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Abstract 
Flash crashes, perceived as sharp drops in market 

prices that rebound shortly after, have turned the public 
eye towards the vulnerability of IT-based stock trading. 
In this paper we explain flash crashes as the result of 
actions made by rational agents. We argue that 
information technology, which has long been associated 
with competitive advantages, may cause ambiguities 
with respect to the game form that give rise to a 
Hypergame. We employ Hypergame Theory to 
demonstrate that a market crash constitutes an 
equilibrium state if players misperceive the true game. 
Once the ambiguity is resolved, prices readjust to the 
appropriate level, creating the characteristic flash 
crash effect. We also discuss endogenous and 
exogenous mechanisms that may alleviate the threat of 
a flash crash and present possible options for future 
research.  
 

1. Introduction  

On May 6, 2010, the effects of the “Flash Crash” 
rippled through U.S.-based equity markets and beyond. 
Indices dropped by several percentage points, just to 
rebound almost as quickly [1]. In the immediate 
aftermath, this has sparked several hypotheses 
explaining why the crash occurred. Easley et al. [2] 
highlight some of the most prominent: a quickly 
debunked “fat-finger trade”, which is a trader entering 
the wrong number for a transaction; technical reporting 
difficulties at the NYSE; currency movements between 
dollar and yen; and predatory quote stuffing. Several of 
these hypotheses assume irrational behavior on behalf 
of the traders. In this paper we show that flash crashes 
can be explained as a result of rational behavior 
resulting from IT-induced ambiguities about the 
strategic situation.  

While at first it may appear strange to believe that
the simultaneous selling frenzy of many traders marks a 
mutual best-response equilibrium, we argue that 
ambiguity in the strategic environment changes the 

nature of the game such that these flash crashes are best-
response equilibria. Our key assumption is that in recent 
years information technology has eroded the 
competitive advantage dominant traders held over the 
rest. As the reaction time in financial markets dropped 
to a few milliseconds, the strategic environment 
changed. It turned from a situation that can be described 
as sequential game with a leader informing the actions 
of other traders towards a purely simultaneous game 
where all traders literally trade at the same time. We 
investigate situations where traders do not recognize this 
shift in the strategic situation. This ambiguity violates 
the classic common knowledge assumption that all 
traders know the accurate strategic situation they are 
acting in. As a consequence of this ambiguity, flash 
crashes can be explained as best-response equilibria. All
traders play the dominant strategy in their subjective 
(sequential) game – what they perceive to be the true 
game – while in reality the game is simultaneous. 
Misperceptions by many traders at the same time may 
then result in a flash crash.  

Thus, our approach can explain flash crashes as a 
result of ambiguities in the strategic situation of the 
traders. Furthermore, as flash crashes require the 
misperception of many traders at the same time, we can 
show why such events occur only very rarely.  

The remainder of this paper is structured as follows. 
In Section 2 we will review related work. This includes 
research on flash crashes, the erosion of IT-induced 
competitive advantages, and hypergame theory which 
we will use later in the paper. In Section 3 we first 
further motivate our assumption that the steady 
improvement of information technology in electronic 
markets may create ambiguities in the underlying 
strategic game. We then theoretically analyze the 
hypergame caused by these ambiguities. This allows us 
to establish conditions under which flash crashes may 
occur. Section 4 discusses implications of the model, as 
well as mechanisms to detect flash crashes in advance. 
Section 5 concludes with a summary and an outlook on 
future research.   
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2. Related Work  

The flash crash on May 6, 2010, caused extensive 
investigations by the U.S. Securities and Exchange 
Commission [1]. They identified liquidity issues as a 
result of large sell orders as a possible reason for this 
crash. Easley et al. [2] provide further evidence that 
liquidity problems were developing in the days before 
the event. Kirilenko et al. [3] argue that the response of 
high frequency traders to selling pressure further 
amplified market volatility. Crashes in financial markets 
have also been attributed to herd behavior. Lux [4] 
proposes a cyclic model that explains bubbles and 
crashes as the result of such behavior. Barlevy and 
Veronesi [5] attribute herd behavior to rational, but 
uninformed traders. We argue that flash crashes can 
occur even if traders are rational and equally well 
informed about market conditions. We suggest, 
however, that traders may be unaware of ambiguities in 
the underlying game form.  

