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Abstract 
Software architecture is a key factor to scale up 

Agile Software Development (ASD) in large software-
intensive systems. Currently, software architectures 
are more often approached through mechanisms that 
enable to incrementally design and evolve software 
architectures (aka. agile architecting). Agile 
architecting should be a light-weight decision-making 
process, which could be achieved by providing 
knowledge to assist agile architects in reasoning about 
changes. This paper presents the novel solution of 
using change-impact knowledge as the main driver for 
agile architecting. The solution consists of a Change 
Impact Analysis technique and a set of models to assist 
agile architects in the change (decision-making) 
process by retrieving the change-impact architectural 
knowledge resulting from adding or changing features 
iteration after iteration. To validate our approach, we 
have put our solution into practice by running a 
project of a metering management system in electric 
power networks in an i-smart software factory. 

1. Introduction 

Software architecture is a key factor to scale up 
Agile Software Development (ASD) in large software-
intensive systems. Several works propose the 
coexistence of software architectures and ASD [1] 
[3][5][13][14][19], and a few approaches present 
successful cases of agile architecture [18] or iterative 
architecture [8]. Agile architecture can defined as "the 
one that develops with the system, and includes only 
features that are necessary for the current iteration or 
delivery" [8]. However, how to perform this iterative 
architecture refinement is still a challenge [1]. This 
challenge is addressed in this paper. 

Aligning fruitfully software architectures and ASD 
requires leveraging the inherent qualities of software 
architectures (e.g. abstraction, communication, 
analysis) while complying with agile principles (e.g. 
open to change). This alignment can be achieved as 

long as practitioners are able to count on mechanisms 
for enabling: (i) Incremental design of features, i.e. 
flexible construction of the architecture by adding 
small increments1, (ii) Accommodation of new features 
or customizations on existing features. We refer to both 
of them as agile architecting, because although 
conceptually different, require the same mechanisms to 
carry them out. The reason is that, in both cases, these 
mechanisms must be able to cope with change, though 
in the first case the change is planned (feature 
increment), and in the second case the change is 
unplanned (feature evolution). 

It would be highly convenient and desirable that the 
mechanisms for enabling agile architecting would 
assist and guide agile architects, specifically in (i) the 
decision-making process of implementing changes in 
each agile iteration, and (ii) the maintenance of the 
architecture integrity, i.e. the preservation of earlier 
architectural design decisions iteration after iteration. 
Regarding the former, the knowledge about the effects 
of a change upon the architecture provides architects 
with information that can be advantageously deployed 
to reason about how and where to implement that 
change. It also allows architects to make better 
evolution decisions based on risks, cost or viability of 
the change. Regarding the latter, the continuous 
process of architecting should never result in the 
software degradation as a consequence of intentionally 
or accidentally violation of earlier design decisions or 
constraints. In this sense, agile architects need 
knowledge about dependencies between design 
decisions, constraints, tradeoffs, etc., which can assist 
them in countering or even avoiding several well-
known negative effects of software evolution such as 
architectural erosion and degradation [25]. 

This paper presents the novel solution of using 
change-impact architectural knowledge as the main 
driver for agile architecting. This solution provides 
agile architects with knowledge to (i) assist and guide 
them in the change (decision-making) process, and 

1 An increment is often smaller than a feature —prominent or 
distinctive user-visible characteristic or quality of a software system. 



(ii) favor the preservation of the architecture integrity 
during the iterative architecting process. This 
knowledge results from analyzing the impact that 
changes —feature increment and/or evolution— 
introduce into the architecture, iteration after iteration 
in an agile process. The solution consists of a Change 
Impact Analysis (CIA) technique and modeling 
artifacts for: (i) documenting architectural knowledge 
—the design decisions and rationale driving the 
iterative architecture solution—, and (ii) tracing 
architecturally significant features with their realization 
in the architecture. These models are traversed using 
the proposed CIA technique to retrieve the 
architectural design decisions and architectural 
components and connections that are impacted as a 
consequence of changing features. This solution is 
implemented in a modeling framework called FPLA2. 

