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Abstract—The ease with which people can use today’s tech-
nology to form connections has generated an unprecedented
situation for society: an era of global connectivity. This ease
of connecting has increased the number of people using social
networks, making the search for connections in this kind of
network extremely complex. In this paper, grounded in concepts
from Network Science and Artificial Intelligence, we report
on models we have constructed and on algorithms aimed at
producing a search engine integrated into social networks en-
vironments. The contribution of this engine is its ability to
evaluate the numerous paths that connect source and target
people, opting for the path where the interpersonal influence
through the path is maximized. This increases the probability of
finding reliable connections. In order to simulate its operation, we
implemented this search engine in a multiagent application whose
test performance produced results that exceeded expectations.

I. INTRODUCTION

If the current era of human history was characterized in a

simple way, its description might be the most highly connected

period thus far. Interpersonal connections have become so

explicit that today almost all people are familiar with the

online social networks, like Facebook [1], which recently

surpassed the mark of one billion active users [2].

In this context, emerged a science responsible for under-

standing the consequences of all this interconnectivity, through

an interdisciplinary approach focused on intensive study of

complex networks. Grounded in sociological research and

in Graph Theory, Network Science has produced significant

works that have subverted previously defined concepts, pre-

senting revealing features about the social universe.

Network Science adopts a vision of society as a dynamic

network and understands that people’s success is conditioned

in the structure of the networks they form, and the ability of

these networks to be navigated [3]. It is this perspective of

navigation that creates the possibility of conducting search in

social networks, the main topic to be discussed in this paper.

A. Searches in Social Networks

Essentially a social network is a set of people and their

connections to each other. Social networks evolve organically

from the tendency of people make their friendships, and these

choices put individuals in specific locations in the networks.

According to the physicist Mark Buchanan [4], the concept

of a networked society was evidenced in the 80’s, when

people realized that the best strategy to find information

about abstruse matters was to explore the links of their social

networks, searching for partners. “People extended antennas to

their friends and acquaintances, and hoped that at some point

in the chain, some preciousness appeared in their paths”.

Finding a person, who could provide desired information

has become even more important today when problems, which

no clear solutions, have to be solved quickly. Defining which

person should be looked for and what is the best path to that

person can be extremely complex, especially if done online,

because the number of connections grows much more quickly.

This faster growth occurs because the core of human con-

nectivity is not simply dyads, or connections formed by direct

contacts. Instead these dyads aggregate to form huge webs of

social ties that go far beyond direct connections, resulting in

exponential branching [5]. Thus, paths of length two in social

networks are already extremely difficult to search manually

and longer than this is generally impractically.

In addition, an important factor in evaluating paths in such

networks is influence [6], [7]. This type of social prestige is

present in most friendships and may be paramount in creating

connections. Different levels of influence exist in different

paths connecting two people and influence can be effected

by various factors along path (e.g., length).

A major difficulty occurs in the search process when solving

a global problem using only local information [3]. It is hard to

know which is the path of greatest influence between a source

and target, because at each node, a new decision must be made

and there is no clear way of evaluating the options.

In order to mitigate this problem, we present the design

of models and algorithms that enable the creation of an

intelligent engine for performing searches in social networks.

The idea is to create computational agents able to quickly

traverse huge networks. These agents operate in parallel using

various approaches, such as Dijkstra’s Algorithm, Ant Colony

Optimization, and Genetic Algorithms. A multiagent applica-

tion called Fluzz was designed to simulate this search engine

and, based on the Network Science’s findings, the agents are

able to classify all paths connecting the source person to the

target, where the best path is the one in which the influence

probability among individuals is maximized.

To facilitate the use of our system, we added mapping
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and visual transformation resources to the application. These

display the stored networks, enabling users to evaluate the

quality of the paths the agents find. In simulations performed

in Fluzz, the agents were able to locate the best paths to

the targets in satisfactory time, using their different skills

cooperatively. Our hope is that all this practical and theoretical

apparatus can be integrated into future online social networks,

with our new model helping people find new connections.

The remainder of this paper is organized as follows: section

II shows how the Network Science is able to map social net-

works. Section III introduces the path-finding algorithms used

for creating the computational agents of our search engine.

Section IV presents the related work. Section V presents the

search engine, detailing the models and algorithms developed.

Section VI introduces the Fluzz application, responsible for

simulating the search engine proposed. Finally, section VII

considers the contributions of this research.

II. NETWORK SCIENCE: MAPPING SOCIAL

NETWORKS

From works based on decades of theory and experiments in

fields such as mathematics, sociology, and computer science,

scientists are learning how to map all kinds of networks,

starting to visualize patterns not previously perceived [4].

