ B  a( x ) = a( x' ) } (1) 

 
If ( x, x' ) ∈ INDA (B), then the objects x and x' 

are indiscernible from each other when considering 
the subset B of attributes. Equivalence relations lead 
to the universe being divided into partitions, which 
can then be used to build new subsets of the universe. 

Let S = ( U, A ) be an information system, and let 
B ⊆ A and X ⊆ U . We can describe the subset X 
using only the information contained in the attribute 
values from the subset B by constructing two subsets, 
referred to as the B-lower and B-upper 

approximations of X, and denoted as B*(X) and B*(X) 
respectively, where: 

B*(X) = {x | [x]B ⊆ X}  and B*(X) = {x | [x]B ∩ X ≠ ∅} (2,3)

The lower approximation (LA), defined in (2), 
contains objects that are definitely in the subset X and 
the upper approximation (UA), defined in (3), 
contains objects that may or may not be in X. A third 
subset is also useful in analysis, the boundary region, 
which is the difference between the upper and lower 
approximations. This definition of a rough set in 
terms of two other crisp sets is the simple but 
powerful insight contributed by Pawlak, which has 
led to numerous publications exploring the 
implications (e.g. [1], [18], [23], [25]). 

Rough sets theory has developed an extensive 
literature well beyond the brief introduction provided 
here, and the interested reader is referred to [18], 
[23], [25] and [26] for comprehensive overviews of 
developments in the field. For example, one major 
extension of relevance to rough clustering is the 
development of the concept of similarity, a relaxing 
of the strict requirement of indiscernibility in 
canonical RS theory, to include objects that are 
similar rather than identical. A number of ways of 
defining similarity have been proposed, and [18] 
provides an introduction to the issues involved. 
Dissimilarity measures have also been proposed (see 
for example, [4]). 
 
3. Related work  
 
3.1. Rough clustering 
  

The concept of a rough cluster was introduced in 
[29], by defining a rough cluster in a similar manner 
to a rough set - with a lower and upper approximation 
- allowing multiple cluster membership for objects in 
the data set. The LA of a rough cluster contains 
objects that only belong to that cluster, and by 
definition, the objects belong to the UA as well. The 
UA of a rough cluster contains objects that may 
belong to more than one cluster. The clustering 
algorithm described in [29] used a distance measure 
to construct a similarity matrix, and each object-
object pair in this similarity matrix was assigned to 
existing or new clusters depending on whether none, 
one or both objects in the pair were currently 
assigned. Problems with this approach were the large 
number of clusters generated and uncertainty as to 
whether the lower approximations of each cluster 
provide the most efficient coverage of the data set. 

A different approach was followed in [6], who 
used reducts to develop clusters. Reducts are subsets 



of the attribute set A, which provide the same 
information as the original data set. The reducts are 
used as initial group centroids, which are then 
grouped together to form clusters. One problem with 
this approach is that not all information systems have 
reducts, and some sets of reducts overlap, which 
means that the cluster centroids are not necessarily 
well separated. Other approaches include Herawan 
[10], who used subsets of the total information set to 
determine a degree of dependency, or the relationship 
between the subsets, to determine the best clustering 
attribute, and Yanto [30], who report a variable 
precision rough set model. 
 
3.2. Comparing rough and k-means clusters  
  

Voges [29] reported a comparison of rough 
clustering with k-means clustering, and found that the 
two clustering techniques resulted in some clusters 
that were identified by both techniques, and some 
clusters that were unique to the particular technique 
used. The rough clustering solution is necessarily 
different, because of the possibility of multiple 
cluster membership of objects. The rough clustering 
technique also found clusters that were “refined” sub-
clusters of those found by k-means clustering, and 
which identified a more specific sub-segment of the 
data set. 

Rough clustering also produces more clusters than 
k-means clustering [29], with the number of clusters 
required to describe the data dependent on the 
distance measure. More clusters means an object has 
a higher chance of being in more than one cluster. A 
solution with too few clusters does not provide a 
useful interpretation of the partitioning of the data. 
On the other hand, too many clusters make 
interpretation difficult. In addition, the degree of 
overlap between the clusters needed to be minimized 
to ensure that each cluster provided information to 
aid in interpretation.  

Rough clustering can be conceptualized as 
extracting concepts from the data, rather than strictly 
delineated sub-groupings. Determining a good rough 
cluster solution requires a trade-off between various 
factors. As we show below, evolutionary algorithms 
are a good way of conducting this trade-off. 
 
