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Abstract—Geospatial analysis of location-enabled social me-
dia networks can be utilized to generate vital insights in areas
where situational awareness is important, such as disaster pre-
vention and crisis response. However, several recent approaches
struggle under the challenge that only a small fraction of the
data is actually provided with precise geo-tags or even GPS
information of their origin. In this work we introduce two
strategies that are suitable to assign probable locations of origin
to social media messages of unknown locations. They are based
on aggregated knowledge about the author and/or the textual
content of the message. Using our prototype implementation
and a collected dataset comprising more than one year of
geolocated Twitter data, we evaluate the effectiveness of our
strategies. Our results show that we can locate up to 74% of
all messages that were written in specific cities and about 20%
of messages written in specific districts.

Keywords-Data mining; Text mining; Predictive models;
Decision support systems

I. INTRODUCTION

In its seventh year of existence Twitter has gathered 200

million users composing more than 400 million Tweets per

day1. Sometimes the Tweets are provided together with

information about their location of origin either as geo-tag

(e.g. San Francisco) or as precise geolocation determined by

Global Positioning System (GPS)-enabled mobile devices.

Since the location-enabled messages can often be inter-

preted as situation reports of ongoing local events, the data

offers important new possibilities for situation awareness

applications such as location related market analysis or city

planning, but also in areas where human lifes are at stake

such as disaster prevention and emergency management.

Because of the global distribution of Twitter users, recent

research has shown that such data can have great impact

on the information gathering and decision making process

during major incidents like wildfires, floodings, hurricanes

or epidemics [1], [2], [3], [4], [5], [6], [7]. Based on these

observations, researchers have designed several geovisual-

ization systems. They help experts to harvest and filter the

data, to explore the spatiotemporal relationships between

ongoing events and eyewitness reports, and to generate

insights based on aggregated content analysis [8], [9], [10].

Although more than 7 million location-enabled messages are

1http://articles.washingtonpost.com/2013-03-
21/business/37889387 1 tweetsjackdorseytwitter
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Figure 1. Global number of Tweets with location information between
August 2011 and April 2013

produced each day and although their amount is steadily

growing (see Figure 1), they still only comprise about 1.7%

of the complete data volumes. This poses a severe challenge

to researchers and analysts as the location-enabled data in

particular offers high chances to identify event-related and

first-hand information.

In this work we present and compare two methods suitable

to identify probable locations of origin for messages where

such metadata is not provided by the user. The first method

is based on extracting spatial language patterns from a very

large dataset of collected geolocated messages. Large scale

data aggregation is used to generate a priori probabilities that

a given combination of terms might have been composed

at a given coordinate to find the highest density peak.

Based on a very large dictionary of terms frequently used

in Twitter, we create and persistently store a spatial density

map for each term, such that it can later be used for fast

location estimation. The details of this strategy as well as

the design of our reference implementation are explained in

Section III. Our second strategy is based on the analysis of

historic data about the users movement behavior and will be

discussed in Section IV. The method uses a simple cluster

analysis approach in order to identify often frequented

places, facilities or home locations and determine the most

probable whereabouts of a user writing a message with

disabled location-features. In contrast to existing approaches

our location estimation is based on large scale data and our

algorithms adhere to a scalable design in order to handle
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such data. Furthermore, our estimation strategies support

uncertainty metrics and are thus specifically suited to be

used in Visual Analytics [11] environments.

We evaluated the precision and effectiveness of our meth-

ods based on a held-out set of geolocated messages and

present the results in Section V, where we also compare

the strengths and weaknesses of the methods and present

an application scenario. Section VI will briefly discuss the

implications of our approach and and conclude with a

summary of the results. Final remarks and an outlook on

future work are given in Section VII.

II. RELATED WORK

Finding the most probable location of origin of a docu-

ment has been a research issue long before social media

became popular. In this section we discuss some of the

most important approaches and studies that exist in the field.

Most solutions have tried to predict the location based on

geographic references, cultural specifics or differences in

language. Wing & Baldridge [12] overlay the world with a

regular grid and assign term usage probabilities to each cell

based on existing document sets with known geolocations.