This knowledge is leading to some remarkable findings such

as: why most of the wealth ends up in the few individuals

hands [8]; how a population of 7 billion people may be

separated by only six degrees [9]; how individuals using local

knowledge can find partners on social networks through a

chain of acquaintances [10]; why people may become obese,

lonely, or happy because of individuals they do not know [5];

why one innovation quickly spreads through a social network

while another similar one falls by the wayside [3].

Adopting a network vision as an integral part of an evolving

and continuously self-reconstituting system, so called Network

Science (also called Science of Networks or Network Theory)

offers a deeper perspective on the fundamental importance of

connections in the world [3], [11], [4]. Besides understand-

ing the organizational patterns of complex systems, Network

Science tries to discover how to influence these patterns.

The search process in social networks is one important

aspect of this field. The main idea is to help people to explore

social networks, expanding their ability to obtain important

information, using the influence factor on their social circle.

In this research, most of theoretical concepts are imported

from Social Network Analysis (SNA) [12], whose purpose is

analyze the structural relations between social actors.

There are many important works using SNA in search

algorithms [13], [14]. The Web itself was conceived from

a proposal of hypertext, a linked network of texts. The

largest and most used Web search engine today, Google [15],

uses linkage analysis between Webpages as a main factor in

defining the order in which retrieved pages are presented [16].

In a different approach, online social networks provide

information about the relationships between individuals, which

can be used in search. The combination of search and social

networks is revolutionary because it uniquely incorporates the

way people think and interact. The most common reason to

search socially, instead using a classic search engine, is that

participants trust more in the responses provided by their

friends, rather than the opinions of strangers [17].

For this reason Network Science research has become even

more relevant, producing central works for several approaches

to social search [18], [19]. In the following we will briefly

discuss some of these works which are advancing SNA and

are essential for the social model proposed in this paper.

A. Six Degrees of Separation

In 1967, the psychologist Stanley Milgram conducted an

experiment to investigate the hypothesis which stated that the

world, seen as a huge network of social relations, was “small”

[20]. The small-world problem, as it became known, ensured

that anyone could be reached through a network of friends in

just a few steps. Milgram’s goal was to estimate the “distance”

between any two people in the United States, since at that time

this measure was typically estimated in the hundreds.

The experiment involved sending letters to randomly se-

lected people, asking them to try to contact a target person

through their friendship network. Surprisingly, 43 of the

160 letters arrived at their destinations, allowing Milgram to

calculate the average number of intermediate persons, on that

occasion 5.5, rounded to the famous six degrees of separation.

In 2003, the researchers Peter Dodds, Roby Muhamad, and

Duncan Watts replicated Milgrams experiment on a global

scale using e-mail as a mode of communication [21]. They

recruited thousands of volunteers to send a message to the

targets, and roughly six steps were needed on average to send

the email to each target, confirming Milgram’s estimate.

The six degrees of separation suggested two conditions:

first, global society can be navigated by social links from one

person to another; second, in a network with 7 billion people,

any pair of nodes is on average six links away from any other

[3]. These are the conditions that enable searching in social

networks with high probability of finding relevant results.

B. Three Degrees of Influence

The fact that people are connected with six degrees of

separation does not mean that these connections dominate all

others. The researchers Nicholas Christakis and James Fowler

showed that influence diffusion in social networks obeys the

rule of three degrees of influence [5]. Everything a person does

tends to reverberate through the network, exerting an impact

that dissipates at every separation, until the probable limit of

degree three, no longer having a noticeable effect.

According to the researchers, there are three possible rea-

sons for this influence be limited. First there is deterioration

in the reliability of data during transmission. Second, the

influence may decrease due to an inevitable transformation in

network, given the constant turnover in social ties through the

paths. Third, evolutionary biology can predominate because in

the past, there were no greater distances than degree three [5].

Thus, although six degrees of separation applies to the degree
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of connection, three degrees of influence applies to the degree

of contagion, allowing to measure human influence.

C. Social Distances

Interested in understanding how people compute social dis-

tances, Watts, Dodds and Newman observed that they often do

it violating the mathematical condition known as the triangular

inequality [3]. According to this condition, the length of any

side of a triangle is always smaller or equal to the sum of the

lengths of the other two sides, as shown in Figure 1.

Fig. 1. Triangular Inequality.

To understand this violation, it is necessary to verify how

distances can be measured in society. The first way is the

number of links on the shortest path between two points. In

the case of the points i and j in Figure 1, this path would

be Xij . But this is not the definition that people typically

use when considering how far away they are from someone.

For the researchers, individuals tend to identify themselves in

terms of contexts, making use of multiple dimensions [22].

In an exemplification given by Watts in Figure 2 [22], the

same individuals of Figure 1, i and k, can perceive themselves

as close to j, where i is close in a one dimension d, e.g.,

geography, and k close in another dimension, e.g., occupation.

Fig. 2. Social Multiple Dimensions.