3.3. Evolutionary algorithms and rough sets 
  

A number of applications of evolutionary 
algorithms to rough clustering tasks have been 
reported in the literature. 

Mitra [15] proposed an evolutionary rough c-
means clustering algorithm to determine the relative 

importance of upper and lower approximations of 
rough sets used to model the clusters. The fitness 
function used in the evolutionary algorithm involved 
minimizing a specific measure, the Davies–Bouldin 
clustering validity index. Kumar [11] used an 
agglomerative hierarchical clustering algorithm for 
sequential data, where the indiscernibility relation 
was extended to a tolerance relation with the 
transitivity property being relaxed.  

Bouyer [3] used a Kohonen self-organizing map 
for pre-processing of data, which was then further 
divided into clusters using rough sets and genetic 
algorithms. How the genetic algorithm was applied is 
not clearly described, but it appears to use a data 
structure based on inter-neuron distances in the self-
organizing map. As this distance measure is based on 
Euclidean distances, the approach is restricted to 
continuous attributes. Lingras [13] developed a 
genome comprising two sections – LA membership 
and UA membership. The approach required some 
repair operators, as some randomly generated genes 
could be invalid. One limitation of this approach was 
that the number of clusters needed to be specified in 
advance, and this preliminary knowledge is not 
always available for larger data sets. 

There have also been a number of applications of 
evolutionary algorithms to classification tasks using 
rough sets. For example, [5] used a hybrid system to 
develop linguistic-based technical stock market 
indicators with rough sets theory used to extract 
linguistic rules and a genetic algorithm to refine these 
extracted rules. The effectiveness of the proposed 
model was verified for both forecasting accuracy and 
stock returns, and showed that the proposed model 
was superior to rough sets and genetic algorithms 
applied independently. Salamó [24] proposed several 
rough set based measures for estimating attribute 
relevance for feature dimensionality reduction in 
Case-Based Reasoning classifiers. 

In the following section we present an extension 
of rough clustering that attempts to overcome the 
limitations of these previous attempts to apply RS 
theory to cluster analysis. The approach suggested 
uses an EA to maximize the coverage of the data set, 
without pre-specifying the number of clusters 
required, without relying on structural characteristics 
of the cluster such as reducts, and using a 
straightforward fitness function. 
 
4. Rough clustering algorithm  
 

The discussion in the previous section has briefly 
mentioned some of the shortcomings of previous 
attempts to apply RS theory to the clustering 



problem. To overcome these shortcomings, an EA 
based approach is proposed that attempts to find the 
set of lower approximations of the rough clusters, 
which provides the most comprehensive coverage of 
the data set with the minimum number of clusters 
[28]. The number of rough clusters is not specified in 
advance (except by a broad range between minimum 
and maximum numbers of clusters, which can be 
modified within the program’s parameters if 
necessary). 
 
4.1. Data structure 
  

The basic data structure used for describing a 
rough cluster is the !"#$%&!" as described in [17]. 
Let S = ( U, A ) be an information system. Any 
clause of the form D = ( a  ∈  Va ) is called a 
'"()*+$!,*, with the value set Va called the *&-." 
of D. A !"#$%&!" is a conjunction of unique 
descriptors defined over attributes from B ⊆ A. More 
formally, any propositional formula T = Λ a ∈ B ( a  ∈  
Va) is called a !"#$%&!" of S. To create a viable 
description of a cluster using a template, at least two 
attributes from B are chosen. This results in compact, 
but non-trivial, descriptions of the rough cluster. 

Template T is simple if any descriptor of T has a 
range of one element. Templates with descriptors 
having a range of more than one element are called 
generalized. In the example presented below, only 
simple templates are used. However the technique 
could be easily extended to include generalized 
templates, incorporating intervals of attributes (i.e. 
using a similarity relation rather than an 
indiscernibility relation). 

The data structure acted on by the EA is a cluster 
solution, C, which is defined as any conjunction of k 
unique templates, 

C = T 1 Λ , …, Λ T k  (4) 

This data structure was encoded as a simple two-
dimensional array with a variable length equal to the 
number of unique templates in the cluster solution 
and a fixed width equal to the number of attributes 
being considered. Possible values in the template 
were the same as the values in the data set (-2, -1, 1, 
2 in Example 1 below, or 3, 2, 1 in Example 2 
below), with 0 being used as a “don’t care” value. 
Table 1 shows an example data structure with eight 
unique templates, using the data presented in 
Example 1 (Section 5 below). 
 
