
Change-Impact driven Agile Architecting

Jessica Diaz, Jennifer Perez, Juan Garbajosa, Agustin Yagiie

Abstract
Software architecture is a key factor to scale up

Agile Software Development (ASD) in large software-
intensive systems. Currently, software architectures
are more often approached through mechanisms that
enable to incrementally design and evolve software
architectures (aka. agile architecting). Agile
architecting should be a light-weight decision-making
process, which could be achieved by providing
knowledge to assist agile architects in reasoning about
changes. This paper presents the novel solution of
using change-impact knowledge as the main driver for
agile architecting. The solution consists of a Change
Impact Analysis technique and a set of models to assist
agile architects in the change (decision-making)
process by retrieving the change-impact architectural
knowledge resulting from adding or changing features
iteration after iteration. To validate our approach, we
have put our solution into practice by running a
project of a metering management system in electric
power networks in an i-smart software factory.

1. Introduction

Software architecture is a key factor to scale up
Agile Software Development (ASD) in large software-
intensive systems. Several works propose the
coexistence of software architectures and ASD [1]
[3][5][13][14][19], and a few approaches present
successful cases of agile architecture [18] or iterative
architecture [8]. Agile architecture can defined as "the
one that develops with the system, and includes only
features that are necessary for the current iteration or
delivery" [8]. However, how to perform this iterative
architecture refinement is still a challenge [1]. This
challenge is addressed in this paper.

Aligning fruitfully software architectures and ASD
requires leveraging the inherent qualities of software
architectures (e.g. abstraction, communication,
analysis) while complying with agile principles (e.g.
open to change). This alignment can be achieved as

long as practitioners are able to count on mechanisms
for enabling: (i) Incremental design of features, i.e.
flexible construction of the architecture by adding
small increments1, (ii) Accommodation of new features
or customizations on existing features. We refer to both
of them as agile architecting, because although
conceptually different, require the same mechanisms to
carry them out. The reason is that, in both cases, these
mechanisms must be able to cope with change, though
in the first case the change is planned (feature
increment), and in the second case the change is
unplanned (feature evolution).

It would be highly convenient and desirable that the
mechanisms for enabling agile architecting would
assist and guide agile architects, specifically in (i) the
decision-making process of implementing changes in
each agile iteration, and (ii) the maintenance of the
architecture integrity, i.e. the preservation of earlier
architectural design decisions iteration after iteration.
Regarding the former, the knowledge about the effects
of a change upon the architecture provides architects
with information that can be advantageously deployed
to reason about how and where to implement that
change. It also allows architects to make better
evolution decisions based on risks, cost or viability of
the change. Regarding the latter, the continuous
process of architecting should never result in the
software degradation as a consequence of intentionally
or accidentally violation of earlier design decisions or
constraints. In this sense, agile architects need
knowledge about dependencies between design
decisions, constraints, tradeoffs, etc., which can assist
them in countering or even avoiding several well-
known negative effects of software evolution such as
architectural erosion and degradation [25].

This paper presents the novel solution of using
change-impact architectural knowledge as the main
driver for agile architecting. This solution provides
agile architects with knowledge to (i) assist and guide
them in the change (decision-making) process, and

1 An increment is often smaller than a feature —prominent or
distinctive user-visible characteristic or quality of a software system.

(ii) favor the preservation of the architecture integrity
during the iterative architecting process. This
knowledge results from analyzing the impact that
changes —feature increment and/or evolution—
introduce into the architecture, iteration after iteration
in an agile process. The solution consists of a Change
Impact Analysis (CIA) technique and modeling
artifacts for: (i) documenting architectural knowledge
—the design decisions and rationale driving the
iterative architecture solution—, and (ii) tracing
architecturally significant features with their realization
in the architecture. These models are traversed using
the proposed CIA technique to retrieve the
architectural design decisions and architectural
components and connections that are impacted as a
consequence of changing features. This solution is
implemented in a modeling framework called FPLA2.

The novelty of this paper is to prove how the output
from a CIA technique can be effectively used to assist
and guide agile software architecting. This CIA
technique was deployed in the agile method Scrum
[29] and built on the results from previous works
[23][11] that provide flexible mechanisms to design
iteratively and incrementally software architectures.

To empirically validate our approach we have
conducted a case study in an i-smart software factory,
combining both academic and industry efforts. The
results show that our approach for agile architecting is
viable in an industry project in the energy power
networks domain, and effectively assists and guides
architects in the tasks of making-decisions about
changes and maintaining the architecture integrity.

The structure of the paper is as follows: Section 2
describes the background. Section 3 discusses related
work. Section 4 presents the CIA technique, and
supporting mechanisms, which drive agile architecting
in the Scrum process. Section 5 describes the case
study. Finally, conclusions and further work are
presented in Section 6.