These multidimensional nature of social identity can explain

the violation of the triangular inequality [22]. Figure 2 shows

that the node i recognizes k as distant because there is no

dimension in which both are present. Hence, although the

triangular inequality dictates that the cost of the path (i,k) is

less than that of the path (i,j,k), as shown in Figure 1, this is

exactly the opposite of the way people calculate the distance.

As the node i is closely linked to j and the node j is closely

linked to k, the distance from i to k, is smaller if it is traveled

by the path (i,j,k) because i and k do not share a dimension to

perceive themselves as close. Consequently, the more contexts

people share, the more chances they have to connect.

D. Weak Ties: Social Bridges

Inspired by the work of mathematician Anatol Rapoport

[23], the sociologist Mark Granovetter investigated how the

six degrees of separation were possible. For Granovetter, a

parameter disregarded by scientists was a crucial piece to

this puzzle: the strength of social ties [24]. Overall, he called

strong ties those that exist between family members or good

friends, while weak ties connected just acquaintances [24].

Granovetter’s insight was to realize that, with the evolutionary

dynamics of networks, strong ties tend to appear in triangles

being therefore responsible for social clustering. Hence, in-

complete triangles should be rare in this context, being found

mainly in groups dominated by weak ties [24].

From this perspective, if a strong tie of a social network is

removed, it will cause little effect in the number of degrees

of separation. As this kind of tie almost always appear in

triangles, it would still be possible to find a path from one

point to another of the broken link, in just two steps, by

moving along two remaining edges of the triangle. However,

when weak ties are removed, the inevitable consequence is

network fragmentation. For Granovetter, weak ties facilitate

the existence of small, connected worlds.

In the 90’s, grounded in Milgram’s and Granovetter’s find-

ings, Duncan Watts and Steven Strogatz offered to scientists

a formal way to understand how the six degrees of separation

were possible proposing the small-world networks [9]. In

this network model they presented how a few long-distance

connections can make all the difference in a highly clustered

network. Over the same period, Albert Barabási and Réka

Albert showed how the historical mechanism in which the

rich get richer, plays a similar role to long-distance connec-

tions, proposing a different network model called scale-free

networks [8]. Both models were first attempts to explain the

small distances between individuals as a result of a complex

organizational behavior, disregarding the notion that social

networks are formed by a purely random process.

E. Strong Ties: Social Capital

The consequences of clustering in society produces social

capital, which is the ability of people to work together based

on trust [25]. If weak ties keep networks connected, the social

capital, created by the clustering of strong ties, provides a

context of individuals firmly set. This enables the creation of

social support produced by cooperative social chains [5].

As evidence of this phenomenon, researchers from the

University of Chicago presented the results of a study that

provided a description of the relational behavior of individuals.

Table I shows who introduced couples in different relationship

types [26]. About 61% of people met their partners through

someone who they knew before, while only 39% met via

self-presentation. Thus, although there was the possibility of

strangers meeting, most people found partners by meeting

individuals to whom they were indirectly connected.

Another study examined a network of word-of-mouth rec-

ommendations for three piano teachers [6]. Most recommen-

dations occurred among close friends who were directly con-

nected and positive references spread mostly to students within

three degrees of the teachers. These studies demonstrate that

people rely on friends and family for any kind of relationship,

since socially mediated presentation is more informative.
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TABLE I
INTRODUCTIONS IN SOCIETY

Close Relation. Distant Relationship
Type of Relation. Family Friend Work School Neighbor Self.

Weddings 15% 35% 6% 6% 1% 32%
Cohabitation 12% 40% 4% 1% 1% 36%
Partnerships 8% 36% 6% 4% 1% 42%
Short-term partner. 3% 37% 3% 4% 2% 47%

III. PATH-FINDING ALGORITHMS

A path-finding algorithm searches a graph from a source

vertex and explores adjacent nodes until the target be reached,

usually looking for the shortest path [27]. For this last case, the

problem is usually known as “Shortest Path Problem”, having

become one of the most studied real problems in optimization,

especially when the contexts are social networks [28], [17].

Several approaches for solving this type of problem have been

developed recently and improved by the scientific community.

In this section, we will briefly describe the three approaches

used for developing the proposed search engine: Dijkstra’s

Algorithm, Ant Colony Optimization and Genetic Algorithms.

A. Dijkstra’s Algorithm

The Dijkstra’s Algorithm [29], published by Edsger Dijkstra

in 1959, addresses the issue of the shortest path in a directed

or undirected graph whose edges contain no negative weights.

This algorithm is used to determine the shortest path from one

node to another node or to all the other nodes of the network.

Possessing a greedy strategy, Dijkstra’s Algorithm always

makes the best decision in the moment. This strategy works

because each subpath of a shortest path is also a shortest

path. Hence, is possible to find the shortest path between two

nodes, corresponding to the optimal solution of the problem,

by determining all the intermediates shortest paths.