Consider, for instance, Easley et al. [6], who 
highlight that while technology has enabled some
traders to be faster than others during the last two 
centuries, speed is no longer a defining characteristic 
under a high frequency trading paradigm. This relates to 
the notion by Carr [7] that questions sustainability of IT-
induced competitive advantages. Such advantages 
provided by information technology have been 
extensively discussed in information systems research 
(e.g. [8-10]). As we consider a market that is highly 
information sensitive – the financial market – such a 
competitive advantage would materialize as the ability 
to react faster to new information. However, it is beyond 
doubt that the emergence of the Internet and the 
technologies surrounding it, from smartphones to social 
networks, have fundamentally changed the way we gain 
access to and process new information–we can find real-
time news on anything at any time basically anywhere 
[11, 12]. Aldridge [13] provides further evidence that 
the influence of information technology is not only 
limited to the general public, but extends to the financial 
sector, as well. The facts high frequency traders are 
limited to a few communication protocols and are often 
fast but quite simple algorithms [14] further suggest a 
homogenization of software capabilities. This is 
amplified by the replacement of human factors, which 
used to provide a large variance depending on individual 
capabilities. Therefore, we argue that it has become 
more and more difficult to create competitive 
advantages in such information-sensitive mechanisms, 
since everybody uses similar information channels and 
processes this information with similar software 
employing similar algorithms. 

Unarguably, those agents who were best able to 
collect and process new information have always been 

at an advantage in financial markets by reacting first and 
making the best deals. The role of information arrival, 
i.e. whether agents receive news simultaneously or 
sequentially, has been researched for financial markets 
by Copeland and Friedman [15]. More recently, Groth 
[16] analyzes the relationship between news-related 
liquidity shocks and automated trading engines. Xu and 
Zhang [17] investigate how social media has changed 
the information environment in financial markets. Both 
studies show that information technology has 
fundamentally altered information dissemination. 

In the following sections we will make the argument 
that the eroding competitive advantage causes games to 
turn from sequential to simultaneous, as the first mover 
advantage that could be exploited over the centuries is 
all but disappearing. We analyze what happens when 
agents are not aware of this game form ambiguity using 
Hypergame Theory, which was first proposed by 
Bennett [18, 19]. It was originally used to model 
conflicts where each party has different perceptions of 
the game being played. More recently, Sasaki and 
Kijima [20] have compared hypergames with Bayesian 
games. While they show that most concepts from 
hypergame theory can be captured by a Bayesian game, 
they do point out that hypergames exhibit a persuasive 
simplicity. This often leads to them being more 
intuitive. In the following model we exploit this 
intuitiveness to illustrate the effects of game 
misperception. 

3. Modeling the Strategic Effect of 
Information Technology 

The central assumption in this paper is that in some 
instances information technology has changed the game 
that is played in financial markets from sequential to 
simultaneous. However, we argue that agents may not 
always be aware of this – thereby we explicitly relax the 
assumption that the type of game is common 
knowledge. Instead, some players continue to play a 
subjective sequential game and choose their strategies 
according to this game.  

Before we can analyze the impact of those 
misperceptions, we first need to explain why some 
games are sequential and others are simultaneous.  

3.1. When Technology Causes Ambiguities 

Consider a simplified scenario of shareholders of a 
company trading at a stock exchange. The company is 
publishing its quarterly financial report, thus supplying 
shareholders with new information. Without losing the 
general implications of our research later in the paper 
we make the following assumptions: 

1203



� There are homogenous expectations among the 
shareholders which were built during the weeks 
preceding the event. 

� These expectations are fully reflected in the 
portfolio of the shareholders. 

� The newly released information is substantially 
worse than expected, inducing portfolio 
adjustments. 

� Agents make a binary decision between selling and 
keeping their entire stock in the company. 

� Shares are equally divided among agents. 
Now consider how new information is received and 

processed. In the past news were disseminated by, for 
instance, television, radio, telephone, or word of mouth 
and processing used to be executed by human workers. 
Today the central instrument for information 
dissemination is the Internet and processing has often 
been replaced by computer algorithms. The “fastest” 
player is the one who best collects and processes new 
information. This player holds an advantage over its 
competitors, which we refer to as the informational 
edge. This is the time between the reaction of the 
information leader and the fastest follower. The reaction 
of the leader must be observable by the follower to affect 
the decision of the follower, for instance, by being 
reflected in a change of the market price. Yet, in many 
cases this threshold used to be sufficiently low that the 
leader holds a first-mover advantage. 