2. Background

2.1 Agile Architecting

The role of software architecture in ASD has been a
highly controversial issue in the last few years. There
are many advocates for and opponents against giving
to architectures the importance in ASD that it has in
other development approaches. Advocates of the
architecture's key role in the software process have
their doubts about the scalability of any development
approach that does not pay sufficient attention to

It is available on https://syst.eui.upm.es/FPLA/home

architecture [1], specially for achieving quality goals
when developing large-scale software-intensive
systems. In fact, Cockburn [10] showed some data
about the unfeasibility of using agile methods in large
size projects and life-critical systems. The reason is
that the benefits of software architecture are missing
and agile teams completely depend on tacit knowledge.
The work of Falessi et al. [14] found that agile
practitioners perceive software architecture as relevant
on the basis of aspects such as communication and
understanding of software systems, rationalization of
previous design decisions, documentation of rationale
necessary to evaluate design alternatives, scaling of
agile practices to large projects, documentation of
points of flexibility within the system to support future
requirements, and system planning and budgeting.

On the contrary, hard opponents perceive the effort
in architecture as wasted effort, equating it with big
upfront (BDUF) —a bad thing-leading to massive
documentation and implementation of you ain 't gonna
need it features [1]. A common belief within the agile
community is that "If you are sufficiently agile, you
don't need an architecture — you can always refactor
it on the fly" [10]. However, Kruchten states that
architectural refactoring often becomes prohibitively
costly very quickly if certain considerations have been
neglected early in the process (excerpted from [13]).
Kruchten [19] and Booch [5], among others, propose
the iterative and incremental evolution of the
architecture to reduce the big upfront design and keep
the system in sync with changing conditions.

2.2 Change Impact Analysis

Change impact analysis (CIA) determines the
potential effects upon a system resulting from a
proposed change [2]. CIA can be used to predict the
effects of a change before it is implemented, possibly
giving an estimate of the effort/cost to implement the
change [27], as well as the potential risk involved in
making the change [21]. This analysis can be then used
to make better evolution decisions such as whether or
not the change should be carried out based on
economic viability of software evolution or other risks
such as degradation of software systems. In fact, there
is an extensive work in CIA to support software
evolution [7][9], although Mens at al. [21] identified
change impact as one of the future challenges
(timeframe of 2015 and beyond).

3. Related Work

Advocates of a balance between architecture and
agility propose that the architecture emerges gradually
iteration after iteration, as a result of successive small

https://syst.eui.upm.es/FPLA/home

refactoring [1][5][19][22]. Most of these approaches
invest in a first architecture —zero-feature release [4];
i.e. "getting an architecture sufficiently right early
without necessarily resorting to big upfront
design"[19]. This means that it will take longer to get
to code, i.e. in a zero-feature release the architecture is
in place but no user-visible features are delivered to the
customer [22]. Conversely, other authors believe in
continuous architectural refactoring starting on
simplicity and flexibility [5].

This paper does not focus on identifying whether it
is better to invest in a first architecture or to rely on
continuous architectural refactoring. This paper
presents the mechanisms to have flexibility at the time
of defining software architectures and change-impact
knowledge in order to support the change decision
making process and preserve architecture integrity.

Change impact analysis has not been previously
applied to agile architecting as we propose in this
paper. Moreover, it is not only novel the fact of
applying change-impact knowledge to drive agile
architecting. The CIA technique that we use in this
paper covers several of the lacks of current CIA
approaches. Most CIA approaches analyze the source
code and few approaches do the architecture [30][16].
Even fewer approaches consider architectural
knowledge, that is design decisions and rationale
driving the architecture solution, to aid change impact
analysis [31]. To cope with these lacks, a previous
work [11] defined a CIA technique in the domain of
Software Product Lines (SPL [26]). As discussed in
Section 4, agile architects can take advantage of this
technique to support the change decision-making
process and try to preserve the architecture integrity.

4. Agile architecting guided by change
impact

This paper presents CIA as the main driver for agile
architecting. To that end, we have defined a CIA
technique, supported by architectural models, that
assists architects during the agile architecting process.
These models promote communication between
individuals and agile teams working on the system, and
support (semi-)automatically reasoning over the space
of architectural knowledge. They are described below.

4.1 Flexible-PLA Metamodel

Our solution is supported by the definition of
software architectures conforms to the Flexible-PLA
Metamodel [24]. It was defined in a previous work to
explicitly specify the architectures that realize SPL.
This metamodel and their underlying concepts allow
one to iteratively and incrementally construct and

evolve software architectures based on two properties
that they provide: flexibility and adaptability [23][12].