Dijkstra’s Algorithm uses a recursive formula in which

in each iteration, the neighbors of a vertex are checked to

determine what is the best option to expand the search.

The node whose cumulative weight is the lowest among the

candidates, and consequently all the neighbors of this node, is

the next node analyzed. The search stops when the target node

is reached, or when there are no more nodes to be analyzed.

B. Ant Colony Optimization

The foraging behavior of many ant colonies is based on a

type of communication known as stigmergy [30], which is a

indirect exchange of messages, performed by the ants through

a volatile chemical substance called pheromone. While they

walk from the nest to the food sources and vice versa, ants

deposit pheromone on the surface, forming a chemical trail

that will guide the others ants of the colony.

Over time, the initial stochastic fluctuations of choosing a

path to the food source are reduced and a second mechanism

plays an important role. As the ants that have chose the shortest

path are faster than the others, this path receives a greater

amount of pheromone. The result of this positive feedback is

that after some time, the whole colony converges to the same

route, guided by its high level of pheromone [31].

The importance of this finding is that high levels of

pheromone are synonymous with short paths. So inspired by

the foraging behavior of ants, in the 90’s, Marco Dorigo

proposed the metaheuristic Ant Colony Optimization (ACO),

which uses artificial ants to build solutions for optimization

problems. These artificial beings exchange information about

the quality of its solutions through a communication scheme

similar to that used by real ants. Recently, different versions

of algorithms have been proposed using ACO such as: Ant

system (AS), Ant Colony System (ACS), Max-Min Ant Sys-

tem and ASrank [32]. These versions have obtained results for

some optimization problems that are among the best heuristics

currently available, including shortest path problems [32].

C. Genetic Algorithms

In the 60’s, John Holland investigated machines that learned

more organically, exploring how simple rules could lead to

complex behaviors. The idea was to create a software capable

of unlimited learning [33]. The biggest insight of Holland’s

was to use the power of natural selection. He took the evolu-

tionary Darwinian logic and the genetics of Mendel and turned

them into code, naming his creation of Genetic Algorithm [34].

Genetic Algorithms preform a stochastic, metaheuristic

search that presents biological evolution as a technique for

solving optimization problems. Individual generated by this

algorithm, called chromosomes, represent a potential solution

to a problem and evolve to find an individual that is, in fact, a

solution. In the algorithm, these chromosomes compete with

each other and the more adapted, at the expense of weaker

candidates, are selected to be crossed in the next generation,

mimicking Darwin’s theory of evolution. Consequently, each

new generation produces more adapted chromosomes, imply-

ing a convergence to the problem solution. The population

average fitness increases with each iteration and the process is

repeated several times to enable the discovery of better results.

Because of their proven qualities, Genetic Algorithms have

recently been integrated into techniques for solving the short-

est path problem [35], mainly because they can adapt better

to unexpected situations during search.

IV. RELATED WORK

In this section, a brief description of three applications

related to this work is presented. The main feature examined is

the ability of these applications to perform social searches and

return shortest paths connecting source and target people. It is

important to note that none of these applications uses informa-

tion about mutual friends for modeling social networks, with

potential violations of the triangular inequality. Furthermore,

none of them uses a multiagent system with different path-

finding methods working cooperatively.

Thanks to Kevin Bacon Game, whose goal is to find the

shortest path between any actor and the referenced movie star,

in 1997, Glen Wasson and Brett Tjaden realized that distance

calculation between actors was a viable project to be developed

[11]. After obtaining access to the Internet Movie Database

[36], Wasson and Tjaden installed the site The Oracle of Kevin
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Bacon [37]. Providing the names of any two actors, the site

presents the shortest path between them, listing the chain of

movies and actors by which they are connected.

Referral Web aims to create an interactive tool to help

people explore their social networks, so that they can quickly

find short referral chains between themselves and experts on

arbitrary topics [38]. The application uses the co-occurrence of

names in close proximity in any documents publicly available

on the WWW as evidence of a direct relationship, creating

weighted edges that indicate the degree of association between

the individuals. Consequently it allows users to search for

chains in the networks to either named individuals or, more

generally, to people who are likely to be experts on a given

topic, graphing them in its visual interface.

The SmallBlue project within IBM aims to analyze the

corporation’s social network, for locating experts on given

topics using queries keywords [28]. It checks the user’s

email outbox and outgoing IM chat transcripts for returning

a relevance-ranked list of people, showing how to reach them

based on the personal interactions among individuals. The

search engine aggregates the results for all the keywords and

ranks them according to relevance weighting and aggregated

social-network structure. Then, it displays the minimal number

of intermediate people to contact the target person, with an

option to filter those who are one, two, or three degrees apart.