The rise of the Internet and the cosmos of 
information technology surrounding it have 
undoubtedly changed the way we acquire information 
and the speed at which we do this. This certainty has 
even spread beyond academia into popular culture. This 
culminates, for instance, in a famous essay by Carr [21]
where he describes the Internet as “the conduit for most 
of the information that flows through my eyes and ears 
and into my mind.” As for financial markets, technology 
has improved information dissemination, the quality of 
financial analysis, and the speed at which market 
participants communicate [22]. 

This last statement emphasizes the influence 
information technology exerts on game form 
determination. Information technology increases the 
speed of information dissemination and processing –
similar to the argument made by Aldridge [22]. Since it 
does so for most, perhaps even all traders, it also 
substantially decreases standard deviations and, 
thereby, the informational edge a potential leader may 
hold over its followers. While information technology 
also accelerates market technologies, there is no 
guarantee that this happens to the same degree as with 
player technologies. Hence, this acceleration effect may 
remove the first-mover advantage and turn a game that 
used to be sequential into a simultaneous one. 

Also, consider the influence of information 
technology on the variance of player technologies 
independent from acceleration. We have previously 
discussed the large variety of channels used for the 
acquisition of information before the Internet. 
Combined with the differing cognitive capabilities of 
involved human workers resulted even on a normalized 
level in a much higher variance of response times when 
compared to today. Nowadays, the Internet is the 
ultimate information channel and certain (automated) 
software packages dominate information processing. 
Therefore, we further argue that the dominance of the 
Internet and specific software packages causes a 
homogenization of response times across players, 
diminishing the informational edge and increasing the 
likelihood of simultaneous games. 

Hence, information technology may change a game 
from sequential to simultaneous through the combined 
effect of acceleration and homogenization. The common 
knowledge assumption would require that players are 
aware of this change and always know what type of 
game they play. However, the common knowledge 
assumption is difficult to argue for in the first place, 
since it is more grounded in a desire for mathematical 
tractability of games rather than an approximation of 
reality. Information acquisition, information 
technology, and information systems have long been 
associated with competitive advantage – in the context 
of information-sensitive businesses the informational 
edge. It is easy to argue that this mindset may still 
prevail even when companies are no longer creating 
edges but merely keeping pace. The central problem is 
that from a leader’s perspective the sequential and 
simultaneous games are indistinguishable. Thus, players 
may believe to be leaders in a sequential game simply 
because that is how it has always been like – an 
argument that relates to game theoretic focal points [23].
In this case, players assume the type of game that seems 
natural, i.e. the sequential game. Nevertheless, even if 
players are aware of the ambiguity, they may simply 
misperceive the game. 

In the next subsection we briefly discuss the 
sequential and simultaneous games if correctly 
perceived before we use hypergame theory to 
investigate the influence of misperceptions and how 
they can explain market crashes. 

3.2. Sequential and Simultaneous Games 

If the informational edge exceeds the market specific 
threshold value, the sequential game occurring in the 
aftermath of information dissemination and processing 
is essentially a Stackelberg game with a leader and 
follower(s). Without loss of generality we set �, the 
number of players, equal to 2 for the time being. Thus, 
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there are only two players that own stock in the 
company (or that care about the report) and both know 
what selling or keeping their shares entails for the 
outcome. Figure 1a illustrates this game with payoffs 
expressing a preference structure. 

While the payoffs are not set in stone, we argue that 
they make sense for the example introduced above. If 
both players keep their shares, they basically ignore the 
information from the disastrous financial report (the 
event, Θ) and it is reasonable to expect that the value of 
their shares will decrease in the future as the company 
struggles compared to the price before publication of the 
report. If player 1 sells, it can get out while prices are 
still reasonably high, thus utilizing the informational 
edge. The same applies to player 2 if player 1 did not 
sell. However, if player 2 sells after player 1 did so, the 
market has processed the action of player 1 and prices 
have dropped substantially. 