They use a range of supervised methods like Kullback-

Leibler and Naive Bayes to predict the most probable cell for

a document with unknown location. Roller et al. [13] follow

a similar approach but use a grid with adaptive resolution

based on a k-d-splitting. Documents with known location of

origin are assigned to grid coordinates and locations are pre-

dicted by finding the document set with smallest similarity

distance. However, as documents are discretely distributed

to the grid cells, the quality of the measure is decreasing

when resolution is increased. In contrast, our Kernel Density

based method approximates a continuous distribution and

the quality can thus be increased with increasing resolution.

A more traditional approach was pursued by Eisenstein

et al. [14] that use a generative language model to find

regional specifics in topics and language. They train their

model based on 380k Twitter messages and can predict the

correct US state of origin of an unknown message with 24%

accuracy.

Cheng et al. [15] proposed a framework to predict the

location of Twitter users. They apply maximum likelihood

methods for term usage distributions on a per-city level

based on 5 million recorded tweets. They achieve an ac-

curacy of 51% in predicting a users location within a 100

mile radius. In contrast to our method they use location

information from the users profile instead of the individual

tweets. Also, they concentrate on words that are local
in terms of low spatial variation, while we normalize by

term usage volumes. We believe that terms with strong

spatial focus will automatically dominate the words with

weak spatial correlation when the estimation is based on a

sufficiently large data set. Kinsella et al. [16] pursue a similar

approach by establishing term-distributions on a per-district,

-city, -state and -country level, but in contrast to Cheng they

also use geo-tags directly from the messages. They primarily

propose Kullback-Leibler Divergence and Query Likelihood

methods for the prediction. As they are sampling the data

from the Spritzer and Firehose stream of the Twitter API,

just a very small portion (less than 1%) of the tweets they

evaluated contains precise latitude/longitude coordinates. By

contrast, our data is taken from the filter stream with

geospatial query parameters, such that we receive more

than 7 million messages with location information each day.

Therefore, and in contrast to other works, we were able to

build a continuous large scale probability distribution using

Kernel Density Estimation (KDE) based on a high resolution

adaptive grid. Furthermore, we present algorithms that are

specifically designed to process such data volumes either

in one batch or in real-time directly based on social media

streams.

Instead of using the textual content of the message several

approaches also try to infer the most probable user location

based on user profile attributes, links within the social

network, or the available location information within the

user history. Pontes et al. [17] compared the suitability

of these publicly available information types to infer the

home-location of a user within multiple social networks,

i.e., by using Google+ profile attributes and friends’ loca-

tions, Foursquare check-ins and friends’ location, as well

as previously published geolocated Twitter messages. While

the Twitter dataset provided the highest accuracy, it also

had the least amount of eligible users which shared the

needed data. Foursquare, being centered around location

based interaction, had the most eligible users but reduced

accuracies.

Hecht et al. [18] examined the quality of the users’

self provided location information in their profile and have

shown that while 2/3 of the places were valid, almost half of

the remaining users supplied invalid information instead of

none at all. As an additional problem, available geocoding

APIs supplied geolocations for over 80% of the actually

invalid places, such as In my dreams.

III. TERM DENSITY MAPS

The content of a message might already tell us a lot

about its possible origins. If a tweet is written in French

language there is a certain probability that it was written in

France. If it additionally contains the word Toulouse we can

assume an added probability that it was written in the city

of Toulouse. But we should not be too confident about it.

However, if the message contains the words just visited and

Pont Neuf the probability that it originated from Toulouse

can be considered quite high. In our approach we want

to drive this idea further to determine, whether one can

assign a numeric probability that a given term was used at a

given geographic location. Furthermore, we combine the a

priori probabilities to find out whether one can find probable

1465



Figure 2. Result of adaptive grid creation based on 10 days of Twitter usage. Areas more densely populated by active Twitter users receive higher
resolutions.

locations of origin for a given combination of words. Based

on one year of collected geolocated Twitter data we present a

solution that calculates such probabilities in a high resolution

on a global scale.

The prerequisite for this approach is the availability

of an average usage characteristic for each term at each

geolocation. For this, our solution builds upon the smooth

measure for location-dependent term irregularities defined in

our previous work [19]. The measure was developed to allow

the fast retrieval of continuous and localized inverse doc-

ument frequencies for computing location-dependent term
frequency inverse document frequency (tf-idf) values of mes-

sages. We adopt the smooth measure approach to compute

term density estimations, combine the densities of individual

terms of a message, and finally identify the most probable

locations based on this combined density.