The novelty of this paper is to prove how the output 
from a CIA technique can be effectively used to assist 
and guide agile software architecting. This CIA 
technique was deployed in the agile method Scrum 
[29] and built on the results from previous works 
[23][11] that provide flexible mechanisms to design 
iteratively and incrementally software architectures. 

To empirically validate our approach we have 
conducted a case study in an i-smart software factory, 
combining both academic and industry efforts. The 
results show that our approach for agile architecting is 
viable in an industry project in the energy power 
networks domain, and effectively assists and guides 
architects in the tasks of making-decisions about 
changes and maintaining the architecture integrity. 

The structure of the paper is as follows: Section 2 
describes the background. Section 3 discusses related 
work. Section 4 presents the CIA technique, and 
supporting mechanisms, which drive agile architecting 
in the Scrum process. Section 5 describes the case 
study. Finally, conclusions and further work are 
presented in Section 6. 

2. Background 

2.1 Agile Architecting 

The role of software architecture in ASD has been a 
highly controversial issue in the last few years. There 
are many advocates for and opponents against giving 
to architectures the importance in ASD that it has in 
other development approaches. Advocates of the 
architecture's key role in the software process have 
their doubts about the scalability of any development 
approach that does not pay sufficient attention to 
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architecture [1], specially for achieving quality goals 
when developing large-scale software-intensive 
systems. In fact, Cockburn [10] showed some data 
about the unfeasibility of using agile methods in large 
size projects and life-critical systems. The reason is 
that the benefits of software architecture are missing 
and agile teams completely depend on tacit knowledge. 
The work of Falessi et al. [14] found that agile 
practitioners perceive software architecture as relevant 
on the basis of aspects such as communication and 
understanding of software systems, rationalization of 
previous design decisions, documentation of rationale 
necessary to evaluate design alternatives, scaling of 
agile practices to large projects, documentation of 
points of flexibility within the system to support future 
requirements, and system planning and budgeting. 

On the contrary, hard opponents perceive the effort 
in architecture as wasted effort, equating it with big 
upfront (BDUF) —a bad thing-leading to massive 
documentation and implementation of you ain 't gonna 
need it features [1]. A common belief within the agile 
community is that "If you are sufficiently agile, you 
don't need an architecture — you can always refactor 
it on the fly" [10]. However, Kruchten states that 
architectural refactoring often becomes prohibitively 
costly very quickly if certain considerations have been 
neglected early in the process (excerpted from [13]). 
Kruchten [19] and Booch [5], among others, propose 
the iterative and incremental evolution of the 
architecture to reduce the big upfront design and keep 
the system in sync with changing conditions. 

2.2 Change Impact Analysis 

Change impact analysis (CIA) determines the 
potential effects upon a system resulting from a 
proposed change [2]. CIA can be used to predict the 
effects of a change before it is implemented, possibly 
giving an estimate of the effort/cost to implement the 
change [27], as well as the potential risk involved in 
making the change [21]. This analysis can be then used 
to make better evolution decisions such as whether or 
not the change should be carried out based on 
economic viability of software evolution or other risks 
such as degradation of software systems. In fact, there 
is an extensive work in CIA to support software 
evolution [7][9], although Mens at al. [21] identified 
change impact as one of the future challenges 
(timeframe of 2015 and beyond). 

3. Related Work 

Advocates of a balance between architecture and 
agility propose that the architecture emerges gradually 
iteration after iteration, as a result of successive small 
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refactoring [1][5][19][22]. Most of these approaches 
invest in a first architecture —zero-feature release [4]; 
i.e. "getting an architecture sufficiently right early 
without necessarily resorting to big upfront 
design"[19]. This means that it will take longer to get 
to code, i.e. in a zero-feature release the architecture is 
in place but no user-visible features are delivered to the 
customer [22]. Conversely, other authors believe in 
continuous architectural refactoring starting on 
simplicity and flexibility [5]. 

This paper does not focus on identifying whether it 
is better to invest in a first architecture or to rely on 
continuous architectural refactoring. This paper 
presents the mechanisms to have flexibility at the time 
of defining software architectures and change-impact 
knowledge in order to support the change decision
making process and preserve architecture integrity. 