There is a clear subgame perfect Nash equilibrium 
within the game, which can be easily traced by 
backward induction. For player 2 it is always better to 
play the opposite strategy of player 1 (red markings) 
since � ≻ � in the left information set and � ≻ � in the 
right one. Player 1, anticipating this, sells its shares 
(blue markings). In this particular example player 1 does 
not even need to anticipate, since player 2’s action does 
not change the outcome for player 1, it is � in either 
case.  

The opposite case occurs if the informational edge 
fails to exceed the threshold value. The resulting 
simultaneous game is depicted in Figure 1b. The only 
change in outcome compared to the sequential game that 
can be reasonably argued is for the event of both players 
selling. In the simultaneous game there is an immediate 
oversupply and the associated price drop. Essentially the 
leader from the sequential game cannot monetize its 

informational advantage, such that both players sell at 
the follower’s price. Since shares are equally divided 
among shareholders, the game is also symmetric. 

The changes in strategies are more fundamental. The 
resulting simultaneous game is similar to a Game of 
Chicken [24] in that there are two Nash equilibria in 
pure strategies when players choose opposing strategies 
(blue background). This is illustrated by the best 
responses in Figure 1b (blue and red as the best response 
for players 1 and 2, respectively). Additionally, there is 
an equilibrium in mixed strategies, where the payoffs 
determine the probabilities to sell or to keep. 

The implication of the latter equilibrium is that, 
absent knowledge of the others’ strategic decisions, 
players are likely to mix the strategies they act on. Thus, 
given a large � the probability that all (most players) 
sell, thereby inducing a crash, is significantly reduced. 
However, this is all under the assumption that players 
are aware of the change in the type of the game. 

3.3. The Hypergame for Two Players 

Consider, again, Figure 1a. The leader, in this case 
player 1, decides upon its action given the information 
of the event �. The follower can observe this action and 
select its own action given the information of � and the 
action by player 1. In the simultaneous game all players 
react exclusively to �, as no other actions are 
observable. However, reacting exclusively to � is the 
leader’s mark in the sequential game. Hence, if there is 
uncertainty about the game form, players may 
misperceive the simultaneous game and instead believe 
they are leaders in a sequential game. To model this 
misperception we use hypergame theory [18, 19]. Sasaki 
and Kijima [20] describe a hypergame as a collection of 
subjective games where “each agent believes that it is 

Θ
Player 1

Keep Sell

Keep Sell

(B  B) (B  A) (A  B) (A  C)

Player 2 Player 2
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l
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p
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Nash Equilibrium Best response player 1 Best response player 2

Θ

A ≻ B ≻ C

(a) Sequential Game (b) Simultaneous Game

Figure 1. Sequential and Simultaneous Game 
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common knowledge among all the agents (who she 
thinks participate in the game) that the game they play 
is her own subjective game”. More precisely, they 
define a hypergame 	 = (
, (�� )�∈�) with a finite set of 
agents 
 and each agent’s subjective game �� =(
�, ��, �� ), where:  
� 
� is the finite set of agents perceived by agent �,

assuming 
� ⊆ 
. 
� �� = ×�∈��  ��� with ��� as the finite set of agent �’s

actions perceived by agent �. 
� �� = ���� ��∈��  with ���: �� ⟶ ℝ as agent �’s payoff 

as perceived by agent �. 
Furthermore, they define �∗ = (��∗, ���∗  ) ×�∈�  ���  as 

a hyper Nash equilibrium of 	 iff ∀� ∈ 
, ��∗ ∈ ��(��),
where ��(��) is the set of Nash actions of player � in its 
subjective game. An action ��∗ ∈  ���  is player �’s Nash 
action in �� iff there exists ����� ∈ �����  such that ���∗, ����� � ∈ �(��) with �(��) as the set of Nash 
equilibria of subjective game ��. Thus, a hyper Nash 
equilibrium is defined as an outcome, where every 
player chooses an action that may result in a Nash 
equilibrium in the subjective game of that particular 
player. The set of hyper Nash equilibria of hypergame 	 is called 	�(	). 

