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Abstract 
We consider a dynamic (or multi period) multi-

capacity single allocation hub location problem. The 
ever increasing speed of changes in the cost and 
demand structure forces companies to reconfigure 
their network frequently. We contribute by developing 
a multi period approach that incorporates these 
changes and enables optimal configuration of hub 
location networks. Which locations serve as hubs, the 
capacity of these hubs and the allocation of non-hub 
locations to hub locations are the key decisions in each 
period. Several formulations of mixed integer 
programs for the multi period model are proposed. We 
compare these models in terms of computational 
performance and provide paths for future research. 

1. Introduction  

The increase of e-commerce has a tremendous 
effect on logistic service providers such as parcel 
delivery services. Since an increasing number of 
customers shop online these providers face a growing 
demand for their services. In addition the demand from 
online customers is highly fluctuating and companies 
with big transportation volumes like Amazon.com Inc. 
select their logistic service providers based on least 
cost criteria and award most often short term contracts. 
This volatile environment creates the need for the 
logistic service providers to adapt their logistic 
networks frequently to demand changes and cost 
changes. 

We focus on logistic service providers e.g. 
airlines, postal services, and less than truckload 
providers using a hub network structure to operate. The 
network structure is characterized by a many-to-many 
distribution of commodities (e.g. passengers, goods, 
etc.). Each commodity needs to be collected at its 
origin and distributed to its destination. Thus each 
commodity is defined by its origin and destination. 
Further applications arise in the design of 
communication and computer networks operating in a 

highly dynamic environment. The volume of data 
packages and costs for transmission of data packages 
vary over time. Questions arises where to locate 
concentrators (hubs) and which capacity on linking 
cables should be installed. 

To operate logistic networks efficiently the 
establishment of hubs is common practice. Hubs are 
used to sort, consolidate, and redistribute flows and 
their main purpose is to realize economies of scale. In 
the last 25 years a vast amount of literature has been 
devoted to hub location problems. For recent 
overviews see e.g. [1], [2], [3]. The problem can be 
divided into several problem classes, e.g. the p-hub 
median, the p-hub center, and the hub covering 
problem [4]. We consider the class of hub location 
problems with fixed costs. Each of these classes can be 
subdivided depending on the specific assumptions e.g. 
about the assignment option of non-hub locations to 
hub locations (multiple or single allocation) or the 
capacity restrictions of hub locations.  

Most literature on hub location problems considers 
static problems without explicit consideration of 
dynamic changes in environmental parameters. This 
can be seen as a one-time planning that must be redone 
every time the parameters change. This approach is not 
optimal since the one-time model does not capture the 
possibility of future restructuring of the network.  

Only a few contributions in the field of dynamic 
hub location problems are known to the authors. 
Campbell et al. [5] analyze the role of isolated hubs in 
a dynamic setting. Gelareh and Nickel [6] consider a 
multi period hub location problem for public transport. 
They develop a customized model for public transport, 
in which the status of hub locations can be changed at 
most once during the planning horizon. The 
reconfiguration is based on a given initial set of hub 
locations and arcs. The flow between origin and 
destination pairs is allowed to traverse more than one 
hub edge. Teymourian et al. [7] and Taghipourian et al. 
[8] address dynamic hub location problems in the 
context of emergency planning for the airline industry. 
Some or all capacity of an airport may become 
unavailable due to weather conditions. Flights might be 
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rerouted to virtual hubs that become active in 
emergency situations and take over capacity of 
disrupted airports. Mixed integer programming and 
fuzzy integer programming models are developed to 
determine the location of the virtual hubs and the path 
between origin-destination pairs during a planning 
horizon. Contreras et al. [9] consider a dynamic 
uncapacitated hub location problem. They analyze the 
multiple assignment case and develop based on a 
strong path based formulation a branch-and-bound 
procedure that uses a Lagrangian relaxation to solve 
problems up to 100 nodes to optimality. 

In our article we contribute to these streams of 
literature by studying a dynamic multi capacity single 
allocation hub location problem (DMCSAHLP). We 
consider a planning horizon with changing flows 
between origin-destination pairs and changing fixed 
facility costs. The objective is to minimize the total 
cost over the planning horizon. The total cost function 
consists of transportation costs for collecting and 
distributing the commodities and fixed facility costs for 
operating, opening, closing, and up- and downsizing of 
facilities during the planning horizon. Hub locations 
can be opened (a non-hub locations becomes a hub 
location), closed (a hub location becomes a non-hub 
location) and change their capacity level in different 
time periods. To the best of our knowledge the 
DMCSAHLP has not been studied in literature. 