Change impact analysis has not been previously 
applied to agile architecting as we propose in this 
paper. Moreover, it is not only novel the fact of 
applying change-impact knowledge to drive agile 
architecting. The CIA technique that we use in this 
paper covers several of the lacks of current CIA 
approaches. Most CIA approaches analyze the source 
code and few approaches do the architecture [30][16]. 
Even fewer approaches consider architectural 
knowledge, that is design decisions and rationale 
driving the architecture solution, to aid change impact 
analysis [31]. To cope with these lacks, a previous 
work [11] defined a CIA technique in the domain of 
Software Product Lines (SPL [26]). As discussed in 
Section 4, agile architects can take advantage of this 
technique to support the change decision-making 
process and try to preserve the architecture integrity. 

4. Agile architecting guided by change 
impact 

This paper presents CIA as the main driver for agile 
architecting. To that end, we have defined a CIA 
technique, supported by architectural models, that 
assists architects during the agile architecting process. 
These models promote communication between 
individuals and agile teams working on the system, and 
support (semi-)automatically reasoning over the space 
of architectural knowledge. They are described below. 

4.1 Flexible-PLA Metamodel 

Our solution is supported by the definition of 
software architectures conforms to the Flexible-PLA 
Metamodel [24]. It was defined in a previous work to 
explicitly specify the architectures that realize SPL. 
This metamodel and their underlying concepts allow 
one to iteratively and incrementally construct and 

evolve software architectures based on two properties 
that they provide: flexibility and adaptability [23][12]. 

The main concept underlying Flexible-PLA 
Metamodel is the concept of Plastic Partial Component 
(PPC [24]). The PPC concept was originally defined 
for specifying variability inside components. The 
variability of a PPC is specified using variability 
points, which hook fragments of code to the PPC 
known as variants, and weavings which specify where 
and when extending the PPCs using the variants (see 
Figure l.a). As variability facilitates the planned 
evolutionary software development [15], agile 
architects can take advantage of the PPC primitives for 
incrementally and iteratively refine the architectural 
components that compose a working architecture3 

[23]. The PPC variability mechanism is the backbone 
to support incremental development of architectural 
components through the incomplete specification of 
components, and their extension by hooking new 
variants. As a result, working architectures can be 
incrementally and iteratively designed and evolved in 
each iteration by weaving/unweaving extensions, 
and/or by modifying the architecture configuration 
through optional components and connectors. 
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Figure 1. a) Flexible-PLA model & bj PLAK model 

4.2 PLAK Metamodel 

The documentation of architectural knowledge 
(AK) supports the rationalization of architectural 
decisions taken during the solution design. The 
rationalization of early design decision may help to 
evolve the architecture while preserving its integrity. 

The one that is delivered after each iteration, together the 
working product, as a result of the agile architecting process. 



The main types of AK are the design decisions driving 
the architecture solution, their dependencies and 
rationale. We have previously defined the concept of 
Product-Line Architectural Knowledge which is 
formalized through the PLAK Metamodel [11]. This 
paper extends the PLAK Metamodel and their 
modeling primitives (rationale, constraints, 
assumptions, etc. [11]) to capture the knowledge of 
adding feature increments or changing features in each 
agile iteration. This extension consists of the following 
primitives: 

• Closed design decisions (Closed DDs) are 
completely closed (or bound) in a given iteration and 
support the realization of those features that can be 
completed in one iteration and that architects 
considered unchanging in time. 

• Open design decisions (Open DDs) are intentionally 
left open (or delayed) and support the realization of 
those features that cannot be completed in one 
iteration and that architects plan to complete iteration 
after iteration (see the design decision with the open 
lock of Figure l.b). Open DDs consist of a set of 
optional design decisions. 

• Optional design decisions (Optional DDs) support 
each of the increments of an Open DD (see the 
optional design decision of Figure l.b). 

• Alternative design decisions (Alternative DDs) 
support the alternative realization of Closed and 
Open DDs, respectively. 

These four types of DDs offer a complete support 
for documenting the knowledge derived from the agile 
architecting process. The PLAK Metamodel supports 
the documentation of flexible and adaptive 
architectures through decisions which can be 
intentionally left delayed, and later closed in following 
iterations. 