Adopting the definition by Sasaki and Kijima [20] 
we derive the following hypergame when both players 
misperceive the simultaneous game as a sequential 
game: 	 = �
, (�!, �" )�

with 
 = # = {1,2}, �! = (
, �!, �!),�" = (
, �", �")
and ���  = {$, %}, ����� = {$$, $%, %$, %%}∀� ∈ 


From the preferences we derive the following 
payoffs: ��� (�� = $) = � ��� (�� = %) = ���� ���� = $$� = � ��� ���� = $% &��� = $) = �

������� = $% | ��� = %� = �������� = %$ | ��� = $� = �������� = %$ | ��� = %� = �������� = %% | ��� = $� = �������� = %% | ��� = %� = �� > � > �
Figure 2 provides an illustration of the subjective 

game ��. 
Evidently, both subjective games are identical to the 

sequential game in Figure 1a with the only difference 
being that each player sees itself as leader in its own 
subjective game. Hence, the best responses and Nash 
equilibria reflect Figure 1a, as well. Note particularly that ��� (�� = %) > ��� (�� = $)  ∀ ����� ∈  ����� . No matter 
what the other player does, player � always prefers 
selling within its subjective game – selling is the 
dominant strategy and, thereby, the only Nash strategy 
of player � in the subjective game. Thus, ���(�� = %) > ���(�� = $) ∀ ����� ∈  Α����⇒    ��(��) = {%}   ∀� ∈ 
.

If both players misperceive the simultaneous game 
as sequential, they consider themselves to be the leader 
in their respective subjective game. From the definition 
above we derive a unique hyper Nash equilibrium as ��(��) = {%}   ∀� ∈ 
    ⇒    	�(	) = {(%, %)}.

The implications of this result are illustrated in Figure 
3a. If both players perceive a sequential game and 
themselves as leader, the true game must be 
simultaneous. Otherwise, one player would go first and 
the other player would realize that it is the follower. 
However, the collective misperception causes the worst 
possible outcome in the simultaneous game, since all 
players are selling and prices crash. Notice that in the 
objective game itself this outcome does not constitute a 
Nash equilibrium, as either player would improve its 
position by deviating. Even when both players deviate, 
the outcome would still be preferable. However, in the 
game as each player perceives it, selling is the dominant 

Nash Equilibrium Best response player 1 Best response player 2 A ≻ B ≻ C

Θ
A C

B B

A B

B B

K K K S

S
K

Player j≠i

Pl
ay

er
 i

A C

B A

A B

B A

S K S S

_ _ _ _

_ _

__

Subjective Game of Player i, G i
Nash Action: S

Figure 2. Subjective Game +-
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strategy. Thus, we conclude the central insight of our 
model: 

If players misperceive the simultaneous game due to 
game form ambiguity, each player believes to be the 
leader in a sequential game. Playing the leader’s Nash 
strategy in the perceived sequential game induces a 
disastrous outcome in the underlying simultaneous 
game. 

Such an outcome can, for instance, be a flash crash. 
Players react to news, but do not consider the 
simultaneous reaction of other players, thereby inducing 
an unwarranted price decline.  

However, so far we have assumed that all players are 
misperceiving the game. Figure 3b shows that 
implications become less clear once this assumption is 
dropped. In this particular case player 1 misperceives 
the game and plays the sequential Nash strategy while 
player 2 correctly perceives the simultaneous nature of 
the game. From Figure 1b we can see that both selling 
and keeping constitute Nash strategies for player 2. 
Hence, as evident in Figure 3b, there are two Hyper Nash 
Equilibria in the game. Intuitively, this seems to soften 
the negative impact of player 1’s misperception. We will 
further analyze the implications of only a subset of #
misperceiving the game in the next subsection. 

3.4. Misperceptions in Games with Many 
Players 

In the model above we analyzed a two player case 
and showed the detrimental effects of game 
misperception caused by game form ambiguity. 
However, in most financial markets two player games 
are arguably rare. If there are many players and only a 
small subset misperceives the game, this may already 
lead to suboptimal outcomes. To calculate this we, 

again, need to consider the sequential game and the 
simultaneous game to estimate the effect of 
misperceptions. For this we redefine our set of players 
as P = {.!, … , ./, … , .0}
where each player is defined by the tuple .� =(3�, 4�)    ∀   1 ≤ � ≤ �. 3� is the action of player � and 
is defined as above as 3� ∈ {%, $}, i.e. either selling or 
keeping. 4� ∈ {1, … , 4678} is the position of player � in 
the game. A strictly sequential game is a game where all 
players have different positions, which implies that a 
player can observe the actions of all players with a 
smaller 4-value. A strictly simultaneous game is a game 
where all players have the same 4-value, i.e. no player 
moves first. 