The main concept underlying Flexible-PLA
Metamodel is the concept of Plastic Partial Component
(PPC [24]). The PPC concept was originally defined
for specifying variability inside components. The
variability of a PPC is specified using variability
points, which hook fragments of code to the PPC
known as variants, and weavings which specify where
and when extending the PPCs using the variants (see
Figure l.a). As variability facilitates the planned
evolutionary software development [15], agile
architects can take advantage of the PPC primitives for
incrementally and iteratively refine the architectural
components that compose a working architecture3

[23]. The PPC variability mechanism is the backbone
to support incremental development of architectural
components through the incomplete specification of
components, and their extension by hooking new
variants. As a result, working architectures can be
incrementally and iteratively designed and evolved in
each iteration by weaving/unweaving extensions,
and/or by modifying the architecture configuration
through optional components and connectors.

b) pjf OpenDesignDecision

A I

b)
Why:

Cost:

Risk:

Trade Off: Trade Off:
0 Assumptions

ing

^£L Constraints

1 :

^ OptiondlDesignDecision

1 :

Risk;

Trade Off:

: III £ Assumptions
i ;

£ Assumptions

^ j i Constraints

Figure 1. a) Flexible-PLA model & bj PLAK model

4.2 PLAK Metamodel

The documentation of architectural knowledge
(AK) supports the rationalization of architectural
decisions taken during the solution design. The
rationalization of early design decision may help to
evolve the architecture while preserving its integrity.

The one that is delivered after each iteration, together the
working product, as a result of the agile architecting process.

The main types of AK are the design decisions driving
the architecture solution, their dependencies and
rationale. We have previously defined the concept of
Product-Line Architectural Knowledge which is
formalized through the PLAK Metamodel [11]. This
paper extends the PLAK Metamodel and their
modeling primitives (rationale, constraints,
assumptions, etc. [11]) to capture the knowledge of
adding feature increments or changing features in each
agile iteration. This extension consists of the following
primitives:

• Closed design decisions (Closed DDs) are
completely closed (or bound) in a given iteration and
support the realization of those features that can be
completed in one iteration and that architects
considered unchanging in time.

• Open design decisions (Open DDs) are intentionally
left open (or delayed) and support the realization of
those features that cannot be completed in one
iteration and that architects plan to complete iteration
after iteration (see the design decision with the open
lock of Figure l.b). Open DDs consist of a set of
optional design decisions.

• Optional design decisions (Optional DDs) support
each of the increments of an Open DD (see the
optional design decision of Figure l.b).

• Alternative design decisions (Alternative DDs)
support the alternative realization of Closed and
Open DDs, respectively.

These four types of DDs offer a complete support
for documenting the knowledge derived from the agile
architecting process. The PLAK Metamodel supports
the documentation of flexible and adaptive
architectures through decisions which can be
intentionally left delayed, and later closed in following
iterations.

DDs completely or partially realize features,
affecting multiple architectural components and
connectors, and often become intimately intertwined
with other DDs [6]. In this regard, the PLAK
Metamodel supports dependencies between DDs and
traceability between features and their realization into
architectures. Traceability links are created around the
DD in such a way that they turn into the links between
feature and architecture models. Additionally, the
PLAK Metamodel defines the linkage rules that
comprise the semantics to bridge the gap between
feature and architecture primitives.

4.3 CIA Technique

Changes in features impact the system architecture
and can lead to ripple-effects which are not obvious to
detect. In this work, we adapt the CIA technique that

we previously defined for SPL [11], to analyze the
impact of adding or changing features in each iteration
of the agile life-cycle. This CIA technique consists of a
traceability-based algorithm and a rule-based
inference engine, which traverse Flexible-PLA and
PLAK models (see Section 4.1 and 4.2, respectively)
based on a set of traceability links and propagation
rules. The process, that this CIA technique implements,
consists of two main steps described below:
(1) Given a change in features (adding, deleting or
updating), the traceability-based algorithm determines
(i) the first-order design decisions that are involved
with the feature to be changed, (ii) the n-order DDs
that depend on the first-order DDs, and (iii) the first-
order architectural elements (PPCs, components, and
connectors) that are involved in each (first and n-order)
DD. The algorithm traverses the traceability links that
bridge features and architectural elements, and the
dependency relationships between design decisions.

(2) Given a change in the working architecture that
realizes the change in features, the rule-based
inference engine fires propagation rules to obtain the
change propagation in the working architecture.
Namely, when a modification over the working
architecture is applied to, propagation rules are fired to
simulate the effects on the rest of the working
architecture. We thereby obtain the n-order
architectural elements that are impacted by the change.

As previously mentioned in Section 4.1 and 4.2,
this paper relies on the use of the concept of variability
to iteratively and incrementally construct/evolve
software architectures, as long as this variability is
documented and traced through Open and Optional
DDs. The CIA technique described within this section,
fits perfectly the needs of analyzing the impact of agile
architecting, as it traverses Flexible-PLA and PLAK
underlying concepts which support architectural
variability. The output of the CIA technique provides
change-impact architectural knowledge that may be
useful for reasoning about a proposed change in
features and guiding the change decision-making
process, as well as may help to preserve the
architecture integrity iteration after iteration of the
agile life-cycle.