We incorporated the choice of capacity levels 
explicitly into the model. Capacitated hub location 
problems usually assume a discrete set of potential hub 
locations, with each hub location having an 
exogenously defined maximum capacity level. In this 
article we use a very generic approach and model the 
capacity decision by a set of discrete capacity levels. 
For each hub location individual capacity levels can be 
installed. Capacity restrictions are applied only on 
incoming flows from origins. A few contributions 
incorporate the decision on the capacity level in the 
model. Correia et al. [10] present different models that 
incorporate capacity decisions in the single allocation 
hub location problem with fixed costs. Contreras et al. 
[11] address the multiple allocation problem with 
multiple capacity levels. Two variants are considered: 
the splittable and the non-splittable capacity case. They 
formulate path based models and develop a Bender 
decomposition method to solve the problem.  

We consider the single allocation case. This means 
each non-hub location is allocated to exactly one hub 
location. Each commodity leaving or arriving at a 
specific location is distributed by the same hub 
location, the one the non-hub location is assigned to.  

We focus on a green-field network planning 
approach. In the first period the initial network is 
created. In all other periods the network of the last 

period serves as an input. However, an initial set of 
hub locations can be easily incorporated into our 
model. In each period the selection of hub locations 
can be changed causing opening or closing costs, the 
capacity of hub locations can be selected from a set of 
available capacity levels causing resizing costs in case 
the level is changed, and the assignment of non-hub 
locations to hub locations can be modified (causing no 
additional fixed cost). 

Hub location problem formulations with fixed 
costs are mainly based on two classical formulations. 
Campbell [12] introduced a path based formulation, 
Ernst and Krishnamoorthy [13] formulated a flow 
based formulation. Path based formulations often lead 
to problems with growing numbers of variables and 
constraints. However, the relaxation often provides 
better bounds than the flow based formulation. In this 
article we provide path and flow based formulations 
and compare their performance.  

To develop our model we adopted the 
formulations of [10] and [14]. As locations may change 
their status (hub location, non-hub location) and 
capacity level over time the resulting formulation 
features a quadratic objective function and linear 
constraints. We create four models, two path based and 
two flow based formulations. The nonlinear models are 
linearized by standard methods. Commercial solvers 
are used to solve the linearized models. Numerical 
results are created to compare the performance of the 
different models for a variety of parameter setting.  

The remainder of the paper is organized as 
follows. In Section 2 two path-based and two flow-
based formulations are proposed for the dynamic 
problem. In Section 3 the corresponding linearized 
models are given. In Section 4 computational results 
are analyzed. In Section 5 we conclude and provide 
paths for future research. 

2. Model formulation 

Before formulating the model, the following 
notation is introduced. 

� set of nodes � = {1,2, … , �}
� set of edges
� set of time periods in the considered planning 

horizon � = {1,2, … , �}
	
 set of capacity levels for hub location �
�

 maximum capacity for hub � and capacity 

level �
�



�� opening costs for hub � and capacity level � in 
period �

�


� operating costs for hub � and capacity level �

in period �

995



�


�
�� resizing costs for hub � and changing capacity 

level � to capacity level �′ in period �
�



�� closing costs for hub � and capacity level � in 
period �

��� distance between node � and node �
���

� flow originating at node � and destinating at
node � in period �

��
� total flow that originates at node � in period �,

��
� = ∑  � ���

�

��
� total flow that destinates at node � in period �,

��
� = ∑  � ���

�

� collection costs per distance and flow unit 
(non-hub location to hub location)

� transfer costs per distance and flow unit (hub 
location to hub location)

! distribution costs per distance and flow unit 
(hub location to non-hub location)

Let " = (�, �) be a complete graph. Opening and 
up sizing costs are assumed to be nonnegative, whereas 
downsizing and closing costs may be negative as well. 
If the cash flow of e.g. selling production equipment 
outweighs the cost of e.g. dismissing human resources, 
the closing costs may be negative. Each cost 
component depends on the capacity level.  

The distance matrix is assumed to be symmetric 
and the triangle inequality holds. It is assumed that the 
flow between hub nodes is consolidated and generates 
economies of scale effects. Thus � is assumed to be a 
discount factor with � < 1. For the other cost factors 
the following applies: �, ! > 1. This cost structure has 
been much considered in literature, e.g. [12], [13], 
[15], [16], [17]. In this article the per unit 
transportation cost factors �, �, and ! are constant over 
time. In future contributions transportation cost factors
may be to some extend dynamic and feature other cost 
factors on hub links than a constant discount factor �.
Numerous contributions acknowledge the fact that the 
realized economies of scale effects on hub links should 
vary with the total amount transported on a hub link 
[18], [19]. New studies of Campbell [20] show that the 
total amount of flow on non-hub links may exceed 
those of hub links. The author suggests developing a
comprehensive approach that applies economies of 
scale in a more sophisticated way on all links in 
network problems. However, this is not the main focus 
of this contribution. We therefore leave this topic for 
future research. 