DDs completely or partially realize features, 
affecting multiple architectural components and 
connectors, and often become intimately intertwined 
with other DDs [6]. In this regard, the PLAK 
Metamodel supports dependencies between DDs and 
traceability between features and their realization into 
architectures. Traceability links are created around the 
DD in such a way that they turn into the links between 
feature and architecture models. Additionally, the 
PLAK Metamodel defines the linkage rules that 
comprise the semantics to bridge the gap between 
feature and architecture primitives. 

4.3 CIA Technique 

Changes in features impact the system architecture 
and can lead to ripple-effects which are not obvious to 
detect. In this work, we adapt the CIA technique that 

we previously defined for SPL [11], to analyze the 
impact of adding or changing features in each iteration 
of the agile life-cycle. This CIA technique consists of a 
traceability-based algorithm and a rule-based 
inference engine, which traverse Flexible-PLA and 
PLAK models (see Section 4.1 and 4.2, respectively) 
based on a set of traceability links and propagation 
rules. The process, that this CIA technique implements, 
consists of two main steps described below: 
(1) Given a change in features (adding, deleting or 
updating), the traceability-based algorithm determines 
(i) the first-order design decisions that are involved 
with the feature to be changed, (ii) the n-order DDs 
that depend on the first-order DDs, and (iii) the first-
order architectural elements (PPCs, components, and 
connectors) that are involved in each (first and n-order) 
DD. The algorithm traverses the traceability links that 
bridge features and architectural elements, and the 
dependency relationships between design decisions. 

(2) Given a change in the working architecture that 
realizes the change in features, the rule-based 
inference engine fires propagation rules to obtain the 
change propagation in the working architecture. 
Namely, when a modification over the working 
architecture is applied to, propagation rules are fired to 
simulate the effects on the rest of the working 
architecture. We thereby obtain the n-order 
architectural elements that are impacted by the change. 

As previously mentioned in Section 4.1 and 4.2, 
this paper relies on the use of the concept of variability 
to iteratively and incrementally construct/evolve 
software architectures, as long as this variability is 
documented and traced through Open and Optional 
DDs. The CIA technique described within this section, 
fits perfectly the needs of analyzing the impact of agile 
architecting, as it traverses Flexible-PLA and PLAK 
underlying concepts which support architectural 
variability. The output of the CIA technique provides 
change-impact architectural knowledge that may be 
useful for reasoning about a proposed change in 
features and guiding the change decision-making 
process, as well as may help to preserve the 
architecture integrity iteration after iteration of the 
agile life-cycle. 

4.4 Agile Architecting process 

Our solution of using CIA as the main driver for 
agile architecting is deployed in the agile method 
Scrum [29]. Figure 2 shows a tailored Scrum 
development process in which agile architecting is 
considered as a key activity to prepare the iteration 
(aka. sprint). Briefly, the process is described below. 
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Figure 2. A tailored Scrum with Agile architecting 

The first step consists of capturing the requirements 
of the Product Owner from the product vision 
(features). Features may be decomposed into a list of 
user stories (US) known as product backlog. Then, US 
are prioritized, based on business value, and assigned 
to sprints. Scrum implements an iterative lifecycle 
based on these sprints. Sprints start with sprint 
planning meeting in which the Product Owner and 
Team plan together what has to be done. In this 
tailored Scrum, the agile architecting tasks are 
developed in conjunction with the sprint planning 
meetings (see Figure 2). The abovementioned 
modeling artifacts and the CIA technique drive agile 
architects as follows: 

• The Flexible-PLA Metamodel provides agile 
architects with primitives to iteratively and 
incrementally construct and evolve working 
architectures. Changes are realized by using the 
extension mechanism of PPCs or/and changing the 
architecture configuration. 

• The PLAK Metamodel provides agile architects with 
primitives to document design decisions, 
dependencies, constraints, tradeoffs, etc. as well as to 
trace features to working architectures. 