4.4 Agile Architecting process

Our solution of using CIA as the main driver for
agile architecting is deployed in the agile method
Scrum [29]. Figure 2 shows a tailored Scrum
development process in which agile architecting is
considered as a key activity to prepare the iteration
(aka. sprint). Briefly, the process is described below.

Stakeholders,
customer, users

Working
Architecture + Working

Prnrtnrt Product

Figure 2. A tailored Scrum with Agile architecting

The first step consists of capturing the requirements
of the Product Owner from the product vision
(features). Features may be decomposed into a list of
user stories (US) known as product backlog. Then, US
are prioritized, based on business value, and assigned
to sprints. Scrum implements an iterative lifecycle
based on these sprints. Sprints start with sprint
planning meeting in which the Product Owner and
Team plan together what has to be done. In this
tailored Scrum, the agile architecting tasks are
developed in conjunction with the sprint planning
meetings (see Figure 2). The abovementioned
modeling artifacts and the CIA technique drive agile
architects as follows:

• The Flexible-PLA Metamodel provides agile
architects with primitives to iteratively and
incrementally construct and evolve working
architectures. Changes are realized by using the
extension mechanism of PPCs or/and changing the
architecture configuration.

• The PLAK Metamodel provides agile architects with
primitives to document design decisions,
dependencies, constraints, tradeoffs, etc. as well as to
trace features to working architectures.

• The CIA technique is applied to the working
architecture of the previous sprint (except for the
first sprint). It provides agile architects with the
change-impact knowledge resulting from the changes
planned for the sprint. From the impacted
components and connections, the architects can
reason about where and how implementing that
change. From the impacted design decisions, the
architects are aware of the effects of that change over
previous constraints, tradeoffs, risks, and hence they
have knowledge to preserve the architecture integrity.

As a result of this tailoring, agile architects interact
with the rest of the team in planning the features to be

done by tracking architectural concerns —constraints,
risks, viability, etc.— and balancing them with
business priorities. The output of sprint planning
meetings consists of: the sprint backlog and tasks that
must be performed to achieve the sprint goal, and the
working architecture models (Flexible-PLA and PLAK
models) to be implemented during the sprint (see
Figure 2). At the end of each sprint, a working product
and a working architecture are delivered. In the sprint
review meeting the Product Owner assesses the
working product to validate that US were met or
introduce changes into the US.

5. Case study

With the purpose of validating our approach for
agile architecting, we have conducted a case study
within a project in an experimental i-smart software
factory (iSSF) [20]. Following subsections briefly
introduce some information about the environment for
conducting the case study, i.e. the iSSF, and describe
the case study according to the guidelines for
conducting and reporting case study research in
software engineering of Runeson & Host [28].

5.1 Context: Running Environment

The iSSF is a software engineering research and
education setting in close cooperation with the top
industrial and research collaborators in Europe [20].
Indra Software Labs4 leads this initiative at the
corporate level in Spain in conjunction with the
Technical University of Madrid (UPM). The iSSF
facility continuously runs projects in eight-seven week
cycles. In this case study we focused in a project to
develop a metering management system in electric

http://www.indracompany.com/en

http://www.indracompany.com/en

power networks. In total, 10 people participated in the
case study: four developers, two product owners, one
scrum master (who performs both the tasks of the
Scrum master and the tasks of an architect at part-
time), one full-time architect and two observers. The
observers had access to all project information and
collaborated directly with product owners and fellow
team members.

5.2 Research questions

The goal of the case study is to search evidence in
order to answer the following two research questions:
RQ1: Is the CIA algorithm effective in locating the
impacted architectural design decisions and elements
resulting from a proposed change in features? RQ2:
Does the CIA algorithm assist and guide agile teams in
reasoning about the changes and preserving the
architecture integrity while agile architecting?

To answer RQ1 the architects analyzed change
impact as follows: First, architects manually analyzed
change impact without the CIA technique and the
supporting models that this paper presented. Then, the
architects analyzed change impact with the assistance
of the FPLA modeling framework that implements the
CIA algorithm and the Flexible-PLA and PLAK
primitives. This procedure allowed to verify if the CIA
algorithm had determined impacts that architects
manually did not, or vice versa if the architects had
manually determined impacts that the CIA technique
did not. From this procedure, it is possible to define the
dependent variable for quantitatively measuring RQ5:
the percentage of impacts that the CIA algorithm
automatically determines that are not manually
determined by architects. The potential independent
variable that might have an influence on the dependent
variable is the total number impacts that exist given the
proposed change(s) and the architects experience.

To answer RQ2 two properties were measured: the
assistance and the guidance in making decisions about
the changes and in maintaining the architecture
integrity during the iterations of an agile process.
These properties are hard to measure and especially
hard to quantify. Therefore, they are estimated by
qualitatively analyzing a questioner that architects
filled and comments expressed by the architects while
they were realizing the architecture.