 
 

Table 1. 
Data structure example 

      
 T Variables 1  

 Image Package Price Alcohol Place 
      
 1 0 -2 0 0 -1  
 2 0 -2 0 0 1  
 3 0 -2 0 0 2  
 4 0 -1 0 1 0  
 5 0 -1 0 2 0  
 6 0 1 2 0 0  
 7 0 2 2 0 0  
 8 2 0 -2 0 0  
      

1 See Section 5 below  

 
A template describes a partition of U and the 

conjunction of templates contained in a cluster 
solution results in some templates having both LAs 
(that is, objects satisfying one template only) and 
UAs (that is, objects satisfying more than one 
template). Consequently C is a rough cluster 
solution. 
 
4.2. Pre-processing 
  

The maximum number of templates generated 
depends on the number of attributes of each object, p, 
and the range of values for the attribute, q. In a 
simple case where each attribute has the same range, 
the maximum number of simple templates generated 
is pq. Depending on the data set, many of these 
templates are of little value in describing the data, 
either because they cover too small a percentage of 
the data, or because they are trivial. For example, a 
cluster solution could be developed using one 
attribute with four values by simply having four 
templates - value 1, value 2, value 3 and value 4. This 
would cover 100% of the data set, but would only 
provide a simple frequency distribution. 

To overcome this problem, objects in the 
complete set of possible templates were individually 
checked against the data set, and only those templates 
containing two or more attributes and matching more 
than a specified percentage of the data set were 
considered valid. As will be seen in the following 
example, this can considerably reduce the number of 
templates that the EA needs to sample in order to 
generate useful rough cluster descriptions. This has 
the effect of reducing the processing time required, as 
the EA is not dealing with templates that add little to 
the overall coverage or that are invalid. 

For example, all of values shown in the templates 
presented in Table 1 occur in the original data set, 
and all have at least two attribute values. 
 



 
4.3. Fitness measure 
  

A number of objectives need to be considered 
when developing a fitness measure for rough 
clustering: (i) maximize the data set coverage c, 
defined as the fraction of the universe of objects that 
match the set of templates in the cluster solution, C; 
(ii) minimize k, the number of templates in the 
cluster solution, C; (iii) maximize the accuracy a, of 
each template [21]. 

More formally, for any  X ⊆ U,  the set of  objects 
{ x ∈ X : ∀ a ∈ B a ( x )  ∈  Va } from X satisfying any 
template Ti is denoted by [Ti]X. [Ti] *X is a lower 
approximation if x is unique to that set.  [Ti] *X is an 
upper approximation if x is contained in [Ti]X and at 
least one other set [Tj]X. We therefore define the 
following values: 

c  = ( Σ  | [Tj] *X |  ) /   | U  | , where {1 ≤ j ≤ k } (5)

That is, the ),/"*&." c, is the sum of the cardinal 
values of the LAs of each template in the cluster 
solution, C, divided by the cardinal value of U, the 
full data set. 

a  =  Σ (  | [Ti] *X |   /   | [Ti] *X | ), where {1 ≤ j ≤ k } (6)

That is, the &))0*&)1 a, is the sum of the cardinal 
value of the LA divided by the cardinal value of the 
UA for each template in the cluster solution, C. 

The fitness value, f, of each cluster solution, C, is 
defined as the coverage multiplied by accuracy 
divided by the number of templates in C. 

f  = ( c  x  a ) /  k  (7)

 
4.4. Recombination and mutation operators 
 

In the current study, a multi-point operator was 
used to simplify the task of ensuring that only valid 
rough cluster solutions were generated. The size of 
the offspring was determined by randomly selecting a 
value between the sizes of both parents. Templates 
were then randomly selected from each parent, and 
then added to the offspring after checking that they 
were not already present in the cluster solution. In 
this way, a unique solution, containing material from 
both parents, was generated. An example of this 
recombination operator is presented in Table 2. 

To provide another source of diversity in the 
population, two mutation operators were developed. 
The first operator (MutateAdd) randomly sampled a 
new template from the list of valid templates and, 
after checking to ensure that the template was not 

already in the cluster solution, added that template to 
the cluster solution. The second operator 
(MutateDelete) randomly removed a template from 
the cluster solution. In this current work, the 
probability of mutation has been set quite high, at 
50%, to ensure that all of the valid templates have 
been sampled for possible inclusion in a cluster 
solution. 