A. Term Density Estimation

If computing power would not be an issue, one could

apply KDE [20], [21] in order to assign term usage probabil-

ities to arbitrary geographic locations. Let Mt = {m1, . . . ,mn}
be a set of known messages that contain term t. The term

usage probability at coordinate x ∈ R
n can be estimated by

the density function

tdt(x) =
1

nh

n

∑
i=1

K
(

d(x,mi)

h

)

Here d(x,m) is a distance function, e.g. Euclidean distance2,

and K is a kernel function, which is used in combination

2In our case, the haversine formula is appropriate because of the spherical
coordinates.

with a fixed bandwidth h to compose a smooth function. A

common choice for K is the standard Gaussian

K(u) =
1√
2π

exp

(
−u2

2

)

which will lead to rapidly decreasing weights with greater

distance of the sample. Thus, if we are looking at an area

where many messages contained t, tdt will assign a high

probability that another message with t could have been

written in that neighborhood. If there are just few messages

in the vicinity, the estimated probability will be rather low.

If we want to find the most probable location of origin for

some message m containing terms t1, . . . , tk, a straightforward

solution would be to sample term densities on a high

resolution grid in order to find the location x̂ that maximizes

the independent combined probability under a naı̈ve Bayes

assumption:

x̂ = max
x

k

∏
i=1

tdti(x)

However, in order to yield accurate results the density

estimation should be based on a very large dataset, such

that actual term usage distributions of the microblogging

service are properly reflected. For our evaluation (Section V)

we applied the density estimation to a nearly complete

set of geolocated Twitter messages written between August

2011 and August 2012, comprising more than 700 million

messages. If we sample the term density on a global uniform

grid that has at least a 0.5 kilometer precision, a resolution

of 80 000× 40 000 is needed and we would thus have to

compute and accumulate more than 2.24× 1018 weighted

distances.
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Figure 3. Top: Gaussian splats are placed and accumulated to approximate
KDE. Bottom: Based on the adaptive grid, the splats are discretized and
stored as density maps for each term.

This would not be feasible in a reasonable amount of time.

Therefore, we apply three computation steps to dramatically

speed up the process and allow fast location estimation for

individual messages: constructing an adaptive grid, splatting,

and peak detection.

B. Adaptive Grid

Usually we can expect messages to originate from densely

populated areas. Assuming that the Twitter population is

adequately represented in our collected dataset, we can apply

a Quadtree algorithm to create an adaptive grid with higher

resolutions where many Twitter users live and lower resolu-

tions where the occurrence of messages is rather improbable.

Starting with a single cell that comprises the complete world

map, we split the cell into four subcells and evaluate for each

cell whether the total amount of tweets written in that cell

exceeds some fixed threshold. If the threshold is exceeded

and the desired maximum resolution is not yet reached, we

recursively apply the process for each cell again. Otherwise

the cell becomes part of the final grid. In our case a good

threshold was empirically determined to be 50 messages. A

smaller threshold would lead to many grid cells and thus

only a small improvement over a fixed grid, while a larger

threshold would generate more cell artifacts during splatting

(see rectangles in Figure 4). The result of this technique can

be observed in Figure 2 and has roughly 236k cells, which

reduces the effort by 4 orders of magnitude.

C. Splatting

Although the adaptive grid dramatically reduces the num-

ber of required sampling points, we would still need to

iterate several times through the complete message set in

order to compute tdt(x) for just one term t. By accepting a

slight error, the KDE can be approximated using a splatting

scheme as described in [22]. Since our Gaussian kernel K(u)
almost descends to zero for |u > 3∗h|, we can invert the

sampling process for a given term t. Instead of iterating

through the complete message set for any given sample point

x, we iterate through the message set just once and apply a

Gaussian splat to the grid for every message that contains t.
This is illustrated in Figure 3.

The splats for all messages containing t are then accumu-

lated to form a density landscape, that can be permanently

stored for later usage during the location estimation. There-

fore, we can create and store a fixed density map T Dt(id),
mapping leaf-node identifiers (id) of the Quadtree structure

to density values, for every term t in a large dictionary. For

our approach, we created density maps for all terms that

were used in Twitter at least 1000 times in the course of one

year, totaling to about 130k terms. We store each density

map in a single file that maps Quadtree leaf-node ids to

density values. Two visualized examples of such density

maps for the terms love and amore can be observed in

Figure 4.