V. THE PROJECT

All works previously mentioned produced by the Network

Science and Artificial Intelligence form the conceptual basis

for our design of a new social search engine, to be integrated

into any social network application. The main idea was

to create computational agents that are grounded in social

models, giving them the facility to evaluate and classify the

various paths that connect a given pair of people in a network.

Using these agents, an application can then return paths where

interpersonal influence is maximized. Each path represents

chains formed by a set of sequentially adjacent individuals

by their “friendship” relation, as shown in Figure 3.

Fig. 3. Paths Representing Social Chains.

As social networks often violate the triangular inequality,

the counts on the prestige of friends through a paths can

become the differential to create new relationships [6], [7],

[17]. In addition to the influence exerted by an individual

on people that surround him, each intermediate link on a

path, can significantly contribute to strengthen this influence.

Therefore, we believe that returning a relevant social path can

help users to strategically use the influences throughout this

chain to create a social channel to the desired individual. To

achieve this, we consider in the agent’s model two features

for maximizing the probability of interpersonal influence:

minimizing the distance and maximize the strength of the ties.

First, by minimizing path length, we ensure the possibility

of finding paths with the lowest degree of separation. Ac-

cording to the Christakis and Fowler [5], the farther apart

two people are on the network, the less chance there is of

influence. Further, the researchers found that, in society, the

limit of human influence is degree three. For longer distances,

such influence stops having noticeable impact, and the paths

become unreliable. Hence, the distance minimization process

is concentrated at the region bounded by paths of length three.

These paths may represent the major difference between an

attempt at direct contact and contact mediated by friendships.

The second feature of our model is the weight of con-

nections representing the strength of the ties, which should

be maximized. This measure is considered highly complex

[6], as it depends on variables inherent to each relationship.

Nevertheless, according to Granovetter [24], the strength of

relational ties can be classified roughly into two categories:

strong ties and weak ties. This fact combined with Watts’

discovery [22] about the multiple social dimensions, enabled

us to create a metric to estimate the strength of ties.

According to Watts, people share multiple social dimen-

sions, and the more dimensions they share, the more chance

there is that they will meet each other [22]. Using this rea-

soning, we concluded that, the more dimensions people share,

the more intense is the referent friendship. The amount of

shared contacts cannot directly determine the amount of shared

dimensions, but it is a good indicator of tie intensity. The

reason is that more shared contacts increases the chances of

different dimensions being present. Therefore, we use shared

contacts as an estimate of the weight of social ties. This

implies that the weights are non-negatives.

A. Search Engine’s Architecture

In this subsection we present the search engine’s architec-

ture, detailing all its components: AgentMain, Search Agents,

and Data Repository, as shown in Figure 4.

Fig. 4. Search Engine’s Architecture.

1) AgentMain: This agent starts the search process by

sending a message to the first search agent. Then, a series
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of communications is performed between the agents, which

cooperatively search for a solution. As soon as one of them

reaches the target a message is returned to AgentMain which

graphically presents the path found.
2) Search Agents: There are four agents that work cooper-

atively. AgentDijkstra is the first to be activated. Its name is

due to the algorithm it uses to navigate the networks, Dijkstra’s

Algorithm [29]. The next agents to be activated are ACS and

AS, which initiate a search at the same time as AgentDijkstra.

The strategies they use follow respectively the Ant Colony

Optimization’s metaheuristics Ant Colony System [32] and

Ant System [32]. In addition, there is still the possibility of

AgentGA being activated by any of these second level agents.

If this occurs, the AgentGA, which implements a Genetic

Algorithm [35], also participates in the search process.
AgentDijkstra is solely responsible for establishing the zone

of influence, i.e., for returning paths up to degree three,

because, such paths if present, are potentially optimal solutions

to the problem. As the number of each person’s connections

in society is relatively small, even with an exponential growth

of this number, the number of the paths of up to length three

can still be analyzed quickly by this agent.
In order to define a qualitative analyze of the paths, we

created the Bestway model to integrate the evaluation logic of

the AgentDijkstra. The model produces a weighted graph using

the following three factors (discussed in order of importance):

• Minimize the weak ties in the human influence zone:
In our social model, ties are classified as strong or weak

according to the number of their shared contacts, where

the threshold between strong and weak is defined by the

user. The first factor to be checked is the number of

weak ties in the zone of human influence. Despite the

importance of weak ties for providing rapid access to

distant network points, in our perception, they correspond

to unreliable and low-intensity relationships. Therefore,

the goal in our search is to minimize weak ties in paths up

to length three which decreases the chances of breaking

a social chain. In fact, this might have been the main

reason for most of the social chains of the Milgram’s and

Watts’s experiments have not succeed. We believe that

weak ties represent something near to absence of shared

social dimensions, being responsible for the violation of

the triangular inequality. So, the main idea is to attempt

to reach the target person using up to three strong ties,

because they represent the trusted people [6], [39].