Repair operators were not required as infeasible 
solutions were not generated by either the 
recombination or mutation operators. The only 
constraint, ensuring each cluster solution contains 
only unique templates, was easily handled by 
checking the current set of templates in the cluster 
solution at the time the offspring were created. 
 

Table 2. 
Recombination operator example 

       
 Parent 1   

 1-1 0 -2 0 0 -1  
 1-2 0 -2 0 0 1  
 1-3 0 -2 0 0 2  
 1-4 0 -1 0 1 0  
       
 Parent 2  

 2-1 0 -1 0 2 0  
 2-2 0 1 2 0 0  
 2-3 0 2 2 0 0  
 2-4 2 0 -2 0 0  
       
 

! 
       
 Offspring   

 1-1 0 -2 0 0 -1  
 1-2 0 -2 0 0 1  
 1-3 0 -2 0 0 2  
 2-1 0 -1 0 2 0  
       
 
5. Example 1 
 

The evolutionary-based rough clustering 
algorithm described in the previous section was 
applied to a study of the beer preferences of 
“emerging drinkers” (i.e. young adults experiencing 
alcohol consumption for the first time). As part of a 
wider study, 174 participants were asked to 
subjectively rank attributes of beer on a four-point 
scale (covering Very Important, Important, 
Unimportant, and Very Unimportant) in terms of 
which attributes they considered when making a 
purchasing decision. Five attributes were used: 
image, packaging, price, alcohol content, and place 
sold. 

The data was used to conduct a rough cluster 
analysis, partitioning the participants into distinct 



clusters depending on which beer attributes were 
considered important. In this simple example with 
five attributes, each with a range of values of four 
plus a “don’t care” value, the total number of 
possible templates was 55, or 3125. The pre-
processing of the data, as described in Section 4.2, 
resulted in 112 valid templates. Only templates 
consisting of two or more attribute-value pairs, 
matching at least five percent of the data set, were 
considered. Only simple templates, as defined in 
[17], were used to develop the cluster descriptions, 
although the technique could easily be extended to 
include generalized templates (that is, where an 
attribute can have a continuous range of values, 
rather than a single value). 

An EA with a varying population size from 100 to 
200 was used, evolving over 1000 generations. 
Initially 100 potential cluster solutions were 
randomly produced. Both recombination and 
mutation operators were applied to produce 100 
offspring. Parents and offspring were placed in the 
population pool, sorted by fitness, and the top 100 
individuals were available for breeding in the next 
generation cycle. All individuals in the breeding 
population had an equal chance of being chosen as 
parents. The bottom 100 individuals were replaced by 
the offspring of the breeding population, and the 
process was repeated. 
 

Table 3. 
“Best” cluster solution for rough cluster 

analysis of beer preference data 
       
 T Variables | [Ti] *X  | 1  | [Ti] *X | 2 

 Image Package Price Alcohol Place 
       
 1 * VU * * VU 26 25 
 2 * VU * * U 15 14 
 3 * VU * * I 12 11 
 4 * VU * * VI 10 9 
 5 * U * U * 11 9 
 6 * U * I * 11 11 
 7 * U * VI * 10 8 
 8 * I I * * 18 18 
 9 * I VI * * 11 11 
 10 * VI I * * 13 13 
 11 * VI VI * * 15 15 
 12 I * U * * 12 6 
 13 VI * VU * * 9 7 
       

1 Size of upper approximation  2 Size of lower approximation 
VI-Very important, I-Important, U-Unimportant, VU-Very Unimportant,  
*-“Don’t care” 

 
The “best” cluster solution obtained is shown in 

Table 3. This cluster achieved a coverage, c, of 
94.8% of the data set. Table 3 shows the thirteen 
templates that comprise this cluster solution, and the 
size of the lower and upper approximations for each 

template. The accuracy, a, of each template ranged 
from 0.50 to 1.00. A number of interesting cluster 
descriptions are apparent in the cluster solution. 
Template 13 shows an “image conscious” cluster, 
unconcerned with price, and Template 12 shows a 
weaker version of this. Templates 8 to 11 show 
various combination of importance assigned to price 
and packaging. Templates 6 and 7 show another 
group whose concern is the level of alcohol content 
in the beer. Templates 3 and 4 relate to the 
importance of the purchase location. Templates 1, 2 
and 5 are difficult to interpret, as they show the 
“unimportance” of certain attributes, but don’t trade 
these off against “important” attributes. 
 