D. Peak Detection

Based on the precomputed term density maps, we detect

areas where a message most likely originated from. For

a given message m, the combined density map is built

by accumulating the available density maps of all terms

contained in m such that areas with high probability for

specific term combinations receive an increased density

value (see Figure 5). Based on the application scenario, and

if it requires a higher recall or a higher precision, it might

be valid to find the j most distinguished peaks p1... j ∈ X in

the combined density map. Therefore, the map is scanned

for the highest density values. In order to identify separated

peaks and avoid the large values in close vicinity of a peak,

which might refer to the same local data burst, we introduce

an inhibition zone. In this zone around a peak, other values

are ignored. This is realized through sorting the map cells

by their density value and descending the list until j peaks

have been found outside of inhibition zones of larger peaks.

As each of the combined density map constitutes a

confidence landscape, the values of the resulting combined

density map can be used to assign a confidence score for

each peak in the landscape. This can be utilized to sort the

peaks and compare the confidence of the location estimations

against each other.
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Figure 4. Term density maps for the terms love (yellow) and amore (magenta) created from one year of Twitter usage. The values are normalized per
term to illustrate the difference.

Figure 5. Accumulation of term density maps to allow peak detection.
As the same grid structure is used for every term, values can be calculated
separately for each cell.

IV. USER-HISTORY BASED ESTIMATION

Sometimes, the textual content of a message will tell us

little to nothing about its possible origins. In such situations

one can still use provided metadata in order to estimate a

probable location. In most cases a user identifier or user

screenname will be provided and one can thus record a

message history for known Twitter users. Recent research

has shown that most Twitter users will rarely write messages

outside their hometown or most frequently visited locations.

Furthermore there are a lot of users that have location

features disabled most of the time but still have written

at least a few messages with the feature enabled. In an

analysis situation the analyst would often be interested in a

particular map area and get as much information related to

some event that happened in that area. Therefore, in addition

to messages that already have a geo-tag or GPS position,

he would also be interested in messages that were written

recently by users living in that area.

A. Location Clusters

In our second approach to location estimation we create a

large database of known users from the geolocated dataset.

For each user we try to find his home location as well

as frequently visited other locations based on his history

of recorded geocoordinates. Usually a user would not con-

stantly move around and write tweets all the time but rather

stay at some place for a period of time, write some tweets,

and then move to the next place. This will result in clearly

distinguishable clusters of messages with small pairwise

distances due to minimal movements or GPS inaccuracy.

Thus, to find such locations we can simply collect the set

of all coordinates for a user and then apply a clustering

scheme. If the user writes a new message with unknown

location, we can assign it to any of his known locations

by placing it at the centroid of the clusters. Furthermore,

we can assign a confidence score to each of the clusters by

relating their message count to the amount of all geolocated

messages written by the user. Therefore our algorithm is

specifically suited for systems that support the visualization

of uncertainty and allow to focus of high recall.

B. Iterative Implementation

Our experiments showed that existing clustering solutions,

as they can be found in data analysis systems like Weka3

and Apache Mahout4 are not suitable for the problem. As

we would have to apply cluster analysis to several million

individual sample sets, sometimes comprising thousands of

items each, most hardware setups would need a very long

3http://www.cs.waikato.ac.nz/ml/weka/
4http://mahout.apache.org
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time – i.e. several days or weeks – to process the data.

However, in contrast to other cluster analysis challenges,

our datasets usually have a very simple overall structure as

a result of the aforementioned typical usage behavior of

Twitter users. Most often there will be hardly any noise

between clusters and the clusters will be easy to identify

and distinguish from one another. We can therefore apply

the algorithm shown in Listing 1 iteratively to each message

m in a given message set to identify the clusters.

p r o c e d u r e add message (m) i s
b e g i n

user← m.getUserID()
p← m.getPosition()
ĉ← argminc∈clu[user] ‖p− c.getCentroid()‖
i f ĉ = null OR ‖p− ĉ‖> k1 t h e n

n̂← newCluster()
n̂.setCentroid(p)
n̂.setXSum(p.x)
n̂.setY Sum(p.y)
n̂.setSize(1)
clu[user]← clu[user]∪{n̂}

e l s e

ĉ.setCentroid(( c.getXSum()+p.x
c.getSize()+1

, c.getY Sum()+p.y
c.getSize()+1

))