In the following a quadratic mixed integer 
problem based on the formulation proposed by [10] is 
presented. We first define some decision variables. The 
non-hub node to hub node allocation is defined by 

#�

� = $

 1, if node � is allocated to hub node �
in period �

 0, otherwise.

Note, that some nodes might not require service in 
period �, that is ��

� + ��
� = 0. In case these nodes are 

non-hub nodes, it is unnecessary to allocate them to 
any hub node. Therefore it follows for such a node �
that #�


�  = 0 for � ≠ � and � ∈ �. A node � that 
requires no service in period � might still serve as a 
hub-node. Since each hub node is allocated to itself #�


�

with � = � can be 1 for no-service nodes.  
To avoid the unnecessary allocation of no-service, 

non-hub nodes to hub nodes we add a constraint. We 
introduce an additional set '� that denotes a subset of 
�. This set includes all nodes, which require service in 
period �, that is ��

� + ��
� > 0. Each node � ∈ '� has to 

be serviced, thus allocated to a hub node or being a hub 
node itself. Nodes � ∉ '� do not require service, but can 
serve as hub nodes. The constraint follows as 

#�

� = 0   ∀� ∉ '�, � ∈ �, � ∈ � and � ≠ �. (1)

For each node � ∈ �, � ∈ 	
  and � ∈ � we define 

/


� = $

 1, if capacity level � is installed at

hub node � in period �
 0, otherwise.

For each node � ∈ '�, �, 3 ∈ � and period � the 
flow variable is defined as follows 

4
5
�� ≥ 0 amount of flow with origin � that 

uses the hub link between � and 3 in
period �.

(QP1.1)  

minimize 7  
�∈8

7  
�∈9:

7  

∈;

��
#�

� (���

� + !��
�)

+ 7  
�∈8

7  
�∈9:

7  

∈;

7  
5∈;

��
54
5
��

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��(1 − 7  


�∈<>

/

�
�?@)/



�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


� /



�

+ 7  
�∈8

7  

∈;

7  

∈<>

7  

�∈<>

�


�
�� /



�?@/

�
�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��/



�?@(1 − 7  

�∈<>

/

�
� )

s. t. 7  

∈;

#�

� = 1                        ∀� ∈ '�, � ∈ � (2)
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#�

� = 0   ∀� ∉ '�, � ∈ �, � ∈ � and � ≠ � (3)

#�

� ≤ #



�                    ∀� ∈ '�, � ∈ �, � ∈ � (4)

#


� = 7  


∈<>

/


�                      ∀� ∈ �, � ∈ � (5)

7  
�∈9:

��
�#�


� ≤ 7  

∈<>

�

/


�     ∀� ∈ �, � ∈ � (6)

7  

∈<>

/


� ≤ 1                         ∀� ∈ �, � ∈ � (7)

7  
�∈9:

��
� ≤ 7  


∈B

7  

∈<>

�

/


�               ∀� ∈ � (8)

7  
5∈;

4
5
�� − 7  

5∈;

45

�� = ��

�#�

� − 7  

�∈;

���#�

�

                                    ∀� ∈ '�, � ∈ �, � ∈ �
(9)

7  
5∈;

4
5
�� ≤ ��

�#�

�       ∀� ∈ '�, � ∈ �, � ∈ � (10)

4
5
�� ≥ 0                   ∀� ∈ '�, �, 3 ∈ �, � ∈ � (11)

#�

� ∈ {0,1}                         ∀�, � ∈ �, � ∈ � (12)

/


� ∈ {0,1}             ∀� ∈ �, � ∈ �, � ∈ 	
 (13)

The objective function minimizes the total cost 
over the planning horizon, consisting of collection, 
transfer, and distribution costs, as well as opening, 
operating, resizing, and closing costs. The first term 
sums up the costs of collection and distributing items 
from or to node �. The second term represents the 
transfer cost for the inter hub transfer of items. It is 
assumed, that discount factor � is applied to reflect 
economies of scale. The third term describes the 
opening costs, when a hub node is installed at the 
beginning of a period �. Those costs only occur, if the 
hub node was not installed on any capacity level in the 
period before. If a hub node is installed in period �,
operating costs occur, expressed by the forth term. The 
fifth part represents resizing costs. Resizing costs occur 
if there are some changes in the capacity level between 
two successive periods. The last term describes the 
closing costs, which occur if the hub node is not 
installed in period �, but was operated at some capacity 
level in the period before.  