5.3 Data collection

The collection methods used to gather quantitative
and qualitative data are described as follows:
• Observation. Two observers attend the agile

architecting, planning and review meetings which are
video recorded, transcribed, and analyzed.

• Interview. The architects are interviewed following a
questionnaire open to the discussion. These
interviews are video recorded, transcribed, and
analyzed using the constant comparison method [17].

• Archival data. The information about the project is
collected in Redmine5.

• Analysis of work artifacts. The data of Flexible-PLA
and PLAK models generated with the FPLA
framework, the CIA algorithm running also under
FPLA, and the code under subversion6 are gathered.

• Metrics. The metrics captured by Sonar7 are collected
at the end of each sprint.

5.4. Analysis procedure

In this case study, both quantitative and qualitative
analysis were used to examine the data gathered. For
quantitative data, this case study uses analysis of
descriptive statistics. As qualitative data is typically
less precise than quantitative data, it is important to use
triangulation to increase the precision of the study.
There are several types of triangulation [28], e.g.
methodological, data source. The three types of
triangulation were used in this case study.

5.5. Case study description

The case study consists of a project to develop a
metering management system in electric power
networks. The metering management system is part a
larger ITEA project called Intelligent Monitoring of
Power NETworks (IMPONET8) that focuses on
supporting complex and advanced requirements in
energy management, specifically electric power
networks. IMPONET aims for (i) continuous
monitoring and bi-directional communication with
customers to promote sustainability, and (ii) prevention
of congestions, faults, and peak loads in real-time. The
metering management system captures and manages
meter data from a huge number of distributed energy
resources. The overview of the system functionality is
as follows:
• Meter capturing: integrates all meter capturing

processes that collect meter data at substations.
• Meter processing: perform operations for validating

meter data according to a validation formula and
calculating the optimal vector for a measuring point.

• Meter providing. It defines the interface with client
systems to provide exchanging data (e.g. billing and
settlements, energy demand forecast, etc).

5 Redmine is web-based project management and bug-tracking tool.
6 Subversion is an open source version control system.
7 Sonar is an open platform to manage code quality.
8 http ://innovationenergy. org/imponet/

5.6. Case execution

The agile architecting process was performed as
described in Section 4.4. Due to space reasons, we
focus on the features and working architectures which
were realized in five sprints (over eight sprints). These
features are described as follows:
• Fl_Meter reading consists of reading metering data

associated to different energy resources, periods
(quarterly, hourly, daily and monthly) and dates.
Metering data is provided by text files.

• F2_Meter storing consists of a large data store
running over an object-oriented NoSQL database
(Big Data Oracle running over BerkeleyDB).

• F3_Meter data access consists of the initial data
loading of historical metering data of one month, and
query of these data. Both loading and querying
require to leverage a high performance through the
use of clustering technologies (Apache Hadoop).

• F4_ Meter data process includes the algorithms for
validating raw and optimal data, as well as
calculating the optimal vector (integrated processing)
of raw and optimal data.

• F5_ Graphical interface consists of the interface that
provides the query of metering data.

These features were progressively decomposed into
US and the backlog was created. Sprint 1 focused on
implementing feature F2 (Meter storing), i.e. the
installation and configuration of the database manager
(Berkeley DB), and several conceptual proofs were
realized to create and access to the database (see
component DBManager and DDOOl in Figure 3).
Sprint 2 focused on implementing features Fl (Meter
reading) and F3 (Meter data access). At this time, the
working architecture of Sprint 1 was in too early of a
stage that the CIA algorithm did not provide any
relevant result that could have assisted architects in the
decision-making process of adding these features.
Figure 3 shows the working architecture resulting from
Srpint 2: The component MeterCapturer implements
the reading text files of metering data and processing
the previously read data to form pair of key/value. The
PPCs DataLoader and DataQuery implement data
loading and data query, respectively. As the
functionalities for data loading and data query could
not be completely implemented in this sprint, and
increments in following sprints could refine these
components, the architects decided to implement them
using PPCs. The design decision DD002 keeps the
rationale behind reading metering data in pairs of
key/value. Finally, between DD002 and DDOOl there
is a dependency that keeps the relation between the
need of reading data in pairs key/value and the use of