We further define 9; as a subset of < with 9; = {.6 ∈ < | ?6 = % ∧ 46 ≤ D}.
Thus, 9; contains those players, who sold before or 

at position D. We can now generalize the payoff 
functions from the two-player game above as: E�π�| ?� = $� = H,

E�π� | ?� = % ∧ 4� = D� = IJ − I!|9;| ,
IJ − I! > H > IJ − I!�.

The argument is similar to the one we made earlier 
in the paper. The payoff for keeping represents the long-
term value of the stock, which is expected to be less than 
before the negative new information. If only a few 
people are selling, the price has not yet incorporated this 
negative information. Therefore, they get a payoff above H. However, if many players are selling, prices drop 
eventually below H. Note that the inequality above 
reflects the preference structure � ≻ � ≻ � from the 
two-player game. 
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Nash Equilibrium Hyper Nash Equilibrium A ≻ B ≻ C

(a) Both players misperceive (b) Only player 1 misperceives

Figure 3. Hyper Nash Equilibria with Both Players and Only One Player Misperceiving
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In a strictly sequential game every player knows its 
position and the actions of all players before. Hence, 
every player can calculate E��� &?� = % ∧ 4� = D). If the 
resulting value exceeds H, it is a strictly dominant 
strategy for this player to sell, since payoffs do not 
depend on the actions of the following players. 
Similarly, if the value is less than H, the dominant 
strategy is keeping. We assume that all players weakly 
prefer selling if the value is equal to H. It is important to 
note that it is always dominant for the player in the first 
position to sell, since IJ − I! > H. Hence, the subgame 
perfect Nash Equilibrium is for the first 4∗ players to 
sell, where IJ − I!4∗ ≥ H > IJ − I! (4∗ + 1), and 
for all other players to keep. 

In a strictly simultaneous game 4� = 1   ∀   1 ≤ � ≤�, i.e. all players are at the same position. We can 
calculate the Nash Equilibrium in mixed strategies by 
setting the expected payoff under each strategy equal, 
resulting in H = IJ − I!E(|9|).E(|9|) is the expected number of selling agents, 
which depends on the probability M� = Pr  �?� = %�.
Due to the strict symmetry in payoff functions, we know 
that M� = M   ∀   1 ≤ � ≤ �. Thus, we can calculate the 
probability of agents selling from 

H = IJ − I! N O� Q� − 1� − 1 R M��!(1 − M)0��S0
�T!

.

From this we get M∗ = UV�(WXUY)UY(0�!)  as the probability 
to sell in the mixed strategy Nash equilibrium. 
Naturally, the expected payoff for any player is H, the 
aggregate payoff is �H. 

However, consider the case when player .!
misperceives the game, such that it always plays ?! = %.
Its expected payoff is still H, since all other players mix 
their strategies according to the Nash equilibrium. Yet, 
the expected payoff to all other players changes, since .! does not mix. More precisely the expected payoff is 

E����!�= (1 − M∗)H + M∗ ZIJ − I! [2
+ N O� Q� − 2� R (M∗)�(10�"

�T!
− M∗)0���"S\]

While it can be shown that this is always less than H,
we omit doing so for brevity. Since the payoff does not 
change for the single misperceiving player, this implies 
that the aggregate payoffs of all players decrease. 
Hence, we can conclude that in a symmetric game where 

every agent plays the mixed Nash strategy, a single 
agent misperceiving the game does not decrease its own 
payoff, but the payoff of every other agent.  

3.5. Numerical Examples 

First, consider again the two-player case discussed 
above. We can satisfy the preference structure in Figure 
3 by setting � = 2, � = 1, � = 0. This also satisfies the 
condition from the previous subsection with H =1,IJ = 4, and I! = 2. The resulting simultaneous 
game is illustrated in Figure 4. 