Figure 5 illustrates two situations where the number of

weak ties dictates which is the best path. In the picture

on the left side, three paths separate the vertices 1 and

5. If the user has defined that a weak tie corresponds to

links with weights smaller than 5, the path (1,5) has one

weak tie, the path (1,4,2,5) has two weak ties, and the

path (1,3,5) does not have weak ties. As all these paths

are in the zone of human influence, the agent determines

that the path (1,3,5) is the best choice because it has the

smallest number of weak ties. In the diagram on the right

of the figure, two paths separate the vertices 1 and 3. The

path (1,4,2,5,3) has no weak ties, while the path (1,4,3)

has one. Nevertheless, the path (1,4,2,5,3) has more than

three degrees of separation, so the path (1,4,3) is chosen.

Fig. 5. First Factor of the Bestway Model.

• Minimize the degree of separation: When the above

factor is not able to distinguish between two paths, a

second criterion is used to minimize the distance across

the network. Figure 6 illustrates two different situations

of this analysis. The diagram on the left shows two paths

that separate the vertices 1 and 5. Using the analysis

of the number of weak ties (again assuming the weak

tie threshold is 5), both paths (1,4,2,5) and (1,3,5) have

one weak tie and are in the zone of human influence.

This situation forces the agent to consider the degree of

separation, which indicates that the path (1,3,5) should be

chosen. In the diagram on the right, both paths separating

vertices 1 and 6, (1,4,2,5,6) and (1,4,3,2,5,6) are outside

the zone of influence and will be differentiated only

by the degree of separation, making the path (1,4,2,5,6)

preferred, even with one more weak tie.

Fig. 6. Second Factor of the Bestway Model.

• Maximize the path weights: If there is still a situation

where two different paths exhibit the same amount of

weak ties and the same degree of separation, maximum

path weight is used. The goal in this case is to select

people with more intense friendships that will probably

be more apt to cooperate with each other. This process

is illustrated in Figure 7, where there are three best

paths of degree 2 that connect the vertices 1 and 5. In

this example, there are no weak ties along these paths.

However, the weight of the path (1,3,5) is 70, the weight

of the path (1,4,5) is 65, and the weight of the path (1,2,5)

totals 75. Hence, the path (1,2,5) is preferred.

Fig. 7. Third Factor of the Bestway Model.

Figure 8 illustrates these factors being used in combination,

resulting in the Bestway model.
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Fig. 8. BestWay Model.

As predicted by the Network Science, after three degrees of

separation, influence in a social network becomes negligible.

Therefore, finding a person four degrees away has no practical

significance, being a better choice try direct contact rather

than to intermediate. Nevertheless, a long path provides a clue

because any connection created by its intermediate individuals

can push the distance between source and target into the zone

of influence. This is a reason why long paths should not be

disregarded. In online social networks, for instance, knowing

who are the individuals of a friendship chain, enables the

recognition of close people in real life, which are momentarily

distant online. Consequently, strategic connections can be

made by the source person, shortening this distance.

The problem that emerges when it is necessary to search

beyond the limits of human influence is the branching factor.

Depending on the network, the number of links from this re-

gion can represent a vast search space. Although AgentDijkstra
is efficient, after this level, we have found that it is better to

have the other agents cooperating in the search process.

According to our architecture, the AgentACS and AgentAS
only contribute their information, when the AgentDijkstra
crosses the boundary of three degrees. At this point, if

AgentACS or AgentAS find a solution with four degrees they

send a message to the AgentMain with their solution, which

extinguishes all active agents and returns the path found.

Ant behavior provides an excellent metaheuristic when

applied to optimization problems. Thanks to feedback from

pheromone’s deposits, artificial ants are able to navigate

through large networks, and find short paths quickly. Beyond

three degrees of separation, it becomes less important to locate

optimal paths. So, the use of metaheuristic optimization works

well in this context. Hence our model finds best paths of up to

length three, and near best paths when the degree is greater.

Finally, the last search agent, the AgentGA, can be activated

by either of these agents based on ant colonies. Its main

goal is to produce a diversification of the paths previously

found by the ants, which can converge to some local optimum.

Consequently, if this agent, who also works beyond the three

degrees of separation, finds a solution before the others, the

process will end exactly how described above for the ants.

The AgentGA uses as metaheuristic the Genetic Algorithms

with a fundamental definition for composing its initial pop-

ulation. To avoid problems of creating infeasible paths, all

chromosomes from the AgentGA population are originally ants

from the AgentACS or AgentAS, as illustrated in Figure 9.

Hence, both ants and chromosomes are represented by

integers which correspond to the vertices of a path, and as

Fig. 9. Representing Ants and Chromosomes.

soon as the first two ants are formed, they are encoded as

chromosomes subject to the process of genetic improvement.