• The CIA technique is applied to the working 
architecture of the previous sprint (except for the 
first sprint). It provides agile architects with the 
change-impact knowledge resulting from the changes 
planned for the sprint. From the impacted 
components and connections, the architects can 
reason about where and how implementing that 
change. From the impacted design decisions, the 
architects are aware of the effects of that change over 
previous constraints, tradeoffs, risks, and hence they 
have knowledge to preserve the architecture integrity. 

As a result of this tailoring, agile architects interact 
with the rest of the team in planning the features to be 

done by tracking architectural concerns —constraints, 
risks, viability, etc.— and balancing them with 
business priorities. The output of sprint planning 
meetings consists of: the sprint backlog and tasks that 
must be performed to achieve the sprint goal, and the 
working architecture models (Flexible-PLA and PLAK 
models) to be implemented during the sprint (see 
Figure 2). At the end of each sprint, a working product 
and a working architecture are delivered. In the sprint 
review meeting the Product Owner assesses the 
working product to validate that US were met or 
introduce changes into the US. 

5. Case study 

With the purpose of validating our approach for 
agile architecting, we have conducted a case study 
within a project in an experimental i-smart software 
factory (iSSF) [20]. Following subsections briefly 
introduce some information about the environment for 
conducting the case study, i.e. the iSSF, and describe 
the case study according to the guidelines for 
conducting and reporting case study research in 
software engineering of Runeson & Host [28]. 

5.1 Context: Running Environment 

The iSSF is a software engineering research and 
education setting in close cooperation with the top 
industrial and research collaborators in Europe [20]. 
Indra Software Labs4 leads this initiative at the 
corporate level in Spain in conjunction with the 
Technical University of Madrid (UPM). The iSSF 
facility continuously runs projects in eight-seven week 
cycles. In this case study we focused in a project to 
develop a metering management system in electric 
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power networks. In total, 10 people participated in the 
case study: four developers, two product owners, one 
scrum master (who performs both the tasks of the 
Scrum master and the tasks of an architect at part-
time), one full-time architect and two observers. The 
observers had access to all project information and 
collaborated directly with product owners and fellow 
team members. 

5.2 Research questions 

The goal of the case study is to search evidence in 
order to answer the following two research questions: 
RQ1: Is the CIA algorithm effective in locating the 
impacted architectural design decisions and elements 
resulting from a proposed change in features? RQ2: 
Does the CIA algorithm assist and guide agile teams in 
reasoning about the changes and preserving the 
architecture integrity while agile architecting? 

To answer RQ1 the architects analyzed change 
impact as follows: First, architects manually analyzed 
change impact without the CIA technique and the 
supporting models that this paper presented. Then, the 
architects analyzed change impact with the assistance 
of the FPLA modeling framework that implements the 
CIA algorithm and the Flexible-PLA and PLAK 
primitives. This procedure allowed to verify if the CIA 
algorithm had determined impacts that architects 
manually did not, or vice versa if the architects had 
manually determined impacts that the CIA technique 
did not. From this procedure, it is possible to define the 
dependent variable for quantitatively measuring RQ5: 
the percentage of impacts that the CIA algorithm 
automatically determines that are not manually 
determined by architects. The potential independent 
variable that might have an influence on the dependent 
variable is the total number impacts that exist given the 
proposed change(s) and the architects experience. 

To answer RQ2 two properties were measured: the 
assistance and the guidance in making decisions about 
the changes and in maintaining the architecture 
integrity during the iterations of an agile process. 
These properties are hard to measure and especially 
hard to quantify. Therefore, they are estimated by 
qualitatively analyzing a questioner that architects 
filled and comments expressed by the architects while 
they were realizing the architecture. 

5.3 Data collection 

The collection methods used to gather quantitative 
and qualitative data are described as follows: 
• Observation. Two observers attend the agile 

architecting, planning and review meetings which are 
video recorded, transcribed, and analyzed. 

• Interview. The architects are interviewed following a 
questionnaire open to the discussion. These 
interviews are video recorded, transcribed, and 
analyzed using the constant comparison method [17]. 

• Archival data. The information about the project is 
collected in Redmine5. 

• Analysis of work artifacts. The data of Flexible-PLA 
and PLAK models generated with the FPLA 
framework, the CIA algorithm running also under 
FPLA, and the code under subversion6 are gathered. 