ĉ.setXSum(c.getXSum()+ p.x)
ĉ.setY Sum(c.getY Sum()+ p.y)
ĉ.setSize(c.getSize()+1)

end i f
count ++
i f count % k2 = 0 t h e n

f o r each c ∈ clu[user] do
i f c.getSize()< 2 t h e n

clu[user]← clu[user]−{c}
end i f

end f o r
end i f

end

Listing 1. Cluster Detection

In this algorithm clu[user] represents an initially empty

hashmap, mapping each user identifier to a set of location

clusters identified for the user. Furthermore we use two fixed

thresholds: k1 is a distance limit that defines whether m
can be assigned to its nearest cluster or whether it should

establish a new cluster. In our case we set k1 to about the

size of a city district, thus everything within that radius

is assigned to the same cluster. The second threshold k2

defines the frequency of a clean-up step which eliminates

clusters with very low member counts. This step avoids

filling the global space with noise clusters that would lead to

reduced performance and increased memory consumption.

If memory constraints are not an issue one can choose

a very high k2, i.e., low clean-up frequency. In our case

we used k2 = 800. A sample result of detected location

clusters for a user living in England can be seen in Figure 6.

The detected clusters and their respective message counts

are shown as yellow squares and green labels. The white

dots resemble individual recorded locations for the user.

The cluster analysis indicates that the main location for the

observed user seems to be in the northern part of Southend-

on-Sea, Essex, where about 87 messages were aggregated

within a cluster. Several smaller clusters indicate visits to

London and other towns in the area.

Figure 6. Detected location clusters for a user supposedly living near
London. One can observe that the largest detected cluster (containing 87
messages) is located in Southend-on-Sea, Essex.

V. EVALUATION

To train and evaluate our models we collected data

from the Twitter Streaming API using the statuses/filter

stream5. Although rate limitations apply for the number

of Tweets that can be collected by the stream, our query

strategy allows us to capture almost all worldwide messages

having either textual geo-tags or precise geocoordinates6.

We collected approximately 1.3 billion geolocated tweets

between 8 August 2011 and 12 August 2012. From this

data, we took the subset of 0.7 billion messages that had

actual latitude/longitude coordinates to train both of our

models. On October 2012, about two months after the

time frame of the training data, we took another sample

of 10 000 geolocated messages randomly distributed all

over the world and about 190 000 messages from selected

geographic areas collected within a 24 hour timeframe. In an

actual application case the term density and user history data

would presumably be generated only once and then used for

a very long time. We therefore chose this large temporal gap

between training and sample data in order to prevent positive

bias from ignoring the time-dependent changes in the data

(e.g. changing user base, prevalent topic variation, etc.). The

geographic distribution of the training set and the randomly

chosen test set can be seen in Table I. The dataset was

cleaned from automatically generated tweets from services

like Foursquare. These messages always contain precise

coordinates and as such would not have to be processed

5https://dev.twitter.com/docs/api/1.1/post/statuses/filter
6The Twitter API automatically sends notifications when rate limitation

applies. Thus we can estimate our miss-rate to be less than 5%
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Train Test
total messages 735838811 10000
United States 36.7% 35.0%
Indonesia 7.9% 5.9%
United Kingdom 7.4% 7.2%
Brazil 6.9% 7.2%
Malaysia 3.3% 3.4%
Mexico 3.1% 2.8%
Japan 3.0% 2.4%
Spain 2.9% 4.3%
Turkey 2.7% 3.9%
Netherlands 2.3% 1.8%
Russia 1.7% 1.4%
France 1.7% 2.4%
Philippines 1.6% 1.5%
Chile 1.5% 1.1%
Canada 1.4% 1.3%

Table I
GEOSPATIAL DISTRIBUTION OF THE TRAINING AND TEST SET AS A LIST

OF THE FIFTEEN MOST FREQUENT COUNTRIES.

in actual application scenarios. Additionally, they usually

contain toponyms that would allow for an easy localization

which would distort our results presented in the following

sections.