Plugging the values into the equation above yields M∗ = 0.5 as the probability to sell in the mixed strategy 
Nash equilibrium. Hence, the expected payoff in the 
simultaneous game would be 1 for either player. If 
player 1 misperceives the game, its payoff is still 1, 
while player 2’s payoff decreases to 0.5, such that the 
aggregate payoff is 1.5. If both players misperceive the 
aggregate payoff is zero. This supports the suggestion 
from Figure 3, that aggregate payoff decreases in the 
number of misperceiving players. 

To further investigate this we construct a three-
player game with H = 3,IJ = 6, and I! = 2, which is 
illustrated in Figure 5. In this case players mix with a 
probability to sell of M∗ = 0.25. If there is no 
misperception, the expected payoff is naturally 3 for 
every player. Assuming that player 1 misperceives and 
plays %, its payoff is still 3. The payoffs of players 2 and 
3 are E����!� = 2.625. Thus, the aggregate payoff is 
8.5, but the loss is borne by the players who are not 
misperceiving.  

However, considering the case of two players 
misperceiving shows that playing the subjective 
sequential game has detrimental effects on the 
misperceiving players, as well. If players 1 and 2 are 
misperceiving, payoffs can be seen in the bottom row of 
the right panel of Figure 5. Since player 3 is still mixing 
with M∗ = 0.25, its payoff is 2.25, while the payoff of 
each misperceiving player is 1.5. The decrease in 
expected payoff is much more pronounced for players 
who misperceive than for the one who is not. Aggregate 
payoff is, thus, equal to 5.25. Obviously, if all players 
are misperceiving, aggregate and each player’s 
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individual payoff are equal to zero. This leads us to the 
following conjectures: 
� There is a tipping point in the number of 

misperceiving players, after which the players who 
misperceive suffer more than those who are not. 

� The number of misperceiving players has a 
nonlinear and increasing influence on the overall 
welfare loss. 

We will consider these conjectures in more detail in 
future research. However, the examples presented in this 
section show that even if only a small subset of agents 
misperceive the game that is objectively played, this has 
a detrimental impact on the aggregate performance. 

4. Implications and Discussion 

The model introduced in the previous sections 
provides a cautionary tale against ignoring game 
theoretic implications of the continuing adoption of 
information technology. It argues that competitive 
advantages in information sensitive mechanisms are 
more difficult to create than ever and illustrates how this 
may lead to ambiguities concerning the underlying 
game form. It also illustrates the possibly detrimental 
effects of failing to adapt strategic behavior to these 
ambiguities. In this section we will discuss several paths 
for future research concerning implications and 
extensions of our model.  

The emergence of algorithmic and high-frequency 
trading has fundamentally changed stock trading. While 
such automated traders have been associated with 
beneficial effect like higher increased market efficiency 
and decreased intraday volatility [25, 26] during 
generally rising stock prices, their impact during 
financial turmoil is less clear. Particularly the flash crash 
on May 6, 2010, has caused several investigations into 
the role of high-frequency traders [1, 2, 6]. Aside from 
crashes it is worthy to investigate the general effect of 
game misperception on volatility. Our model suggests 
that even if only a small fraction of agents misperceive 
the game, there is an overreaction to unexpected news. 

Nevertheless, our model provides an intuitive 
explanation for flash crashes, i.e. sudden drops in 
market prices which quickly rebound once the game 
form ambiguity is resolved. Further empirical research 
is necessary to investigate the explanatory effect of our 
model regarding particular flash crash on May 6, as well 
as the general effect of game misperceptions on market 
prices. A central criterion is to identify markets with 
price functions where the price decreases in the number 
of simultaneously made offers. For this it must be 
possible to make quasi-simultaneous offers in the first 
place. 

We also need to emphasize the importance of the 
“event”, i.e. the news, in our model. The impact of 
unanticipated new information could most recently be 
observed during another, albeit smaller, flash crash on 
April 23, 2013. After the Twitter account of the 
Associated Press had been hacked, a tweet reporting 
explosions at the White House and an injury of Barack 
Obama caused the Dow Jones industrial average to drop 
by 143 points [27]. This event illustrates the 
vulnerability of financial markets, particularly when 
algorithmic traders play simple trigger strategies, which 
relate to the sequential game in our model. Once new 
information is detected, shares are sold without regard 
to simultaneous actions of other trading agents and 
aggregated effects on the market. 