• Metrics. The metrics captured by Sonar7 are collected 
at the end of each sprint. 

5.4. Analysis procedure 

In this case study, both quantitative and qualitative 
analysis were used to examine the data gathered. For 
quantitative data, this case study uses analysis of 
descriptive statistics. As qualitative data is typically 
less precise than quantitative data, it is important to use 
triangulation to increase the precision of the study. 
There are several types of triangulation [28], e.g. 
methodological, data source. The three types of 
triangulation were used in this case study. 

5.5. Case study description 

The case study consists of a project to develop a 
metering management system in electric power 
networks. The metering management system is part a 
larger ITEA project called Intelligent Monitoring of 
Power NETworks (IMPONET8) that focuses on 
supporting complex and advanced requirements in 
energy management, specifically electric power 
networks. IMPONET aims for (i) continuous 
monitoring and bi-directional communication with 
customers to promote sustainability, and (ii) prevention 
of congestions, faults, and peak loads in real-time. The 
metering management system captures and manages 
meter data from a huge number of distributed energy 
resources. The overview of the system functionality is 
as follows: 
• Meter capturing: integrates all meter capturing 

processes that collect meter data at substations. 
• Meter processing: perform operations for validating 

meter data according to a validation formula and 
calculating the optimal vector for a measuring point. 

• Meter providing. It defines the interface with client 
systems to provide exchanging data (e.g. billing and 
settlements, energy demand forecast, etc). 

5 Redmine is web-based project management and bug-tracking tool. 
6 Subversion is an open source version control system. 
7 Sonar is an open platform to manage code quality. 
8 http ://innovationenergy. org/imponet/ 



5.6. Case execution 

The agile architecting process was performed as 
described in Section 4.4. Due to space reasons, we 
focus on the features and working architectures which 
were realized in five sprints (over eight sprints). These 
features are described as follows: 
• Fl_Meter reading consists of reading metering data 

associated to different energy resources, periods 
(quarterly, hourly, daily and monthly) and dates. 
Metering data is provided by text files. 

• F2_Meter storing consists of a large data store 
running over an object-oriented NoSQL database 
(Big Data Oracle running over BerkeleyDB). 

• F3_Meter data access consists of the initial data 
loading of historical metering data of one month, and 
query of these data. Both loading and querying 
require to leverage a high performance through the 
use of clustering technologies (Apache Hadoop). 

• F4_ Meter data process includes the algorithms for 
validating raw and optimal data, as well as 
calculating the optimal vector (integrated processing) 
of raw and optimal data. 

• F5_ Graphical interface consists of the interface that 
provides the query of metering data. 

These features were progressively decomposed into 
US and the backlog was created. Sprint 1 focused on 
implementing feature F2 (Meter storing), i.e. the 
installation and configuration of the database manager 
(Berkeley DB), and several conceptual proofs were 
realized to create and access to the database (see 
component DBManager and DDOOl in Figure 3). 
Sprint 2 focused on implementing features Fl (Meter 
reading) and F3 (Meter data access). At this time, the 
working architecture of Sprint 1 was in too early of a 
stage that the CIA algorithm did not provide any 
relevant result that could have assisted architects in the 
decision-making process of adding these features. 
Figure 3 shows the working architecture resulting from 
Srpint 2: The component MeterCapturer implements 
the reading text files of metering data and processing 
the previously read data to form pair of key/value. The 
PPCs DataLoader and DataQuery implement data 
loading and data query, respectively. As the 
functionalities for data loading and data query could 
not be completely implemented in this sprint, and 
increments in following sprints could refine these 
components, the architects decided to implement them 
using PPCs. The design decision DD002 keeps the 
rationale behind reading metering data in pairs of 
key/value. Finally, between DD002 and DDOOl there 
is a dependency that keeps the relation between the 
need of reading data in pairs key/value and the use of 