A. Accuracy: Term Density

For our first evaluation we identified only the highest

overall density for the merged term density maps. Often

there is a single term in the message that dominates all

others, as it has just one extremely large peak. This is most

often the case for location names, like Bombay or Rushmore,

and such messages have, of course, the highest chance to be

correctly assigned to their actual location. For each sample

we calculated the distance between the actual location and

the estimated location. The solid red curve in Figure 7 shows

the result of this first test with the 10k random sample

set and error distances within 100 kilometers. The diagram

shows the error distance from the actual location versus the

fraction of estimations that had this or a smaller error. The

method achieves an accuracy of about 6% within the first 5

kilometers from the target, which is approximately the size

of two larger Zip-Code areas. The average radius of large

cities like London and Berlin is about 20 kilometers, where

the accuracy increases to 13.4% In an analysis scenario

where recall is more important than precision one could

consider multiple possible locations for each message by

increasing the number of peaks that should be considered

for an observed area. Therefore, we introduced an inhibition

zone during peak detection in order to generate a selection

of possible locations for the target that are at least 100

kilometers apart. The dotted and dashed curves in Figure 7

show accuracy rates when the true location is among the,

e.g., 5, 9 or 13 most probable locations for the same target.

This way the accuracy is increased to about 6% for the 2

kilometers range and to almost 30% for the 20 kilometers

range.
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Figure 7. Term Densities: Error distance versus accuracy based on the
10k sample messages. The curves show the performance for using the best
of 1, 5, 9 and 13 guesses (=peaks) for a given message.

B. Accuracy: User Histories

Based on the same training and sample data set as in the

term density evaluation we also evaluated location guessing

based on the users’ location clusters. From the training data

set we extracted profiles for 9 134 562 individual users. On

average 80.94 messages were written and 2.16 clusters were

detected per user, which is a surprisingly low number and

manual investigation confirmed that there is indeed a large

amount of users writing from less than 3 locations (e.g. home

and office).

The results for accuracy within the first 100 kilometers

from the target are depicted as the lower solid red curve in

Figure 8. Here we can see an accuracy of already 30.1% for

the 2 kilometer range and 48.5% for the 20 kilometer range.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Distance in km
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cc
ur
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Tweets from all users

Tweets from known users

Figure 8. User History: Error distance versus accuracy based on the
10k sample messages. The lower curves show the performance for best
of 1, 2, 3 and 4 guesses (=clusters) if all sample messages are counted.
The upper curves show the performance if only messages from previously
known users are counted.
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The dashed curves directly above the lower solid red curve

illustrate the accuracy for counting the best of 2, 3 and 4

estimations. With the average of 2.16 clusters per user, this,

of course, yields no significantly better results.

It came as an interesting observation that from the 10k

sample set, only about 60% were known users from the one

year training set—i.e. about 4000 messages came from users

that used Twitter and/or the location features for the first time

since at least 14 months. Thus, if we count only the location

guesses for known users, the accuracy can even be raised to

about 80% for the 20 kilometer range, which is depicted by

the curves in the upper part of Figure 8.

C. Comparison

From an examination of successfully placed evaluation

samples, we learned that only in few cases specific combi-

nations of terms helped to indicate the right location in the

term density approach. For example, the term occurrences

for mirage, poker and room are distributed all over the

world, but the peak of the combined maps is in Las Vegas,

which was the correct guess for the message Im playing at
mirage poker room w drunken tourists ftw!. More common

are tweets that already contain one specific term that is

frequently used at just one location like toponyms or names

of returning events. However, in such cases the true location

could also be found using geocoding services like Geonames

or Yahoo Placemaker.

Our evaluation indicated that user history based estima-

tion by far outperforms the language based approach (see

Table II), which does not come as a big surprise. But

TD All User Known User
5 km 5.9 37.9 60.4
10 km 9.4 44.8 70.5
50 km 16.8 51.8 81.1
100 km 19.3 53.6 84.1
1000 km 44.8 59.9 94.3
8000 km 82.0 62.6 98.9

Table II
COMPARISON OF RESULTS (BEST OF 1). COLUMNS SHOW THE

ACCURACY VS. ERROR DISTANCE VALUES FOR THE TERM DENSITY

(TD) AND USER HISTORY BASED APPROACHES.

the method has several drawbacks including the expectable

decrease in accuracy when confronted with users that never

use the location feature or when users report important

events apart from their usual locations. These are the cases

where the term density approach can lead to better results,

as it is independent from the behavior of individual users.

Based on these results, a combination of both approaches

can easily be introduced. The combination applies the user

cluster based estimation if the user is already known by the

training data and the term density approach otherwise.

D. Application Scenario

In an actual application scenario, the analyst is interested

in a certain geographic location and retrieves a set of

messages about the location using the location estimation

approaches. Here, it is also important to know how often

messages are falsely located to an area of interest, thus

reducing the precision of the approach and leading to larger

datasets containing more irrelevant data. However, for crisis

management and similar applications, where an analyst has

to retrieve as much eyewitness information as possible, the

analyst requires a high recall approach. We evaluate the

suitability of our approach for this scenario by calculating

precision and recall scores for a range of geographic areas.