the database manager BerkeleyDB. Sprint 3 focused
on completing F3 and implementing F4 (Meter data
process). The CIA retrieved the design decisions and
components which could have been impacted as a
consequence of adding the new features on the current
working architecture —i.e. the working architecture
from Sprint 2 (see Figure 3): the PPCs DataQuery and
DataLoader. Figure 4 shows the working architecture
resulting from Sprint 3: The extension Hadoop
MAP/REDUCE implements the operations for
clustering and distributing work around a cluster in
order to improve the performance for data accessing
(data loading and data query). The PPCs DataLoader
and DataQuery were extended with this functionality
through the variability point clustering (see Figure 4).
The design decision DD005 keeps the rationale behind
clustering as well as a dependency with the design
decision DDOOl (see Figure 4). Finally, the PPC
MeterProcessor implements initial operations over raw
and optimal data to calculate the optimal vector. As the
functionality for meter processing could not be
completely implemented in this sprint and increments
in following sprints might refine this component, the
architects decided to implement it using a PPC (see
Figure 4). Sprint 4 focused on completing F4. The
CIA retrieved the design decisions and components
which could have been impacted as a consequence of
adding this increment on the current working
architecture —i.e. the working architecture from Sprint
3 (see Figure 4): the PPC MeterProcessor. Then, the
working architecture from Sprint 3, specifically the
PPC MeterProcessor, was extended with the
algorithms for validating metering data and calculating
optimal vectors. Finally, Sprint 5 focused on
implement feature F5. This feature has no a priori
dependencies with others, so the CIA algorithm did not
retrieve any impact.

5.7 Analysis and interpretation

Quantitative and qualitative analysis was used to
examine the data gathered as described in Section 5.3.
The research questions RQ1 and RQ2 are answered as
follows:

RQ1: Is the CIA algorithm effective in locating the
impacted architectural design decisions and elements
resulting from a proposed change in requirements? In
Sprints 3 and 4, the CIA algorithm is 100% effective in
locating the design decisions and components which
are impacted by the feature increments that are planned
during the sprint planning meetings. The complexity of
the working architectures resulting from these first
sprints is relatively low, in such a way that the
architects also determined 100% of the impacted
design decisions and components.

| . ^ J F2_MeterStonnc| \

} DD OCliBigDataOracle/BerkdeyDB

,Vhy: Ensure mass access to data

I o : t : Hicjh learning curve

l i s k : H i g h

Trade Ofh

c Fl iJ . ldsrDataAccessI

fVf 003:DataQuery

£ f Q04:DataLrad

5

1
^DataLoader

Restor ing

(splitting of

c o m p o n e n t s)

^IDataQjery

Mr
| • Fl_MeterReading |

I^I DD 002:P.eaclinoDataPair:KEYy,YALUE

M h y : OQ/NoSQL Database

Cost:

Risk:

FradeCff : •
Figure 3. Sprint 2 (Flexible-PLA & PLAK models)

| ..I FlJVIeterReading \

Figure 4. Sprint 3 (Flexible-PLA & PLAK models)

At that time, the project continued for more four
sprints but two members of the Scrum team were
substituted9 In Sprint 6, the product owner required the
following conceptual proof: a change of the database
manager with the aim of evaluating the performance of
other solutions. Specifically, the product owner
decided to evaluate Oracle Real Application Clusters
(RAC10) over Oracle 11g. The architects ran the CIA
algorithm to traverse the architectural model of Sprint
5 and retrieve the design decisions and components
which could have been impacted by this feature

One architect and one developer
Clustering and high availability in Oracle db environments

change. The algorithm retrieved five impacts: the PPCs
DataLoader and DataQuery, the variability point
clustering, and the components DBManager and
MeterCapturer (see row 2, Sprint 6 of Table 1). In this
retrieval, two dependencies between architectural
design decisions participate in the propagation of the
change (see dependencies between DD005 and DD001,
and DD002 and DD001 in Figure 4). The manual
analysis performed by the architects did not determine
the propagation of the change. This is due to the fact
that the dependencies between the DD005 and DD002
with DD001 became hidden for the new architect, so
that they only found that three components could have
been impacted (see row 3, Sprint 6 of Table 1).

Therefore, the CIA algorithm automatically retrieved
two components which were not manually determined
by architects. Namely, the percentage of impacts that
the CIA algorithm automatically determined and that
were not manually determined by the architects, is
40%. Hence, the 40% of DDs and components, which
are impacted by the change, would have stayed hidden
if the CIA algorithm had not worked effectively.

Table 1. Change-impact results
Sprint 3 Sprint 4 Sprint 5 Sprint 6

Total number
of impacts

2 1 0 5

CIA algorithm 100% 100% 100% 100%

Manual CIA 100% 100% 100% 60%

RQ2: Do PLAK and the CIA algorithm assist and
guide agile team in reasoning about the changes and
preserving the architecture integrity while agile
architecting? Analyzing the interviews to the
architects, the following excerpts can be highlighted:
« T h e use of PLAK models was particularly useful to
understand the system during staff turnover that took
place between Sprints 4 and 5 » «Without the
knowledge provided by the PLAK model and the CIA
algorithm, it would be extremely difficult to reason
about the impact of changing the database
manager»«I t ' s likely that several components had
remained unchanged [...] we had quite likely
implemented the necessary functionality in other or
new components, so the former would had had "dead
code"»«Dead code is an indicator of bad
smel l»«This bad smell could have been identified
after we had implemented the change by analyzing the
dashboard of sonar p la t form»«By using PLAK
models and the CIA algorithm we were able to
proactively determine all the impacts and to avoid this
software degradation»«we took previous design
decisions into account among which there were
dependencies»«it did allow us to maintain the
architecture integrity». These excerpts put in
evidence that our approach for agile architecting
assisted and guided the architects in the decision
making process about changes and in the tasks of
maintaining the architecture integrity iteration after
iteration of this Scrum development.