the database manager BerkeleyDB. Sprint 3 focused 
on completing F3 and implementing F4 (Meter data 
process). The CIA retrieved the design decisions and 
components which could have been impacted as a 
consequence of adding the new features on the current 
working architecture —i.e. the working architecture 
from Sprint 2 (see Figure 3): the PPCs DataQuery and 
DataLoader. Figure 4 shows the working architecture 
resulting from Sprint 3: The extension Hadoop 
MAP/REDUCE implements the operations for 
clustering and distributing work around a cluster in 
order to improve the performance for data accessing 
(data loading and data query). The PPCs DataLoader 
and DataQuery were extended with this functionality 
through the variability point clustering (see Figure 4). 
The design decision DD005 keeps the rationale behind 
clustering as well as a dependency with the design 
decision DDOOl (see Figure 4). Finally, the PPC 
MeterProcessor implements initial operations over raw 
and optimal data to calculate the optimal vector. As the 
functionality for meter processing could not be 
completely implemented in this sprint and increments 
in following sprints might refine this component, the 
architects decided to implement it using a PPC (see 
Figure 4). Sprint 4 focused on completing F4. The 
CIA retrieved the design decisions and components 
which could have been impacted as a consequence of 
adding this increment on the current working 
architecture —i.e. the working architecture from Sprint 
3 (see Figure 4): the PPC MeterProcessor. Then, the 
working architecture from Sprint 3, specifically the 
PPC MeterProcessor, was extended with the 
algorithms for validating metering data and calculating 
optimal vectors. Finally, Sprint 5 focused on 
implement feature F5. This feature has no a priori 
dependencies with others, so the CIA algorithm did not 
retrieve any impact. 

5.7 Analysis and interpretation 

Quantitative and qualitative analysis was used to 
examine the data gathered as described in Section 5.3. 
The research questions RQ1 and RQ2 are answered as 
follows: 

RQ1: Is the CIA algorithm effective in locating the 
impacted architectural design decisions and elements 
resulting from a proposed change in requirements? In 
Sprints 3 and 4, the CIA algorithm is 100% effective in 
locating the design decisions and components which 
are impacted by the feature increments that are planned 
during the sprint planning meetings. The complexity of 
the working architectures resulting from these first 
sprints is relatively low, in such a way that the 
architects also determined 100% of the impacted 
design decisions and components. 
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At that time, the project continued for more four 
sprints but two members of the Scrum team were 
substituted9 In Sprint 6, the product owner required the 
following conceptual proof: a change of the database 
manager with the aim of evaluating the performance of 
other solutions. Specifically, the product owner 
decided to evaluate Oracle Real Application Clusters 
(RAC10) over Oracle 11g. The architects ran the CIA 
algorithm to traverse the architectural model of Sprint 
5 and retrieve the design decisions and components 
which could have been impacted by this feature 

One architect and one developer 
Clustering and high availability in Oracle db environments 

change. The algorithm retrieved five impacts: the PPCs 
DataLoader and DataQuery, the variability point 
clustering, and the components DBManager and 
MeterCapturer (see row 2, Sprint 6 of Table 1). In this 
retrieval, two dependencies between architectural 
design decisions participate in the propagation of the 
change (see dependencies between DD005 and DD001, 
and DD002 and DD001 in Figure 4). The manual 
analysis performed by the architects did not determine 
the propagation of the change. This is due to the fact 
that the dependencies between the DD005 and DD002 
with DD001 became hidden for the new architect, so 
that they only found that three components could have 
been impacted (see row 3, Sprint 6 of Table 1). 



Therefore, the CIA algorithm automatically retrieved 
two components which were not manually determined 
by architects. Namely, the percentage of impacts that 
the CIA algorithm automatically determined and that 
were not manually determined by the architects, is 
40%. Hence, the 40% of DDs and components, which 
are impacted by the change, would have stayed hidden 
if the CIA algorithm had not worked effectively. 