The constraints of the dynamic hub location 
problem correspond to those of the static problem. All 
constraints need to be satisfied in each period �.
Constraint (2) states the assignment of each node that 
requires service to exactly one hub node or being a hub 
node itself. Constraint (3) was introduced in Equation 
(1). Constraint (4) allows only non-hub nodes to be 

allocated to hub nodes, since each hub node is 
allocated to itself. Constraint (5) combines the 
allocation decision with the hub location decision. A 
node is allocated to itself, if it is a hub. A node is a 
hub, if some hub capacity is installed. Constraint (6)
ensures that the installed capacity at hub node � is 
sufficient to process the incoming flow of the assigned 
nodes. Constraint (7) allows only one capacity level to 
be installed at hub node � in period �. Constraint (8)
defines the aggregated capacity constraint. It is used to 
tighten the problem formulation and can often be found 
in facility location problems. The constraint ensures 
that all installed capacity suffices to cover all incoming 
flows. Constraint (9) states the flow conservation of the 
flow originating in node � that is routed via hub node 
�. Constraint (10) ensures that flow from origin �
routed via hub nodes � and 3 is only non-negative if 
node � is assigned to hub node �. Constraints (11)-(13)
state the integrality and binary conditions of the 
decision variables. 

[10] state a formulation without Constraint (5).
This formulation is valid in problems, in which each 
node � sends and receives some flow in each period. As 
mentioned in the discussion for Equation (1), we do 
not need this assumption. Therefore our model is more 
generic and we cannot omit Constraint (5). Otherwise 
there might be some node � allocated to itself, but not 
opened as hub node. To illustrate that fact, assume a 
set of nodes C. The nodes in C are the only nodes 
allocated to hub-node � in an arbitrary period � and 
have no outgoing flows but some ingoing flows, that is 
#�


� =1, ��
�> 0 for all � ∈ S and ∑  �∈D ��

� = 0. In addition 
assume that � itself has no outgoing flow �


�  = 0. 
Because � is a hub node, #

 = 1. In that case and 
without Constraint (5) it would be possible that k is a 
hub node without any hub capacity installed, 
because #

 = 1 ∧ ∑  �∈9: ��

�#�

� = 0  

⇒ ∑  
∈<> Γ

/


� = 0 ⇒ ∑  
∈<> /



� = 0. Therefore, 
we cannot omit Constraint (5).

[10] also state that Constraint (4) becomes 
redundant in combination with constraints (5), (6),
(12), and (13). In our setting this is not the case. In
absence of Constraint (4) node � could be allocated to 
node � although � is not a hub node. Let the outgoing 
flow of some set of nodes H in an arbitrary period be 
zero, that is ∑  �∈I ��

� = 0. Consider some node � ∈ �,
with �


�  = 0. If Constraint (4) is missing and #

 = 0 ∧
�


� = 0 ⇒ ∑  
∈<> /


� = 0 ⇒ ∑  
∈<> Γ

/



� = 0
⇒ ∑  �∈I ��

�#�

� = 0.  

In that case Constraint (4) assures that #�

�  = 0, 

which is a required, because � is not a hub node.  
Next we introduce a formulation which is more 

closely related to the formulation of [13] and is also 
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adopted by [10]. The location decision is modeled by 
the assignment variable #�



�. 
  

#�


� = $

 1, node � is assigned to hub node �, which

operates on capacity level � in period �
 0, otherwise

(QP1.2)  

minimize 7  
�∈8

7  
�∈9:

7  

∈;

7  

∈<>

��
#�


�(���

� + !��
�)

+ 7  
�∈8

7  
�∈9:

7  

∈;

7  
5∈;

��
54
5
��

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��(1 − 7  


�∈<>

#



��?@)#




�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


� #




�

+ 7  
�∈8

7  

∈;

7  

∈<>

7  

�∈<>

�


�
�� #




(�?@)#



��

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��#




(�?@)(1 − 7  

�∈<>

#



��)

s. t. 7  

∈;

7  

∈<>

#�


� = 1              ∀� ∈ '�, � ∈ � (14)

7  

∈<>

#�


� = 0 

               ∀� ∉ '�, � ∈ �, � ∈ � and � ≠ �
(15)

7  

∈<>

#�


� ≤ 7  


∈<>

#



�

                                  ∀� ∈ '�, � ∈ �, � ∈ �
(16)

7  
�∈9:

��
�#�



� ≤ �

#



�

                                 ∀� ∈ �, � ∈ 	
, � ∈ �
(17)

7  

∈<>

#



� ≤ 1                       ∀� ∈ �, � ∈ � (18)

7  
�∈9:

��
� ≤ 7  


∈;

7  

∈<>

�

#



�              ∀� ∈ � (19)

7  
5∈;

4
5
�� − 7  

5∈;

45

�� = 7  


∈<>

��
�#�



�

− 7  
�∈;

7  

∈<>

���#�


�

                     ∀� ∈ '�, � ∈ �, � ∈ 	
, � ∈ �

(20)

7  
5∈;

4
5
�� ≤ ��

�#�

�     ∀� ∈ '�, � ∈ �, � ∈ � (21)