5.8 Evaluation of validity and limitation

Case studies are qualitative in nature. The objective
judgment of the collected data of this kind is not
possible. To improve the internal validity of the results
presented, the independent variables that could
influence this case study have been identified as
follows: The architect experience has a great influence.

This has been reduced because the expertise of the two
architects who participate in the case study is very
different (1 year vs. 7 years). However, the influence
of project's size and architecture's complexity cannot
be reduced due to the inherent nature of case studies,
which normally focus on one project. Additionally, we
have used triangulation of source data to increase the
reliability of the results. In this regard, interviews were
individually conducted with the two architects,
although several questions were asked in a group
setting to encourage discussion. However, the major
limitation in case study research is concerning to
external validity, i.e. "the generality of the results with
respect to a specific population" [17], as only one case
is studied. In return, case studies allow one to evaluate
a phenomenon, a model, or a process in a real setting.
This is something important in software engineering in
which a multitude of external factor may affect to the
validation results, and that other techniques such as
formal experiments, although they permit replication
and generalization, do not consider as they are
conducting under controlled settings.

6 CONCLUSIONS

This paper presents a novel solution to drive agile
architecting. Our solution assists and guides agile
architects in the decision- making process at the time
of adding or changing features by: (i) tracking the
effects of changes upon the architecture —components
and connections which are impacted by the changes—,
and (ii) analyzing architectural concerns such as
dependencies with earlier design decisions, rationale,
constraints, risks, etc. which are also impacted by the
changes. This analysis enables the preservation of the
software architecture, as long as it helps to reduce the
risk of unexpected consequences of changes. The
analysis is instrumented by a CIA technique and
deployed in the Scrum method.

The viability of our approach is proved by a case
study which has been run in an experimental laboratory
called i-Smart Software Factory. It combines both
academic and industry efforts in R&D, being
remarkable the facilities for tracking the projects'
progress. The case study puts our solution into practice
within the agile development of a metering
management system in the electric power networks
domain. The results prove that (i) the CIA algorithm is
effective in locating the impact resulting from a
change, and (ii) this change-impact helps architects to
take better decisions, especially when architectural
knowledge may be lost or vaporized as a result of a
staff turnover. Hence, the case study proved that the
CIA algorithm determined 40% of impacts more than
architects manually determined. These promising

results did not interfere with other agile practices and
did not incur a big upfront design, making the agile
construction and evolution of architecture possible.
One of the main conclusions of this research is that
agile architecting is feasible so that ASD can be scaled
up to large and complex software-intensive systems.

As future work, we are improving the FPLA
framework, so that it can semi-automatically generate
code by using model-to-text transformations. Its aim is
to link architecture and code. The traceability between
architecture and implementation may avoid another
common problem in ASD when code drifts so far apart
that it makes it much easier to erode the software
system architecture.

ACKNOWLEDGMENT

The work reported in here has been partially
sponsored by the Spanish fund (INNOSEP TIN2009-
13849, IMPONET TSI-020400-2010-103, i-SSF IPT-
430000-2010-038) and UPM (Technical University of
Madrid) under their Researcher Training program.

10. References
[I] P. Abrahamsson, M. Babar, and P. Kruchten, "Agility and
architecture: Can they coexist?" Software, IEEE, vol. 27, no. 2, pp.
16-22, 2010.

[2] R. S. Arnold, Software Change Impact Analysis. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1996.
[3] M. A. Babar and P. Abrahamsson, "Architecture-centric
methods and agile approaches," in Agile Processes in Software
Engineering and Extreme Programming (XP), 2008, pp. 242-243.

[4] K. Beck, Extreme Programming Explained: Embrace Change.
2nd ed. Addison-Wesley Professional, 2004.

[5] G. Booch, "The defenestration of superfluous architectural
accoutrements," Keynote Software Architecture Challenges in the
21st Century, USC, June 2009.

[6] J. Bosch, "Software architecture: The next step," in Software
Architecture, ser. LNCS, vol. 3047. Springer, 2004, pp. 194-199.
[7] C.-Y. Chen and P.-C. Chen, "A holistic approach to managing
software change impact," J. Syst. Softw., vol. 82, no. 12, pp. 2051-
2067, 2009.

[8] H. Chivers, R. F. Paige, and X. Ge, "Agile security using an
incremental security architecture," in Proceedings of the 6th
International Conference on Extreme Programming, ser. LNCS.
Springer, 2005, pp. 57-65.