Table 1. Change-impact results 
Sprint 3 Sprint 4 Sprint 5 Sprint 6 

Total number 
of impacts 

2 1 0 5 

CIA algorithm 100% 100% 100% 100% 

Manual CIA 100% 100% 100% 60% 

RQ2: Do PLAK and the CIA algorithm assist and 
guide agile team in reasoning about the changes and 
preserving the architecture integrity while agile 
architecting? Analyzing the interviews to the 
architects, the following excerpts can be highlighted: 
« T h e use of PLAK models was particularly useful to 
understand the system during staff turnover that took 
place between Sprints 4 and 5 » «Without the 
knowledge provided by the PLAK model and the CIA 
algorithm, it would be extremely difficult to reason 
about the impact of changing the database 
manager»«I t ' s likely that several components had 
remained unchanged [...] we had quite likely 
implemented the necessary functionality in other or 
new components, so the former would had had "dead 
code"»«Dead code is an indicator of bad 
smel l»«This bad smell could have been identified 
after we had implemented the change by analyzing the 
dashboard of sonar p la t form»«By using PLAK 
models and the CIA algorithm we were able to 
proactively determine all the impacts and to avoid this 
software degradation»«we took previous design 
decisions into account among which there were 
dependencies»«it did allow us to maintain the 
architecture integrity». These excerpts put in 
evidence that our approach for agile architecting 
assisted and guided the architects in the decision
making process about changes and in the tasks of 
maintaining the architecture integrity iteration after 
iteration of this Scrum development. 

5.8 Evaluation of validity and limitation 

Case studies are qualitative in nature. The objective 
judgment of the collected data of this kind is not 
possible. To improve the internal validity of the results 
presented, the independent variables that could 
influence this case study have been identified as 
follows: The architect experience has a great influence. 

This has been reduced because the expertise of the two 
architects who participate in the case study is very 
different (1 year vs. 7 years). However, the influence 
of project's size and architecture's complexity cannot 
be reduced due to the inherent nature of case studies, 
which normally focus on one project. Additionally, we 
have used triangulation of source data to increase the 
reliability of the results. In this regard, interviews were 
individually conducted with the two architects, 
although several questions were asked in a group 
setting to encourage discussion. However, the major 
limitation in case study research is concerning to 
external validity, i.e. "the generality of the results with 
respect to a specific population" [17], as only one case 
is studied. In return, case studies allow one to evaluate 
a phenomenon, a model, or a process in a real setting. 
This is something important in software engineering in 
which a multitude of external factor may affect to the 
validation results, and that other techniques such as 
formal experiments, although they permit replication 
and generalization, do not consider as they are 
conducting under controlled settings. 

6 CONCLUSIONS 

This paper presents a novel solution to drive agile 
architecting. Our solution assists and guides agile 
architects in the decision- making process at the time 
of adding or changing features by: (i) tracking the 
effects of changes upon the architecture —components 
and connections which are impacted by the changes—, 
and (ii) analyzing architectural concerns such as 
dependencies with earlier design decisions, rationale, 
constraints, risks, etc. which are also impacted by the 
changes. This analysis enables the preservation of the 
software architecture, as long as it helps to reduce the 
risk of unexpected consequences of changes. The 
analysis is instrumented by a CIA technique and 
deployed in the Scrum method. 

The viability of our approach is proved by a case 
study which has been run in an experimental laboratory 
called i-Smart Software Factory. It combines both 
academic and industry efforts in R&D, being 
remarkable the facilities for tracking the projects' 
progress. The case study puts our solution into practice 
within the agile development of a metering 
management system in the electric power networks 
domain. The results prove that (i) the CIA algorithm is 
effective in locating the impact resulting from a 
change, and (ii) this change-impact helps architects to 
take better decisions, especially when architectural 
knowledge may be lost or vaporized as a result of a 
staff turnover. Hence, the case study proved that the 
CIA algorithm determined 40% of impacts more than 
architects manually determined. These promising 



results did not interfere with other agile practices and 
did not incur a big upfront design, making the agile 
construction and evolution of architecture possible. 
One of the main conclusions of this research is that 
agile architecting is feasible so that ASD can be scaled 
up to large and complex software-intensive systems. 

As future work, we are improving the FPLA 
framework, so that it can semi-automatically generate 
code by using model-to-text transformations. Its aim is 
to link architecture and code. The traceability between 
architecture and implementation may avoid another 
common problem in ASD when code drifts so far apart 
that it makes it much easier to erode the software 
system architecture. 
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