4
5
�� ≥ 0                 ∀� ∈ '�, �, 3 ∈ �, � ∈ � (22)

#�


� ∈ {0,1}         ∀�, � ∈ �, � ∈ 	
, � ∈ � (23)

The descriptions of the constraints are almost 
identical to those of model QP1.1, thus we will not go 
into details here. Having at most one capacity level is 
ensured by Constraints (14) and (18). Thus, Constraint 
(18) is redundant. Constraint (16) can be replaced by a 
disaggregated version as follows 

#�


� ≤ #




�      ∀� ∈ '�, � ∈ �, � ∈ 	
, � ∈ �. (24)

This would require the aggregated Constraint (17)
to be disaggregated. However, this would increase the 
number of constraints.  

In the following the corresponding path-based 
formulation is given. The models differ in the path 
variable, which is now used instead of the flow 
variable 4
5

�� . The path-based formulation tracks the 
path, which is used by each origin-destination pair. 
Since a fully connected hub network is assumed and 
the triangle inequality holds the path transfers at most 
two hubs. Variable 4�
5�

�  defines the fraction of flow 
with origin � and destination � that is routed via hub 
nodes � and 3 in period �. 

4�
5�
� ∈ [0,1]    ∀�, �, 3, � ∈ �

As some origin-destination pairs ((�, �)-pairs) do 
not require service we introduce a set J� including all 
(�, �)-pairs having flow ���

� > 0. The routing variables 
are defined for all (�, �)-pairs ∈ J� to assure the 
allocation to a hub node. 

Model QP2.1 provides the formulation based on 
the location variable /



� . The tight formulation of [21] 
is used. 	��
5 defines the total costs for collection, 
transfer and distribution per unit that uses path �-�-3-�. 

	��
5 = (���
 + ��
5 + !�5�)

(QP2.1)

minimize 7  
�∈8

7  
(�,�)∈B:

7  

∈;

7  
5∈;

���	��
54�
5�
�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��(1 − 7  


�∈<>

/

�
�?@)/



�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


� /



�

+ 7  
�∈8

7  

∈;

7  

∈<>

7  

�∈<>

�


�
�� /



�?@/

�
�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��/



�?@(1 − 7  

�∈<>

/

�
� )

s. t. (4)-(8), (12), (13)
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7  

∈;

7  
5∈;

4�
5�
� = 1   ∀(�, �) ∈ J�, � ∈ � (25)

7  
5∈;

4�
5�
� = #�


�

                       ∀(�, �) ∈ J�, � ∈ �, � ∈ �
(26)

7  

∈;

4�
5�
� = #�5

�

                        ∀(�, �) ∈ J�, 3 ∈ �, � ∈ �
(27)

4�
5�
� ≥ 0     

                    ∀(�, �) ∈ J�, �, 3 ∈ �, � ∈ �
(28)

Constraint (25) ensures that all flow for each (�, �)-
pair that requires service is delivered. Constraints (26)
and (27) replace the original flow conservation 
equation. 

An equivalent formulation can be obtained by 
integrating the capacity decision into the allocation 
variable and omitting the location variable /



� . 

(QP2.2)

minimize 7  
�∈8

7  
(�,�)∈B:

7  

∈;

7  
5∈;

���	��
54�
5�
�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��(1 − 7  


�∈<>

#



��?@)#




�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


� #




�

+ 7  
�∈8

7  

∈;

7  

∈<>

7  

�∈<>

�


�
�� #




(�?@)#



��

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��#




(�?@)(1 − 7  

�∈<>

#



��)

s. t. (16)-(19), (23), (25), (28)

7  
5∈;

4�
5�
� = 7  


∈<>

#�


�

                       ∀(�, �) ∈ J�, � ∈ �, � ∈ �
(29)

7  

∈;

4�
5�
� = 7  


∈<>

#�5

�

                        ∀(�, �) ∈ J�, 3 ∈ �, � ∈ �
(30)

Table 1 provides an overview of the dimension of 
the models by showing the number of variables and 
constraints assuming all nodes need service in all 
periods. For this table K denotes the maximum capacity 
level over all nodes. 

Table 1 Number of variables and constraints in 
the models 

Model

Number of variables
Number of 
constraintsBinary

Conti-
nuous

QP1.1 �(�L + �K) ��M �(3�L + 4� + 1)

QP1.2 ��LK ��M � R 2�L + �LK
+�K + 2� + 1

T

QP2.1 �(�L + �K) ��U � R2�M + 2�L

+3� + 1
T

QP2.2 ��LK ��U � R 2�M + 2�L

+�K + � + 1
T

All models feature a quadratic integer objective 
function and linear constraints, thus the necessary 
computations simply take too long. This applies also to
small-size instances with less than 50 nodes. To solve 
the models in appropriate time with commercial 
solvers a linearization of the objective function is 
required. In the following section the linearized models 
are presented. 