6. Example 2 
 

The evolutionary-based rough clustering 
algorithm described in Section 4 was also applied to a 
set of city image data. The data used in the analyses 
was collected as part of a wider study [27], where 
6,240 participants were asked to subjectively rank 
attributes of eleven cities on a three-point scale 
(High, Moderate, and Low). The eleven city 
destinations in the Asia Pacific region were Adelaide, 
Brisbane, Darwin, Melbourne, Perth, Sydney, 
Auckland, Christchurch, Hong Kong, Singapore, and 
Tokyo. The cities were ranked on seven factors: 
Language, Safety, Adventure, Standard of Living, 
Sun and Sand, Information, and Prices. 

An evolutionary algorithm with a varying 
population size from 40 to 80 was used, evolving 
over 100 generations. Initially 40 potential cluster 
solutions were randomly produced. Both 
recombination and mutation operators were applied 
to produce 40 offspring. Parents and offspring were 
placed in the population pool, sorted by fitness, and 
the top 40 individuals were made available for 
recombination in the next generation cycle. All 
individuals in the breeding population had an equal 
chance of being chosen as parents. The bottom 40 
individuals were replaced by the offspring of the 
breeding population, and the process was repeated. 

The “best” cluster solution obtained is shown in 
Table 4. This cluster achieved coverage of 91.4% of 
the data set. Table 4 shows the seven templates that 
comprise this cluster solution, with two of the 
templates fully enclosed within other templates. 
Template 1 describes the largest cluster in the 
solution, comprising 33.6% of the sample. It 
describes perceptions of cities with a high or medium 
standard of living and with a high level of interest 
and adventure. A sub-cluster (Template 1*) 
completely contained within this cluster (comprising 



32.7% of the cluster and 11.0% of the whole sample), 
describes cities with a high standard of living, a high 
level of interest and adventure, and for which a high 
level of tourist information is available. Template 2 
describes cities with medium levels of adventure, 
medium beaches and weather, and medium price. It 
comprised 28.8% of the sample. Template 3 (10.5% 
of the sample) describes cities with medium 
perceptions of (same) language and low adventure 
levels – these could be considered “safe” cities to 
visit. A sub-cluster (Template 3*) completely 
contained within this cluster (comprising 88.1% of 
the cluster and 9.2% of the whole sample), describes 
cities with medium perceptions of (same) language 
and low adventure levels, coupled to medium price 
levels. Template 4 (9.8% of the sample) comprises 
cities with medium adventure, low concern with 
beaches and weather, and medium concern with 
price. Template 5 (8.8% of the sample) comprises 
cities with medium adventure, high concern with 
beaches and weather, and medium concern with 
price. 
 

Table 4. 
“Best” cluster solution for rough cluster 

analysis of city image data 
       
 T Variables Size % 

   L   S   A  SL  SS   I    P  
       
 1 * * H H/M * * * 2096 33.6 
 1* * * H H * H * 685 11.0 
 2 * * M * M * M 1799 28.8 
 3 M * L * * * * 653 10.5 
 3* M * L * * * M 575 9.2 
 4 * * M * L * M 609 9.8 
 5 * * M * H * M 546 8.8 
       

L-Language, S-Safety, A-Adventure, SL-Standard of Living, SS-Sun and Sand,  
I-Information, P-Price 
H-High, M-Medium, L-Low, *-“Don’t care” 

 
7. Conclusions and future research  
 

This paper has presented an extension of 
previously published work in rough sets theory and 
rough clustering. Clusters obtained from 
conventional techniques usually have crisp 
boundaries, that is, each object belongs to only one 
cluster, but many real-world data sets do not lend 
themselves to such a neat solution. 

Rough clusters allow an object to belong to 
multiple clusters. Previous studies using evolutionary 
algorithms have required that the number of clusters 
be specified in advance, a major limitation with large 
or complex data sets. The research presented in this 
paper uses templates (conjunctions of attribute-value 
descriptors) to describe the cluster solution. An 

evolutionary algorithm was used to find a rough 
cluster solution that covers the largest percentage of 
the data set with the smallest number of accurate 
lower approximations. Future extensions will involve 
extending the template descriptions to include 
generalized templates, testing the algorithm on 
further data sets, and comparing this technique with 
other approaches. Further research can also be 
conducted on the decision-making processes used by 
consumers, which would help to validate the 
reasoning processes suggested by the rough 
clustering findings. 
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