Whenever AgentDijkstra enters in a new level of distance,

a message is sent by it to all the other search agents, let them

aware of the required distance at each time.

3) Data Repository: The Data Repository must be provided

by the application that implements the search engine created,

being responsible for storing and maintaining the integrity of

all relational information of the networks created.

VI. THE FLUZZ APPLICATION

As a way to simulate the proposed search engine, we built

the Fluzz application. The simulation results can be graphi-

cally analyzed in the Fluzz interface because visual mapping

and transformation capabilities were incorporated to it. The

development platform we used was JavaSE (Java Platform

Standard Edition) version 7.0 [40]. The data generated by the

simulations are stored in the database provided by PostgreSQL

version 9.0 [41]. The framework used for implementing

the cooperative agents was JADE (Java Agent Development

Framework) version 7.0 [42]. Finally, the graphic composition

of the networks is performed by the framework JUNG (Java

Universal Network/Graph Framework) version 4.2 [43].

A. Simulating the Search Engine

To initiate the search procedure, the user must input to

the Fluzz upper panel the source and target vertices and the

threshold value corresponding to a weak/strong tie boundary

value. Then, the button Search Best Path should be pressed.

The AgentMain compute all the paths lengths and starts the

search agents. As soon as AgentMain receives a message, it

processes the response returning the solution.

By implementing the search engine in Fluzz, additionally

we produce resources for creating multidirectional searches,

allowing that multiple individuals could be targets at the same

time. There are on the upper panel of the application three

fields prepared to receive information relating to individuals,

such as personal and professional characteristics. When at least

one of these attributes is filled, the AgentMain identifies that

the search should include as targets all the vertices that have

the attributes informed. The best path found by the agents,

among all individuals filtered, is then returned.

The AgenteDijkstra stores the evaluation of each traveled

subpath in the following matrix: [S, D, W ], where S = amount

of weak ties, D = degree of separation and W = path’s
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weight. So, this agent uses a binary heap [29] to sort this

matrix, and the best subpaths are those which have (in order

of importance): the smallest S, the smallest D, the highest

W . If the AgenteDijkstra does not find the target person

within three degrees of separation, it restarts the search and

continues until the end without using S, for analyzing potential

paths previously disregarded within this zone. This procedure

ensures that paths up to length three are always chosen first,

and after that, the paths with the lowest degree of separation.

For the AgentACS and AgentAS we implemented variations

of algorithms Ant Colony System (ACS) and Ant System
(AS). The artificial ants are created sequentially, being the

pheromone globally upgraded in the edges, always after the

creation of two new ants. Each of these agents represents a

different ant colony, however only one pheromone trail was

created making the colonies share their learnings.

Another important detail is how the agents manipulate

pheromones. AgentACS performs its deposit in an elitist way

by only allowing the best ants to make deposits, while AgentAS
allows deposits from all ants. As to pheromone evaporation,

only AgentACS performs this procedure, processing a small

reduction of this substance on the edges traveled by its ants.

For the ant creation, we stipulated a limit value of 100

cycles, which means that no path can be created with more

than 100 vertices. This generation process is implemented

using Depth-First Search (DFS) [29]. The ants use a tabu list

to check for vertices already visited and if one of them reaches

a dead end, it backtracks [29] to the last valid configuration.

Unlike the original algorithm, in our implementation ants

use only pheromone information for orientation, since the

accumulated weight of connections after the third degree of

separation is disregarded. Moreover, AgentACS does not do

exploitation as originally proposed for ACS algorithm.

Finally, the AgentACS and AgentAS are responsible for

starting AgentGA when the first two ants are created. They

send to this agent all previously generated ants, which are

encoded as chromosomes and stored in a repository divided

into three sections: the general section, which comprises all

the chromosomes created, the elitist section, which stores the

best chromosomes, and the mutant section, which includes

chromosomes genetically modified. We attribute to these three

sections the same chance of being chosen by the selection

process of the Genetic Algorithm. Thus, as the last two

sections have relatively few chromosomes, there is a greater

chance these chromosomes be recombined in an elitist process.

Once two chromosomes are selected they are recombined

through the process NBX (Node Based Crossover) [35], which

enables the crossing only if the two chromosomes have at least

one pair of the same gene, excluding the source and target

vertices. After performing the crossing, a repair function is

used to remove potential loops in the paths. After the crossing,

chromosomes can still be submitted to the mutation operation

with probability of 1% to occur in each gene. The exchange of

genetic material is carried out by consulting the list of adjacent

vertices of the previous gene chosen. Hence, a partially valid

chromosome is created, being subsequently completed with

the genetic material of another compatible chromosome.