3. Linearization of the models 

The objective function features quadratic integer 
components. The nonlinear objective function is 
linearized by standard linearization techniques. The 
quadratic terms are substituted by a binary variable. 
The models obtained are presented in the following. 
The quadratic term /

�

(�?@)/


�  is substituted by the 

binary decision variable V

�

� ∈ {0,1} in the models 

QP1.1 and QP2.1. The terms concerning the facility 
fixed costs in the objective functions (the last four 
rows) of models QP1.1 and QP2.1 are remodeled and 
replaced by W	@.

W	@ = 7  
�∈8

7  

∈;

7  

∈<>

(�


�� + �



� )/


�

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��/



�?@

− 7  
�∈8

7  

∈;

7  

∈<>

7  

�∈<>

(�


�� − �

�


��

+ �

�
�� )V

�


�?@,�

(31)

The following constraints are added to the models 
QP1.1 and QP2.1.  

V

�

�?@,� ≤ /



�              ∀� ∈ �, � ∈ �, �, �′ ∈ 	
 (32)

V

�

�?@,� ≤ /

�

�?@          ∀� ∈ �, � ∈ �, �, �′ ∈ 	
 (33)

999



V

�

�?@,� ∈ {0,1}          ∀� ∈ �, � ∈ �, �, �′ ∈ 	
 (34)

In the models QP1.2 and QP2.2 the quadratic term 
#




�(�?@)#



�  is substituted by the binary decision 

variable X

�

� ∈ {0,1}. The facility fixed costs (last 

four rows of the objective function) are remodeled and 
replaced with 

W	L = 7  
�∈8

7  

∈;

7  

∈<>

(�


�� + �



� )#



�     

+ 7  
�∈8

7  

∈;

7  

∈<>

�


��#




(�?@)     

− 7  
�∈8

7  

∈;

7  

∈<>

7  

�∈<>

(�


�� − �

�


��

+ �

�
�� )X

�


�?@,�

(35)

The following constraints are added to the models 
QP1.2 and QP2.2.  

X

�

�?@,� ≤ #




�                ∀� ∈ �, � ∈ �, �, �′ ∈ 	
 (36)

X

�

�?@,� ≤ #




�(�?@)       ∀� ∈ �, � ∈ �, �, �′ ∈ 	
 (37)

X


�
�?@,� ∈ {0,1}            ∀� ∈ �, � ∈ �, �, �′ ∈ 	
 (38)

With the linearization also small-size instances can 
be solved by commercial solvers. Solutions on the 
performance of the four models are presented in the 
next section. 

4. Computational results 

We have run computational experiments to 
compare the models using the Australia Post (AP) 
dataset introduced by [22] and commonly used in hub 
location research. The dataset provides coordinates of 
200 postcode districts in Sydney and the flow volumes 
between all pairs of districts. ‘Tight’ and ‘loose’ hub 

location capacity levels and ‘tight’ and ‘loose’ fixed 

costs are provided for the static case. Tight or loose 
capacity can be combined with tight or loose costs to 
create four different scenarios. It can be said, that in 
general tight scenarios are computationally more 
challenging.  

To evaluate our model, we have to use the static 
case to create data for the dynamic case. The dynamic 
flow data is created in a manner similar to [9]. The 
authors assume an increasing flow volume between 
(�, �)-pairs. In the first period only a subset of the (�, �)-
pairs from the original AP dataset requires service, that 
is, the flow between � and � is strict positive. Each 
period an additional set of (�, �)-pairs is added. These 

added (�, �)-pairs require service for the first time. The 
initial flow for each added (�, �)-pair is set to the 
volume in the original AP dataset. Subsets are selected 
in a way that in the last period � of the planning 
horizon, all (�, �)-pairs in the AP dataset require 
service. 

For each (�, �)-pair that requires service the flow 
volume varies randomly each period. With probability 
of 90% the flow increases by 30%, otherwise it 
decreases by 25%. 

Fixed costs also vary over time and are derived 
from the given fixed costs of the AP dataset. The 
opening costs of the maximum capacity level |	
| pose 
the baseline values for calculating all other facility 
fixed costs. Costs vary randomly in a certain range per 
period and hub node. Opening costs �
|<>|