[9] H. Cho, J. Gray, Y. Cai, S. Wong, and T. Xie, Model-Driven
Domain Analysis and Software Development: Architectures and
Functions. IGI Global, 2011, ch. Model-Driven Impact Analysis of
Software Product Lines, pp. 275-303.

[10] A. Cockburn, Agile Software Development. The Cooperative
Game. Second Edition. Addison-Wesley Professional, 2006.

[II] J. Diaz, J. Perez, J. Garbajosa, and A. Wolf, "Change impact
analysis in product-line architectures," in Proceedings of the 5th
European Conference on Software Architecture, LNCS, vol. 6903.
Springer, 2011, pp. 114-129.

[12] J. Diaz, J. Perez, J. Garbajosa, and A. Wolf, "A process for
documenting variability design rationale of flexible and adaptive

PLAs," in On the Move to Meaningful Internet Systems: OTM 2011
Workshops, ser. LNCS, vol.7046. Springer Berlin / Heidelberg,
2011, pp. 612-621.

[13] H. Erdogmus, "Architecture meets agility," Software, IEEE, vol.
26, no. 5, pp. 2-4, 2009.

[14] D. Falessi, et al., "Peaceful coexistence: Agile developer
perspectives on software architecture," Software, IEEE, vol. 27, no.
2, pp. 23-25, 2010.

[15] M. Galster and P. Avgeriou, "Handling variability in software
architecture: Problems and implications," in Proceedings of the 9th
WICSA'll ,2011,pp. 171-180.

[16] M. O. Hassan, L. Deruelle, and H. Basson, "A knowledge-based
system for change impact analysis on software architecture," in
Proceedings of Fourth International Conference on Research
Challenges in Information Science, 2010, pp. 545-556.

[17] U. van Heesch, P. Avgeriou, and R. Hilliard, "A documentation
frame- work for architecture decisions," Journal of Systems and
Software, vol. 85, no. 4, pp. 795-820, 2012.

[18] T. Ihme and P. Abrahamsson, "Agile architecting: The use of
architectural patterns in mobile Java applications," Int. J. of Agile
Manufacturing, vol. 8, no. 2, pp. 97-112, 2005.

[19] P. Kruchten, "Software architecture and agile software
development an oxymoron?" Keynote Software Architecture
Challenges in the 21st Century, USC, June 2009.

[20] J. L. Martin, A. Yagiie, E. Gonzalez, and J. Garbajosa, "Making
software factory truly global: the smart software factory project," in
Software Factory Magazine. Available Oi l http://www, s o ft war e factory, cc/magazine

F. Fagerholm, Ed., March 2010, p. 19.

[21]T. Mens, S. Demeyer, and T. Mens, "Introduction and roadmap:
History and challenges of software evolution," in Software
Evolution. Springer Berlin Heidelberg, 2008, pp. 1-11.

[22] R. L. Nord and J. E. Tomayko, "Software architecture-centric
methods and agile development," IEEE Softw., vol. 23, no. 2, pp.
47-53, 2006.

[23] J. Perez, J. Diaz, J. Garbajosa, and P. P. Alarcon, "Flexible
working architectures: Agile architecting using PPCs," in
Proceedings of the 4th European Conference on Software
Architecture, LNCS, vol. 6285. Springer-Verlag, 2010, pp. 102-117.

[24] J. Perez, J. Diaz, C. C. Soria, and J. Garbajosa, "Plastic partial
components: A solution to support variability in architectural
components," in Proceedings of the Joint WICSA/ECSA. IEEE
Computer Society Press, 2009, pp. 221-230.

[25] D. E. Perry and A. L. Wolf, "Foundations for the study of
software architecture," SIGSOFT Softw. Eng. Notes, vol. 17, no. 4,
pp. 40-52, 1992.

[26] K. Pohl, G. Bckle, and F. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer,
Germany, 2005.

[27] J. Ramil and M. Lehman, "Metrics of software evolution as
effort predictors - a case study," in Software Maintenance, 2000.
Proceedings. International Conference on, 2000, pp. 163-172.

[28] P. Runeson and M. Host, "Guidelines for conducting and
reporting case study research in software engineering," Empirical
Software Engineer- ing, vol. 14, pp. 131-164, 2009.

[29] K. Schwaber and M. Beedle, Agile Software Development with
Scrum.Prentice-Hall, 2002.

[30] A. Tang, A. Nicholson, Y. Jin, and J. Han, "Using bayesian
belief networks for change impact analysis in architecture design," J.
Syst. Softw., vol. 80, pp. 127-148, 2007.

[31] A. Tang, Y. Jin, and J. Han, "A rationale-based architecture
model for design traceability and reasoning," J. Syst. Softw., vol. 80,
pp. 918-934,2007.

http://www