Our model also provides implications on how 
trading algorithms can be improved to decrease the 
probability of flash crashes in possibly simultaneous 
markets. The central idea is to detect whether the 
realization of an event substantially differs from 
expectations concerning the event. One such warning 
system is the VPIN metric proposed by Easley et al. [2],
which measures toxicity directly from the order flow. 
The VPIN metric is the ratio of average unbalanced 
volume to total trading volume. While Easley et al. [2] 
use it to detect flash crashes based on liquidity 
evaporation, the VPIN metric can also be used to 
measure expectations within a particular market. Once a 
news event occurs that contradicts these expectations, 
traders should act more cautious. 
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A similar effect can be achieved by using sentiment 
analysis. Trading algorithms may already use sentiment 
analysis to detect news that trigger a particular strategy. 
This can be expanded to employ sentiment analysis to 
detect the general expectations concerning the market. 
Once an event contradicting these expectations occurs, 
the algorithm may still trigger a particular strategy. 
However, this strategy should reflect the probability of 
game form ambiguities. 

In our future research we will investigate the 
empirical support for our model in appropriate markets. 
We will also research the influence of warning 
mechanisms as discussed above. Furthermore, we will 
explore the use of hypergames as a general methodology 
to assess and evaluate mechanisms. This does not only 
relate to misperceptions, but also misconstructions of 
mechanisms and can apply to financial contexts, as well 
as other areas of research, such as demand-side 
management of energy consumption or social media 
applications. 

5. Conclusion 

Flash crashes of prices and sudden peaks in demand 
or supply have been observed in various IT-supported 
mechanisms, such as financial. In this paper we have 
presented a model that can explain these events as a 
result of the actions of rational agents when agents are 
unaware of an ambiguity with respect to the underlying 
game form. 

We have first analyzed how the game form is 
determined by introducing the concept of the 
informational edge as a competitive advantage that 
enables information leaders to act faster than other 
agents. We subsequently analyze the differences in 
payoffs between the resulting sequential and 
simultaneous games. In this context we argue why 
information technology has eroded the competitive 
advantage and turned some games from sequential to 
simultaneous.  This results in an ambiguity concerning 
the game form, since agents cannot distinguish between 
their participation in a simultaneous game and being the 
leader in a sequential game. 

We model the impact of this ambiguity using 
hypergame theory, first as an intuitive two-player 
scenario and later for an arbitrary large number of 
players. We show that agents playing their rationally 
dominant Nash strategy – but misperceiving the true 
objective game – have a detrimental impact on market 
outcomes. In fact, we demonstrate that when a large 
number of players misperceive the game, an 
unwarranted sudden drop in market prices constitutes an 
equilibrium outcome. As the drop exaggerates the 
negative implications of the news, prices adjust upwards 

once the ambiguity is resolved, creating a characteristic 
flash crash effect. Hence, we explain flash crashes as the 
result of actions by rational agents. 

Having described potential sources for flash crashes, 
we address corresponding warning mechanisms that 
may detect their occurrence. Once detected, a strategic 
adaption alleviates ambiguities and, thus, contributes to 
defusing the threat of a flash crash. On the one hand we 
illustrate how a measurement for order toxicity 
proposed by Easley et al. [2] to detect liquidity-based 
flash crashes may be adapted to estimate market 
expectations endogenously, i.e. from the order flow. On 
the other hand we suggest sentiment analysis to detect 
those expectations exogenously by analyzing the news 
flow. In either case, news event that substantially 
deviate from these expectations should be treated 
cautiously in simultaneous markets. 

In our future research we will explore applications 
of the model beyond crashes in financial markets. For 
instance, we observe similar effects when considering 
demand side management in energy markets. Gottwalt 
et al. [28] describe sudden peaks in demand when agents 
react simultaneously to price signals whose actual 
purpose it is to balance demand.  

Beside this, the work presented in this paper also 
opens a number of other avenues for future research. For 
instance, laboratory experiments can be used to 
investigate the predictive effect of order flow toxicity 
and news sentiment, as well as a combination of these 
methods. These experiments, as well as analysis of real 
world data, can furthermore be used to establish 
empirical support for the model introduced in this paper.  
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