��  take values 
of 90% - 120% of the original set-up costs. Closing 
costs vary between 40% and 60% of opening costs. 
They take negative values to model recovery gains by 
divestment of equipment. Operating costs take random 
values between 10% - 15% of the opening costs. Let �

be the set-up costs of the original AP dataset. Thus, it 
follows 

��|	�|
Y� = ��(1 + Z) , where Z~\(−0.1, 0.2) and

��|	�|
�� = ��|	�|

Y� ^ , where ^~\(0.4, 0.6) and

��|	�|
� = ��|	�|

Y� ` , where `~\(0.1, 0.15).
Capacity levels are sorted in ascending order, that 

is �
@ < �
L < ⋯ < �
|<>|. The capacity of the highest 
level is set to the original capacity of the AP dataset. 
All other capacities are calculated in a nonlinear 
manner to capture economies of scale effects. Capacity 
level faces an economies of scale factor of 0.7, it 
follows: 

�

 = 0.7 ⋅ �
(
x@)  , where � = 1, . . . , |	
| − 1.
The facility costs also incorporate the economies 

of scale effects. Let W


�  be either opening, operating or 

closing costs. The costs of initially opening, operating 
or closing the hub node � for an arbitrary capacity 
level � are calculated as follows: 

W��
� = 0.9 ⋅ W�(�+1)

� , where � = 1, . . . , |	
| − 1.
Resizing costs are less than just the difference 

between the opening and closing costs of the two 
capacity levels considered. That is because main 
expenditure cost (recovery gains) are assumed to arise 
with opening (closing) the hub facility for buying 
(selling) the property and the infrastructure. The 
resizing costs are calculated as follows: 

����′
V� = �

�(���′
Y� − ���

Y� ), if �′ > �
�(���

�� − ���′
�� ), if �′ < �

.
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Where � ≤ 1 denotes the resizing factor. For the 
results in Table 2 we set � = 1 and analyze the effect 
of smaller � in Table 3. 

We assumed two different time horizons, one with 
3 periods and another one with 5 periods. We consider 
scenarios with 10 and 25 nodes and 3 and 5 capacity 
levels. The data for the 3 period scenarios is equal to 
the data of periods 3, 4, and 5 from the 5 period 
scenarios. The capacity level data of scenarios with 3 
capacity levels consists of the data for level 3, 4, and 5 
of the scenarios with 5 capacity levels. This results in 
32 scenarios which are solved for the ‘loose’ fixed 

costs and ‘tight’ and ‘loose’ capacity level AP dataset 

(LL and LT).  
The models were implemented in AIMMS 3.13 

and solved with CPLEX 12.5. We used the default 
parameters of the solver. The time limit was set to 2 h. 
The computations were run on a personal computer 
with Intel processor with 3.1 GHz and 128 GB of 
RAM. Results are displayed in Table 2.

The first column of the table states the model. 
Columns two, three, and four provide information  
about the scenario. Column five and seven show the 
CPU time in seconds used to solve the problem for the 
LL and the LT dataset respectively. The CPU time is 
only provided for runs that finished within the time 
limit of 2 hours. For scenarios that did exceed the time 
limit the final optimality gap is provided in columns 
six and eight. The optimality gap is the percentage 
difference between best LP bound and best solution 
obtained. Table 2 displays the result for the LL and LT 
datasets. The results also hold for the TL and TT 
dataset.  

Results show that for three small scenarios model 
QP1.1 is the fastest model. In all other instances model 
QP2.1 outperforms all other models. Model QP1.1 
experiences three, model QP1.2 eight and model QP2.2 
one time-out in 16 runs. Overall the path-based 
formulations perform for almost all scenarios better 
than the flow-based formulations and do not fall much 
behind the flow-based formulations in scenarios for 
which they perform worse. From an overall perspective 
model QP1.2 performs worst compared to the other 
models. 

Increasing the number of time periods T from 3 to 
5 periods results in an increase of computation time for 
all models. Same can be observed for increasing the 
number of capacity levels |	
| and the number of 
nodes |�|. The flow-based formulations are more 
sensitive to an increase in these parameters compared 
to the path-based formulations. This results in a higher 
number of time-outs for the flow-based formulations.  

A comparison of model QP1.1 and QP1.2 shows 
that model QP1.1 outperforms model QP1.2 for 
successful runs. For runs that exceeded the time limit 

the gap of model QP1.2 is only for two scenarios by a 
small amount better compared to the gap of model 
QP1.1. Same applies to the path-based formulations. 
Model QP2.1 performs faster than model QP2.2 with 
only one exception. In future work the influence of 
preprocessing tests, data structure, and other 
parameters on computational performance will be 
analyzed.  