Figures 10(a),(b),(c) and (d) illustrate the search engine

operation, using four different types of network (created

randomly, small-world, scale-free, and a mix of these models)

arranged with 100 nodes and 197 links. Figure 10(a) shows

that AgentGA was responsible for the solution, because it has

found a path between the vertices 95 and 74 before the other

agents. Figure 10(b) indicates that AgentAS obtained the best

performance, presenting the path between the vertices 54 and

36. Figure 10(c) shows that AgentACS was the victor, returning

the path between the vertices 62 and 45.

All the solutions presented by these agents are possible

because the AgentDijkstra had already focused its search at

greater than three degrees of separation. Since AgentACS,

AgentAS and AgentGA had already found a solution in the

last level searched by the AgentDijkstra, they could present

it first. This did not occur with the exemplification shown in

Figure 10(d), where AgentDijkstra was the winner.

Fluzz has a resource on its left panel to identify the agent

responsible for the solution. As shown in Figures 10(a),(b),(c)

and (d), the application indicates who was the victorious agent,

painting the respective marker with a red color. In addition,

it is in this marker that the partial solutions of the agents are

presented, being possible to check the degree of separation in

which each one is located.

On the Fluzz right panel, there is a space dedicated to the

description of the path found, displaying the vertices that form

it, the degree of separation between the source and target,

the cumulative weight, and the amount of weak ties present.

Fluzz also provides a visualization of the solutions with the

paths found being highlighted graphically in the application’s

rendering visual component by painting them purple.

We made twenty measurements to compare the agents

performance during the search process. Table II presents the

amount of times that AgentACS, AgentAS or AgentGA were

responsible for determining the solution in different networks.

TABLE II
WINS OF THE AgentACS, AgentAS E AgentGA FACED AgentDijsktra

Network Size and Density
N. Nodes N. Links Wins N. Links Wins

1000 1997 7x 4985 5x
2000 3997 6x 9985 4x
5000 9997 3x 24985 1x

100000 199997 2x 499985 1x
200000 399997 1x 999985 1x
500000 999997 0x 2499985 0x

As shown in Table II, as the network becomes larger

or denser, the metaheuristic agents have their performance

hampered, with AgentDijkstra increasingly being victorious.

This occurs because there are more paths in the network,

which increases the chance of these agents wander for a while,

until they start converging on a solution. Nevertheless, besides

returning some solutions, the metaheuristic agents provide an

important resource for the search engine: diversification.

Although it is possible to create a randomized version of
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Fig. 10. Search Process.

Dijkstra’s Algorithm that could make AgentDijsktra return

different solutions for the the same search, using the stochastic

nature of metaheuristic agents becomes more effective when

the subject is diversification. It occurs because these agents

can search different points of the network simultaneously,

identifying completely different paths for the same search.

Thus, even if the AgenteDijkstra finds a solution before its

partners, the Fluzz application maintains these other search

agents working, in case the user decides to check the solutions

provided by the metaheuristc agents. If otherwise, users can

use the button StopAgents to stop the search process. We also

created buttons next to each metaheuristic agent. When they

are pressed, they interrupt the search process returning the

solution found by the respective agent at that moment.

Through Fluzz, we performed several simulations of the

search engine, using networks of 100 to 500.000 vertices with

different densities. The Search Agents processed the informa-

tion correctly, producing the expected results according to the

models, and keeping a search average time of a few seconds.

B. Filtering Results

We implemented some filters to visualize the solutions.

Figure 11(a) shows a search conducted with no filter applied,

which occurred by selecting the option NoFilter. In Figure

11(b), the filter SPFilter(Shortest Path Filter) was selected,

and only the components belonging to the path returned are

presented. Another filter is the SPFFilter (Shortest Path and
Friends Filter) used in Figure 11(c). In addition to the com-

ponents belonging to the path found, all contacts of each node

from this path were presented. Finally, we created the filter

SPFCFilter (Shortest Path and Friends in Common Filter). As

seen in Figure 11(d), this filter adds to the subgraph existing

shared contacts between any vertices of the path found.

VII. CONCLUSION

In this paper we proposed the creation of a search engine

able to return a path between two people in social networks.

The novelty of the mechanism is its ability to distinguish the

various possibilities and choose the one where the interper-

sonal influence through the path is maximized. In our model

the use of influence is a key factor in the connective process

and was the main social feature analyzed in this work.

The main idea is to enable a new method that can extend

the conventional means by which people form connections,

bringing them closer to their potential partners in a more

natural and efficient way. The models proposed are based on

the recent sociological studies conducted by Network Science

and were integrated into the search engine to enable the

quantification of human influence.

Then we defined a search engine architecture using various

techniques of Artificial Intelligence, and finally we created a

multiagent application in order to simulate the engine. As a

contribution, the models and algorithms produced in this work

could be used freely, especially on the popular online social

networks, further increasing the human interconnection.
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