After collecting all relevant messages of one day for these

locations, based on the true location of the message, we

tested what percentage of messages the analyst would have

retrieve by our combined approach (recall). Based on a

sample from all messages, we evaluated how many messages

would be falsely retrieved for the given area to estimate the

percentage of relevant messages in the whole retrieval set

(precision).

Test Recall Prec.
Total 4 035 857
Florida 80432 54% 71%
London 46696 61% 25%
Paris 27519 73% 38%
Moscow 17683 74% 35%
Manhattan 12348 37% 27%
Berlin 2668 66% 29%
Mumbai 2374 55% 85%
Arr. l’Hôtel de Ville 355 17% 12%
Sunset Dist. 234 23% 20%

Table III
TABLE SHOWS NUMBER OF ACTUAL TWEETS IN THE AREA, RECALL

AND PRECISION.

Our results (Table III) indicate good recall rates above

50% for most areas on the city level, reaching more than

70% for cities where English is not a dominating language.

However, the recall on the district level, e.g. Arrondissement

de l’Hôtel de Ville (Paris) and Sunset District (San Fran-

cisco) is relatively low. Overall the precision is often below

50% and thus depending on the area the analyst would sill

have to cope with many falsely located messages alongside

the correct ones. Nevertheless, the overall amount of mes-

sages he has to investigate to receive probable eyewitness

accounts is still dramatically reduced to an amount that could

be handled in a reasonable amount of time.

VI. DISCUSSION AND CONCLUSION

The main purpose of this paper is to give recommen-

dations to researchers and practitioners challenged by the

same problem that we had when analyzing social media in

order to gain situational awareness. In past events people

provided essential first-hand information that already helped
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to coordinate relief efforts during major disasters like the

2010 Haiti earthquake or hurricane Sandy. In such events

provided location information can play a critical role in

separating trustworthy eyewitness accounts from general

social media chatter, rumors and uncertain second hand

information. Although location data in Twitter can be faked,

such acts require a certain malicious effort and by checking

tweets from other users in the area, one can often identify

false accounts. Unfortunately only a small fraction of mes-

sages are provided with the needed metadata and the vast

majority remains unexploited.

In this paper we therefore presented and investigated two

approaches for social media location discovery using large

scale aggregated knowledge from a massive historical tweet

dataset to enlarge the set of geolocated messages. With

the strategies presented in this paper, analysis systems can

increase the recall rate when an area of interest is already

defined. Additionally, the approach provides uncertainty

scores to support the analyst’s decisions making.

We are, however, well aware of the severe privacy con-

cerns that can be raised when government agencies, com-

panies, or other institutions use such technology to infer

data about individual users’ whereabouts that they explicitly

did not share. Recent history has shown that pariah states

have exploited social media data to turn it against civil rights

movements and that even intelligence agencies of developed

countries have collected and analyzed such data to spy on

citizens. We hope that the presentation of our approach will

also increase public awareness and help people to understand

the dangers of sharing too much information.

The large communities of location-enabled social media

networks have generated a unique dataset mapping language

and content to geographic coordinates, thereby forming a

digital sociocultural landscape of unprecedented richness

and extent. Because of the high value of the provided data,

social media mining has become an important topic in many

different research areas ranging from practical applications

of traditional NLP methods over computational sociology

to stock market analysis and we are sure to see a lot of

interesting developments in the near future.

VII. FUTURE WORK

Mobile devices and the capabilities of service providers

bring their users to develop a very specific language and

different means of communication. While our data-driven

approach already addresses some of these aspect, future

work will take on the temporal dimension of this fast-paced

domain by considering seasonality and trends. Additionally,

interactive visual means to assess the uncertainty of the

approach’s results are needed for a better understanding

of which types of messages are most promising for term-

usage based geocoding. Finally, we are confident that our

research is also applicable to other social media as well as

text data coming from completely different areas and will

further investigate its usage scenarios.

ACKNOWLEDGMENT

This work was supported in part by the German Federal

Ministry of Education and Research (BMBF) in context of

the VASA project and by the cooperative graduate program

‘Digital Media’ of the University of Stuttgart, the University
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