Table 2 Results for LL and LT 

LL LT

Model � |�| |	
|
CPU 
(s)

Gap 
(%)

CPU 
(s)

Gap 
(%)

QP1.1 3 10 3 1 1
5 10.9 229

25 3 82 30
5 109 65

5 10 3 3 4
5 82.0 35.2

25 3 199 177
  5 377 217
QP1.2 3 10 3 2 2

5 16.1 228
25 3 3.0 6041

5 48.1 30.4
5 10 3 4 7

5 79.9 34.3
25 3 8.5 5.2

5 117.5 84.0
QP2.1 3 10 3 3 1

5 15 10
25 3 79 63

5 153 75
5 10 3 3 3

5 47 29
25 3 156 102

5 159 166
QP2.2 3 10 3 2 2

5 24 14
25 3 195 131

5 425 169
5 10 3 6 6

5 2232 0.9
25 3 299 197

  5 425 233

Next we analyze the difference between the 
dynamic and static solution. The static model solves 
for each period the one period problem to optimality. 
The total fix cost for opening and operating one hub in 
the static model is calculated as:

W	C


� = �



�� + �


� + �



��x@

In addition we analyze the effect of different 
resizing cost on the network structure for the dynamic 
model by varying � between 0.8 and 1. The results for 

1001



the 25 TT dataset are displayed in Table 3. For each 
period (t) and each scenario (sc: � = 0.8, � = 1.0 and 
static model) the IDs of the open hub nodes (k) 
together with their capacity level (c) are provided.  

Table 3 Results for different scenarios TT 

� sc open hub nodes and capacity

1

0.8 k 8 11 23
c 1 1 3

1.0 k 8 11 23
c 1 2 4

stat k 11
c 4

2

0.8 k 4 8 11 13 20 23 24
c 1 1 2 1 1 5 1

1.0 k 4 8 11 13 20 23
c 1 1 2 2 1 5

stat k 5 12 23
c 1 5 5

3

0.8 k 1 4 8 11 13 20 23 24
c 3 1 1 3 1 1 5 4

1.0 k 1 4 8 11 13 20 23 24
c 4 1 1 3 2 1 5 5

stat k 8 15 24
c 4 5 5

4

0.8 k 1 4 8 11 13 20 23 24
c 4 1 2 5 3 1 5 5

1.0 k 1 4 8 11 13 20 23 24
c 4 1 2 5 3 1 5 5

stat k 1 4 8 11 13 24
c 4 1 2 5 4 5

5

0.8 k 4 8 11 13 23 24
c 1 5 5 5 4 5

1.0 k 4 8 11 13 23 24
c 1 5 5 5 4 5

stat k 8 9 11 13 24
c 5 1 5 5 5

Results show that for the dynamic problem more 
hubs are opened than for the static problem. For both 
models the opening costs are not depending on the 
duration a hub is opened and have almost the same 
dimension as the fixed costs of the static dataset. 
However, in the dynamic model the opening costs 
weight much less per period the longer the hub remains 
open. In addition operating costs per period are only 
10-20% of opening costs. Therefore, the dynamic 
model results in a more decentralized network for 
which it is more profitable to open hubs early in the 
time horizon, operate the hub during several periods, 
and take advantage of economies of scale. By closing 
hubs in the last period, a profit can be gained due to the 
applied closing costs.

Comparing the dynamic solutions for different 
resizing factors, Table 3 shows that the network 

structure of both scenarios is similar, but decisions are 
made at different points in time. In period 1 for � = 0.8 
hubs 11 and 23 are opened with less capacity which is 
cheaper and are extended to same capacity level as 
with � = 1 in period 2. For � = 0.8 hub 24 is opened 
one period earlier than with higher resizing costs and 
gains full capacity one period later than with higher 
resizing costs. The lower the resizing cost the better the 
solution can be adapted to the real capacity needed 
rather than deploying the highest needed capacity too 
early.  

5. Conclusion 

We propose in this paper an extension of the 
classical capacitated single allocation hub location 
problem. We consider a multi period planning horizon 
and include the capacity of the hubs in the decision 
making process. Each period hub locations can be 
closed or resized and non-hub locations can become 
hub locations. Therefore the allocation of non-hub 
locations to hub locations can change as well. Our 
model can be applied for instance to network design 
problems of LTL service providers or to the design of 
communication and computer networks. Four quadratic 
mixed integer linear programming formulations were 
proposed. Two flow-based and two path-based 
formulations resulted from extending several well-
known formulations from the classical problem to the 
new problem. The models were linearized to make 
them solvable with commercial solvers in reasonable 
time. 

Computational experiments were performed on the 
AP data set. Demand as well as fixed cost was modeled 
as varying parameters between periods. Results were 
presented for several parameter settings. The path 
based formulations outperform the flow based 
formulations for almost all test instances. If this 
observation is consistent for different settings and 
larger test instances remains to be analyzed. 

Our immediate interest for future research will be 
the development of linear relaxations for the models to 
compare the qualities of the provided bounds. In 
practice, network design problems tend to be larger 
than the ones solved in this article. All insights will be 
used to develop heuristics that are applicable to real 
world scenarios and create good solutions in 
reasonable time.  

The current work also creates new possibilities for 
the development of more comprehensive hub location 
models. It provides a path to include the variability of 
environmental parameters in the network design 
process. 
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